Building Interoperable Metadata on the Web

Hal Abelson Ben Adida (Eric Miller?) (Stefano Mazzocchi?)

January 6, 2006

Abstract

1 Introduction

Data interoperability is the soul of the web. Interoperable data makes it easy for people to accumu-
late information and build on each other’s work through collaborations that are widely distributed
and loosely coordinated. Interoperable data makes it easy for implementors to create tools that
operate across heterogeneous systems, without requiring close coordination between tool builders
and data providers. Interoperable data makes it easy for Web users to copy and paste material
from one page to another and to reuse information in different contexts. Data interoperability, and
the basic archiecture of universal identifers (URIs) and common formats (HTML) is the critical
enabler of the network effects that make the Net the Net.

What’s true for data is true for metadata. Metadata interoperability becomes increasingly
critical as Web becomes increasingly a Web of data navigated with the help of tools and services,
rather than only a Web of documents browsed manually. The opportunity for interoperability
becomes apparent with the emergence of application Web sites designed to help individuals manage,
categorize, and explore data: Delicious [??] manages bookmarks, Flickr [?7] manages photos,
Blogger [?7] and Typepad [?7] manage news and commentary, and Gmail [??], Yahoo [??], and MSN
[7?] manage email. These sites have developed finely tuned methods for annotating and navigating
the specific type of data they manage. One popular trend is simple keyword tagging, also known
as jemyfolksonomiesj/emy, where users assign multiple single-word tags to data elements, either
scoped individually as in Gmail or communally as in Flickr. !

Yet even simple tagging is implemented differently by different systems, and consequently indi-
vidual applications are lacking in interoperability: a tool builder who wants to extract structured
metadata from any one of these applications must be intimately aware of its data schema and often
its customized API.

To date, the only widely successful example of web-based metadata interoperability is RSS,
a single XML data schema built for the linear publication of news items. Based on RSS, meta-
applications like Technorati [?7], Bloglines [??], and Google and Yahoo’s customized homepages

!The term ”folksonomy” is credited to Thomas Vander Wal, who describes it in his blog as ”the re-
sult of personal free tagging of information and objects (anything with a URL) for one’s own retrival.” (See
http://www.vanderwal.net /random/category.php?cat=153], visited Dec. 31, 2005.) Interestingly, the same blog
page notes that the that academic paper cite the definition of the term in the Wikipedia entry, and yet that definition
continues to change as the Wikipedia entry is updated. This illustrates the need for ways to address data provenance
on the Web. Provenance is another key issue for metadata, but one that is outside the scope of this paper.

provide some amount of automated, cross-site data aggregation and filtering. Some more adventur-
ous applications, like Technorati’s tag search, or the various Google-Maps-based ”"mash-ups”, use
customized APIs offered by content communities to enable features more advanced than the opaque
aggregation of RSS. Unfortunately, it is unclear how Technorati or these innovative mash-ups might
handle more than a handful of data sources, because their code is highly customized according to
the sites they consume.

Ideally, interoperability on the web would let tool builders consume data emanating from nu-
merous applications with which they have no privileged relationship. For most applications, there
would be no need for custom APIs, and adding a new data source to a meta-application would
require no code change. Such interoperable metadata would democratize the current mash-up
trend, a stimulate remixing and customization of the ever-growing mountain of Web data into
highly-specialized and highly-useful applications.

This paper explores steps that web publishers can take to help fulfill this vision of an inter-
operable web of metadata. We consider nascent metadata discovery techniques and describe the
advantages and disadvantages of various options. We posit that guidelines for web publishers should
be clear and manageable without interfering in each community’s internal needs and features. The
questions are simple: what should a web publisher do to facilitate the tool maker’s job? How
should individual communities publish data so that they can be easily remixed, both manually and
in automated ways? How do a Web publishers act as good citizens of an interopable metadata
world?

2 This Paper

While the questions may be simple, the answers require balancing multiple, often conflicting re-
quirements. Web publishers want good support for their user communities; users want compelling,
consistent experiences across different sites. Tool builders want well-known public interfaces for
accessing sites programmatically. Everyone wants to enable collaboration, remixing, and evolution
without the need for pre-arrangement on tight coordination, and no one wants existing sites and
services to stop working.

To help assess how proposed architectural approaches measure up against these requirements,
we’ll consider some fictional participants in a world of Web metadata:

Paul is a web publisher. His site, Blogr, manages simple text blogs. Peter is another web
publisher whose site, Shutr, manages photo blogs, and Patrick is yet another web publisher whose
site, Podr, manages podcasts. Ursula uses all three sites: Blogr for her thoughts on American
Cuisine, Shutr for photos of the various restaurant meals she eats, and Podr for her weekly recipe
podcast.

Meanwhile, Tim and Theodore are toolbuilders. Tim manages a site called Blogerati that
aggregates user content according to various categorization schemes. Blogerati does not let users
upload content directly: all content is consumed from other sites like Blogr, Shutr, and Podr.
Theodore builds a desktop news aggregator called DeskBlog.

We first consider what an ideal metadata world might look like. What should Paul, Peter,
Patrick, Tim, Theodore, and Ursula be able to do? What kinds of resources would they need
to participate? We take into account that an ideal world cannot simply come into existence at
once: it must include transition paths for existing published sites. We then consider how various
current data/metadata schemes perform against this ideal: XML or microformats available over

HTTP GET, and custom APIs based on Representational State Transfer (REST) [?]. We assert
that accessing data using HT'TP GET is preferable to using custom APIs: one should try to mimic
the success of RSS in this respect. Going further, We find that the Web Consortium’s Resource
Definition Framework (RDF) [?] is a good mechanism for expressing generic metadata. RDF is
usable without any centrally defined taxonomies and the ”flatness” and universally-identified aspect
of RDF properties promotes easy interoperability.

We then explore how current formalisms, including XML and XHTML, as well as microformats,
effectively define small-scale worlds of metadata, where machines can interpret one another. Such
architectures are useful, but insufficient: they fail to achieve large-scale interoperability because
no data in them interpretable without knowing the specific schema, even if schemas can share
components.

We conclude that RDF is the only currently existing framework that enables a large-scale
world of interoperable metadata. We show how existing techniques can be "upgraded” to RDF
using the ”Gleaning Resource Descriptions from Dialects of Languages” technique (GRDDL) [?].,
Ww then consider RDF/A [?] a recently developed serialization mechanism for RDF that lends
itself particularly well to Web publishing. We explore how RDF/A enables the primary browsing
interface, XHTML, to also be the metadata interface. RDF/A is also appropriate when a Web
publisher does not wish to become the choke-point for new metadata definitions.

Finally, we describe how these architectural frameworks play out in some existing real applica-
tions with existing significant user communities. finish this to talk about CC and whatever
other example we’re going to use.

3 Principles for an Ideal Metadata World

In an ideal world, web publishers and tool builders enjoy seamless data interchange assisted by
interoperable metadata. Publishers Paul, Peter, and Patrick need only perform minimal work to
prepare their data for universal consumption. Toolbuilders Tim and Theodore can immediately
and automatically extract metadata from any publisher. This ideal metadata world stands on five
pillars of metadata design, which we outline below. Not all of these are completely compatible: a
real-world solution will likely have to strike a compromise between them.

3.1 Publisher Independence

Paul manages the Blogr user community, where Ursula blogs about the latest developments in
American Cuisine. Blogr lets users like Ursula add tags to their posts. Meanwhile, Peter allows
users of Shutr, where Ursula uploads photos of restaurant meals, to add information about the
camera used to take each posted photo and the geographic coordinates of the photo. Paul and
Peter expect to continue to define such features without interference from external standards-
bodies or from one another. This is the principle of Publisher Independence. A web publisher
should be able to define the details of his metadata schema with minimal constraints from external
sources.

3.2 Data Reuse

Ursula uses Theodore’s desktop news reader to stay up-to-date on various blogs. She also uses
Tim’s content aggregator site to find new blogs, and sometimes she browses Blogr via her normal

web browser to discover new and interesting recipes. Paul, the publisher of Blogr, would prefer
to use only one data format to feed into each of these different uses, whether for human-readable
rendering or machine-readable parsing and aggregation. This is the principle of Data Reuse. A
web publisher should be able to attach metadata to existing, rendered-for-humans data, without
duplicating the actual data content.

3.3 Metadata Self-Containment

In her Blogr postings on American Cuisine, Ursula often copies and pastes segments from other blog
entries (properly licensed for such reuse, of course) to comment on the proposed recipe and provide
her own insights. She expects her expert toolbuilder friend, Theodore, to build her a blogging
client that will automatically carry along any metadata from the quoted blog post when she copies
and pastes. This is the principle of Metadata Self-Containment. Metadata should be closely
bundled with the data to which it pertains. [MORE HERE?].

3.4 Schema Modularity

Tim, the manager of Blogerati, wants to aggregate as many blogging sites as possible, including
Blogr, Shutr, and Podr. Whenever possible, he indexes specific metadata fields, e.g. title, posting
date, and folksonomy tags. If some of this metadata is absent, he would still like to index the rest,
while ignoring the metadata he doesn’t care about (yet). This is the principle of schema modu-
larity. Consumers of web metadata should be able to recognize individual metadata components
within larger, partially unrecognized larger metadata sets.

3.5 Constructive Evolvability

As Peter, Paul, and Patrick expand their individual web applications, they may discover that their
metadata concepts map fairly tightly to other, existing concepts. They may wish to define equiva-
lences between their local metadata concepts and other, established metadata terms. Alternatively,
another web site may wish to declare such attribute equivalences. Tim should be able to take into
account any source of such metadata equivalence. Over time, as Tim chooses his data sources,
more detailed relationships between various consumed sites will emerge. This is the principle of
constructive evolvability. Metadata concepts should be relatatable and extensible by anyone,
not just the original publishers.

4 Survey of Metadata Solutions

Data Formats:

e parallel XML (RSS)

parallel RDF /XML

GRDDL’ized parallel XML
GRDDL’ized HTML

microformats

e RDF/A

[[WORK HERE]]

How should Paul, the owner of Shutr, publish structured metadata such that programs built
by Tim, the toolbuilder, might be able to automatically download and parse this metadata? We
consider, for now, the case where Tim is writing a Shutr-specific screensaver that displays randomly-
downloaded images from Shutr. We consider the two important aspects of metadata sharing:
discovery and parsing.

4.1 Parsing: Syntax of the Metadata

Paul will likely develop some abstract schema for his photo metadata based on the specific informa-
tion he stores on the server: camera details, exposure settings, human annotations of the photos,
etc... He might then wonder how to publish this data for public consumption. Clearly, a platform-
independent mechanism is required. In addition, the syntax should support relatively complex
schema structures so that Paul’s extensive photo metadata can be expressed fully. A language like
XML is a clear fit for this requirement.

4.2 Discovery: Obtaining the Metadata

Before Tim can start parsing the structured Shutr metdata, he needs to know jem;wherej/em; to
find it. In particular, how is each photo named, and using what protocol can one access the photo’s
metadata? As we are discussing web-based metadata, we assume underlying HTTP is available to
all parties.

Should Paul layer additional structure on top of HTTP, e.g. REST or SOAP, the way Flickr
does? In fact, for exporting web metadata, this is not necessary. Flickr requires an additional
layer because the basic HTTP protocol — effectively the jtt; GETj/tt; and jtt; POST]/tt; methods
— cannot fully describe an API used for structured data updates, e.g. photo uploading. For
jem;readingj/em; web-associated metadata, however, there is already a well-established resource
identification mechanism — URIs —, and a perfectly functional mechanism for accessing it: the HT' TP
itt; GET|/tt; method. Human browsing of a web site requires only the jtt; GET|/tt; method (the
ittg POST]/tt; method is used for data updates, not browsing). Browsing a web site’s metadata is
functionally equivalent, and can be done the same way.

4.2.1 Associating Metadata With Data

If Paul publishes photos at URISs like jcodejhttp://photoworld.net/photos/12345;/code;, then the
metadata for such a photo may simply be retrieved at the URI jcode; http://photoworld.net /metadata/photos/1234
The association between the two can be indicated by the XHTML for the original resource using a
ittg LINK|/tty, tag:
[[example of LINK REL="META”]]|
Alternatively, Paul might want to express structured metadata as part of the original XHTML
document he delivers. This is particularly important to help keep the data and its metadata tied
together through multiple redistributions. jb;IMPORTANT/b;.
[MORE HERE]]

4.2.2 End-to-End for Metadata Publishing

The most important feature of such a simple, data-centric approach to metadata is that it provides
the ultimate flexibility in metadata production and consumption. With simple HTTP access to the
metadata, Paul can begin to publish metadata without complex API support like SOAP or XML-
RPC: static, HTTP-served content is enough. Alternatively, Paul can use as intricate a publishing
environment as he chooses On the consumption front, Tim needs nothing more than a simple
HTTP jtt; GETj/tt; to obtain the metadata. Alternatively, he can layer more complex APIs that
encompass multiple HTTP jtt; GET|/tt;s and result filtering to accomplish more intricate metadata
querying.

By keeping the metadata transport as simple as can be, web publishers of all kinds can con-
tribute, and metadata consumers of all kinds can participate.

4.3 Examples: XML and MicroFormats
4.3.1 XML

XML is a dominant choice for cross-platform, metadata expression. A web publisher might use
XML as a parallel mechanism for expressing metadata, where the primary browsing interface is
separately served as HTML. For example, Paul’s photo site might present the following HTML, at
URL jtt;/myphotos.htmlj/tt,:

jdiv class="codeblock” ;j!'~#include virtual="paul-photos-html.html.htmlsafe” —;;/divy,

In parallel, Paul might offer the URL jtt; /myphotos.xmlj/tt; (with automatic client detection
so that jtt; /myphotos;j/tt; serves HTML or XML interchangeably):

jdiv class="codeblock” jj!'~#include virtual="paul-photos-xml.xml.htmlsafe” —;j/div,

This approach is insufficient in two major ways: jb;metadata maintenancej/b;, and jb;interoperability;/b.

For maintenance, note that the metadata and the primary viewing interface are distinct. While
these two could originate from the same database row, a user cannot easily correlate the human-
readable and machine-readable versions without significant effort. Cutting and pasting data with
its machine-readable counterpart is non-trivial.

In terms of interoperability, note that the specific XML schemas is required to determine that
each jtt;photoj/tt is, in fact, its own resource with a set of attributes.

[MORE HERE...]]

4.3.2 Microformats

Microformats are ”designed for humans first.” They use HI'ML constructs to add machine-readability
to existing HTML, with well-defined schemas referenced in the HTML jtt;profilej/tt; attribute.
With these well-defined schemas and local-only attributes, microformats are effectively a way to
combine the XML machine-readable data within the HTML human-readable data.

For example, the above photo information could be expressed in a single HI'ML document:

idiv class="codeblock” ; j'-#include virtual="paul-photos-microformat.html.htmlsafe” —;j/div;

Clearly, microformats solve the issue of metadata maintenance and, mostly, portability (one has
to be careful to copy the jtt;profilej/tt; information along with any included metadata). However,
microformats, like XML, do not have truly modular attributes. Shared attributes across schemas
cannot be extracted without intimate knowledge of the enclosing schema.

5 Folksonomies and RSS: Examples of Successful Metadata

In order to devise an approach to interoperable metadata, one should understand the details of
current, successful approaches to metadata expression, discovery, and consumption. We consider
two examples here: folksonomies and RSS, each of which succeeds in its own, individual way. We
will show how the combination of their advantages brings us much closer to our metadata utopia.

5.1 Folksonomies

A number of web applications — e.g. delicious, Flickr, gmail — implement Folksonomies, also known
as tagsonomies or simply tagging. Users can apply various tags to their data and later retrieve their
data — or data provided by others — by following the trail of tags. Tags are usually simple, often even
single words. Tags eschew hierarchy: precision is obtained from a combination of tags, not from
inherently specific single categories. In some cases, the meaning of a tag is specific to a single user
(gmail), in other cases, to the whole community (Flickr). Well-documented and highly-successful
feedback mechanisms are used to enable the consistent establishment of meaning for each tag.

Almost every site that uses tags also provides some kind of API to help programs access
the data according to the tags in question. For example, Flickr defines the REST API call
itt¢ flickr.photos.searchj/tt; with includes the argument jtt;tagsj/tt;, a set of tags to search for.
The return value is an XML document that contains references to photos tagged accordingly. Sim-
ilarly, Delicious offers a number of APIs to access a user’s bookmarks, including also a REST API
itty/api/posts/get?j/tt; with arguments including jtt;tagsj/tt;. The return value is also an XML
document containing bookmark information. (Note that Delicious offers a number of other API
approaches, including JSON. All of these approaches are conceptually similar.) Flickr and Delicious
are far from alone in this realm, and we do not mean to ignore the numerous other services which
publish human-tagged content: Jots, Linkroll, 43Things, SiteTagger, Lookmarks, Shadows, My-
Web 2.0, Digg, Delirious, Creative Mobs are just some of the social tagging web sites that provide
tagigng facilities and some form of APIL.

As a result of these clean data-access APIs, developers have been able to integrate these indi-
vidual sites into other applications. The Flock web browser comes built-in with Delicious tagging.
The Delicious Director project, as well as the more recent Delancey project, offer alternative, more
dynamic user interfaces for Delicious bookmarks. Projects like Slickr integrate Flickr images into
other datasets, in this case Google Maps. As expected, these open APIs enable the creation of
new, useful applications that tightly integrate with this machine-readable data. They decouple the
back-end data provider from the front-end user-level functionality.

Even more interesting, given that tagging is a now somewhat-standardized approach to human
content categorization, some web sites offer cross-site tag searching. Technorati tag search spans
Flickr and Buzznet photos, as well as Furl and Delicious bookmarks. Alternatively, gada.be is a
more comprehensive tag search engine which provides results across numerous other tag-managed
content sites. In both cases, the new functionality differs from back-end-specific innovations like
Delicious Director or Slickr: they combine large numbers of back-end data providers for the jb;same
kind of dataj/b;. They attempt to achieve metadata interoperability: the same meaning across
multiple data sources.

One immediately wonders how these tag search sites function. Do they access the API for
each site? Thus, do they need intimate knowledge of each site’s API, both in terms of procedure
calls and return data formats? Clearly, even though tags present one of the simplest possible data

models imaginable, such per-system-consumed cost of aggregation would hurt interoperability.

Thus, tagging has successfully enabled the definition of similar, simple metadata, shared across
sites using site-specific APIs. With such APIs, innovation within single applications is rapid and
distributed. On the other hand, innovation across many different applications remains an open-
ended question: will meta tag searching scale beyond a handful of back-end data sources? Will
results be presentable in more aggregate ways than simply listing each data source’s results one
after the other? Will aggregation be possible on more than the "tag” dimension?

5.2 RSS

RSS is an XML-based data format for linear, timestamped lists of data elements. Most often, these
are blogs or other news feeds. Almost every blog software application supports RSS feeds, and
new applications have expanded the use of RSS to include the delivery of multimedia files through
podcasts and vodcasts. A number of web applications also use RSS feeds to notify users of updates
to a collaborative space: Wikipedia publishes its recent changes as RSS, as do collaboration tools
like Basecamp.

The history of RSS is confusing and somewhat debated. What’s interesting is that most of the
debate has centered on the evolution of the schema over time, what specific format it should take,
and, importantly, what attributes it might include and how ”simple” it should remain. RSS 2.0’s
approach to schema extensibility is to permit any additions, as long as they are properly scoped
using a different namespace. Microsoft has recently released Simple Sharing Extensions (SSE), a
set of additional XML elements that extend RSS to enable simple data synchronization.

[[something more about how RSS is effectively a fixed format, even though it sort of allows
extensions||

RSS is thus a very successful data format for exchanging simple metadata. One notes, however,
that RSS is fairly fixed in what it can express. One talks of applications that are ”RSS-compatible,”
where RSS is not just the XML syntax, but also the specific schema. Clearly, RSS is limited — by
design — in the scope of what it can express.

5.3 RSS and Folksonomies

There is a recent trend to use some combination of REST and RSS to transfer data as categorized
by folksonomy tags. In fact, gata.be, the meta-tag search engine, works exactly this way: it knows
where to find tag-specific RSS feeds at the various sites it searches, makes the query, and parses
the resulting RSS feed.

This technique highlights both the power of RSS and folksonomies as well as their limitations.
By bootstrapping off well-established standards like RSS and HT'TP, the gata.be designer reduces
to a single URL template the incremental work required to add a new source of data. At the
same time, this approach is not scalable to more intricate searching, given that the search term is
expected to be part of the URL API. In addition, overhead reduction to a single URL is admirable,
but it remains unscalable to the wider web given that it requires human intervention.

6 Real-Life Examples

6.1 Creative Commons
6.2 DSpace

6.3 NeuroCommons

7 Conclusion

