
Meta-Theory à la Carte

Benjamin Delaware
University of Texas at Austin

bendy@cs.utexas.edu

Bruno C. d. S. Oliveira
National University of Singapore

oliveira@comp.nus.edu.sg

Tom Schrijvers
Universiteit Gent

tom.schrijvers@ugent.be

Abstract
Formalizing meta-theory, or proofs about programming languages,
in a proof assistant has many well-known benefits. Unfortunately,
the considerable effort involved in mechanizing proofs has pre-
vented it from becoming standard practice. This cost can be amor-
tized by reusing as much of existing mechanized formalizations as
possible when building a new language or extending an existing
one. One important challenge in achieving reuse is that the induc-
tive definitions and proofs used in these formalizations are closed
to extension. This forces language designers to cut and paste ex-
isting definitions and proofs in an ad-hoc manner and to expend
considerable effort to patch up the results.

The key contribution of this paper is the development of an in-
duction technique for extensible Church encodings using a novel
reinterpretation of the universal property of folds. These encodings
provide the foundation for a framework, formalized in Coq, which
uses type classes to automate the composition of proofs from mod-
ular components. This framework enables a more structured ap-
proach to the reuse of meta-theory formalizations through the com-
position of modular inductive definitions and proofs.

Several interesting language features, including binders and
general recursion, illustrate the capabilities of our framework.
We reuse these features to build fully mechanized definitions and
proofs for a number of languages, including a version of mini-ML.
Bounded induction enables proofs of properties for non-inductive
semantic functions, and mediating type classes enable proof adap-
tation for more feature-rich languages.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

Keywords Modular Mechanized Meta-Theory, Extensible Church
Encodings, Coq

1. Introduction
With their POPLMARK challenge, Aydemir et al. [3] identified rep-
resentation of binders, complex inductions, experimentation, and
reuse of components as key challenges in mechanizing program-
ming language meta-theory. While progress has been made, for ex-
ample on the representation of binders, it is still difficult to reuse
components, including language definitions and proofs.

The current approach to reuse still involves copying an exist-
ing formalization and adapting it manually to incorporate new fea-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’13, January 23–25, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1832-7/13/01. . . $10.00

tures. An extreme case of this copy-&-adapt approach can be found
in Leroy’s three person-year verified compiler project [22], which
consists of eight intermediate languages in addition to the source
and target languages, many of which are minor variations of each
other. Due to the crosscutting impact of new features, the adapta-
tion of existing features is unnecessarily labor-intensive. Moreover,
from a software/formalization management perspective a prolifer-
ation of copies is obviously a nightmare. Typical formalizations
present two important challenges to providing reuse:

1. Extensibility: Conventional inductive definitions and proofs
are closed to extension and cannot simply be imported and ex-
tended with new constructors and cases. This is a manifestation
of the well-known Expression Problem (EP) [45].

2. Modular reasoning: Reasoning with modular definitions re-
quires reasoning about partial definitions and composing partial
proofs to build a complete proof. However, conventional induc-
tion principles which are the fundamental reasoning techniques
in most theorem provers only work for complete definitions.

The lack of reuse in formalizations is somewhat surprising,
because proof assistants such as Coq and Agda have powerful
modularity constructs including modules [26], type classes [17,
42, 46] and expressive forms of dependent types [11, 34]. It is
reasonable to wonder whether these language constructs can help
to achieve better reuse. After all, there has been a lot of progress in
addressing extensibility [14, 30, 32, 43] issues in general-purpose
languages using advanced type system features – although not a lot
of attention has been paid to modular reasoning.

This paper presents MTC, a framework for defining and reason-
ing about extensible inductive datatypes. The framework is imple-
mented as a Coq library which enables modular mechanized meta-
theory by allowing language features to be defined as reusable com-
ponents. Using MTC, language developers can leverage existing
efforts to build new languages by developing new and interesting
features and combining them with previously written components.

The solution to extensibility in MTC was partly inspired by
the popular “Data types à la Carte” (DTC) [43] technique. How-
ever, DTC fundamentally relies on a type-level fixpoint definition
for building modular data types, which cannot be encoded in Coq.
MTC solves this problem by using (extensible) Church encodings
of data types [30, 34, 35]. These encodings allow DTC-style mod-
ular data types to be defined in the restricted Coq setting. Another
difference between DTC and MTC is the use of Mendler-style folds
and algebras instead of conventional folds to express modular def-
initions. The advantage of Mendler-style folds [44] and algebras
is that they offer explicit control over the evaluation order, which
is important when modeling semantics of programming languages.
MTC employs similar techniques to solve extensibility problems in
proofs and inductively defined predicates.

MTC’s solution to modular reasoning uses a novel reinterpre-
tation of the universal property of folds. Because MTC relies on

folds, the proof methods used in the initial algebra semantics of
data types [16, 27] offer an alternative to structural induction. With
some care, universal properties can be exploited to adapt these tech-
niques to modular Church encodings. In addition to enabling mod-
ular reasoning about extensible inductive datatypes, universal prop-
erties also overcome some theoretical issues related to Church en-
codings in the Calculus of (Inductive) Constructions [34, 35].

MTC also supports ubiquitous higher-order language features
such as binders and general recursion. Binders are modeled with
a parametric HOAS [8] representation (a first-order representation
would be possible too). Because these features require general re-
cursion, they cannot be defined inductively using folds. To support
these non-inductive features MTC uses a variation of mixins [10].
Mixins are closely related to Mendler-style folds, but they allow
uses of general recursion, and can be modeled on top of Mendler-
style Church encodings using a bounded fixpoint combinator.

To illustrate the utility of MTC, we present a case study modu-
larizing several orthogonal features of a variant of mini-ML [9].
The case study illustrates how various features and partial type
soundness proofs can be modularly developed and verified and later
composed to assemble complete languages and proofs.

1.1 Contributions
The main contribution of our work is a novel approach to defining
and reasoning about extensible inductive datatypes. MTC is a Coq
framework for building reusable components that implements this
approach to modular mechanized meta-theory.

More technically this paper makes the following contributions:

• Extensibility Techniques for Mechanization: The paper pro-
vides a solution to the EP and an approach to extensible mecha-
nization of meta-theory in the restricted type-theoretic setting of
Coq. This solution offers precise control over the evaluation or-
der by means of Mendler folds and algebras. Mixins are used to
capture ubiquitous higher-order features, like PHOAS binders
and general recursion.
• Non-Axiomatic Reasoning for Church Encodings: The paper

reinterprets the universal property of folds to recover induction
principles for Mendler-style Church encodings. This allows us
to avoid the axioms used in earlier approaches and preserves
Coq’s strong normalization.
• Modular Reasoning: The paper presents modular reasoning

techniques for modular components. It lifts the recovered in-
duction principle from individual inductive features to compo-
sitions, while induction over a bounded step count enables mod-
ular reasoning about non-inductive higher-order features mod-
eled with mixins.

MTC is implemented in the Coq proof assistant and the code
is available at http://www.cs.utexas.edu/~bendy/MTC. Our
implementation minimizes the user’s burden for adding new fea-
tures by automating the boilerplate with type classes and default
tactics. Moreover, the framework already provides modular com-
ponents for mini-ML as a starting point for new language formal-
izations. We also provide a complimentary Haskell implementation
of the computational subset of code used in this paper.

1.2 Code and Notational Conventions
While all the code underlying this paper has been developed in Coq,
the paper adopts a terser syntax for its code fragments. For the com-
putational parts, this syntax exactly coincides with Haskell syntax,
while it is an extrapolation of Haskell syntax for proof-related con-
cepts. The Coq code requires the impredicative-set option.

2. Extensible Semantics in MTC
This section shows MTC’s approach to extensible and modular se-
mantic components in the restrictive setting of Coq. The approach
is partly inspired by the DTC solution to the Expression Problem in
Haskell, in particular its composition mechanisms for extensible in-
ductive definitions. MTC differs from DTC in two important ways.
Firstly, it uses Church encodings to avoid the termination issues of
DTC’s generally recursive definitions. Secondly, it uses Mendler-
style folds instead of conventional folds to provide explicit control
over evaluation order.

2.1 Data Types à la Carte
This subsection reviews the core ideas of DTC. DTC represents
the shape of a particular data type as a functor. That functor uses its
type parameter a for inductive occurrences of the data type, leaving
the data type definition open. ArithF is an example functor for a
simple arithmetic expression language with literals and addition.

data ArithF a = Lit Nat | Add a a

The explicitly recursive definition FixDTC f closes the open re-
cursion of a functor f .

data FixDTC f = In (f (FixDTC f))

Applying FixDTC to ArithF builds the data type for arithmetic
expressions.

type Arith = FixDTC ArithF

Functions over FixDTC f are expressed as folds of f -algebras.

type Algebra f a = f a → a

foldDTC :: Functor f ⇒ Algebra f a → FixDTC f → a
foldDTC alg (In fa) = alg (fmap (foldDTC alg) fa)

For example, the evaluation algebra of ArithF is defined as:

data Value = I Int | B Bool

evalArith :: Algebra ArithF Value
evalArith (Lit n) = I n
evalArith (Add (I v1) (I v2)) = I (v1 + v2)

Note that the recursive occurrences in evalArith are of the same
type as the result type Value .1 In essence, folds process the recur-
sive occurrences so that algebras only need to specify how to com-
bine the values (for example v1 and v2) resulting from evaluating
the subterms. Finally, the overall evaluation function is:

J·K :: FixDTC ArithF → Value
J·K = foldDTC evalArith

> J(Add (Lit 1) (Lit 2))K
3

Unfortunately, DTC’s two uses of general recursion are not permit-
ted in Coq. Coq does not accept the type-level fixpoint combinator
FixDTC f because it is not strictly positive. Coq similarly disal-
lows the foldDTC function because it is not structurally recursive.

2.2 Recursion-Free Church Encodings
MTC encodes data types and folds with Church encodings [6,
35], which are recursion-free. Church encodings represent (least)
fixpoints and folds as follows:

type Fix f = ∀a.Algebra f a → a

fold :: Algebra f a → Fix f → a
fold alg fa = fa alg

1 Boolean values are not needed yet, but they are used later in this section.

Both definitions are non-recursive and can be encoded in Coq
(although we need to enable impredicativity for certain definitions).
Since Church encodings represent data types as folds, the definition
of fold is trivial: it applies the folded Fix f data type to the algebra.

Example Church encodings of ArithF ’s literals and addition
are given by the lit and add functions:

lit :: Nat → Fix ArithF
lit n = λalg → alg (Lit n)

add :: Fix ArithF → Fix ArithF → Fix ArithF
add e1 e2 = λalg → alg (Add (fold alg e1) (fold alg e2))

The evaluation algebra and evaluation function are defined as in
DTC, and expressions are evaluated in much the same way.

2.3 Lack of Control over Evaluation
Folds are structurally recursive and therefore capture composition-
ality of definitions, a desirable property of semantics. A disadvan-
tage of the standard fold encoding is that it does not provide the
implementer of the algebra with explicit control of evaluation. The
fold encoding reduces all subterms; the only freedom in the algebra
is whether or not to use the result.

Example: Modeling if expressions As a simple example that
illustrates the issue of lack of control over evaluation consider
modeling if expressions and their corresponding semantics. The
big-step semantics of if expressions is:

Je1K ; true Je2K ; v2

J if e1 e2 e3K ; v2

Je1K ; false Je3K ; v3

J if e1 e2 e3K ; v3

Using our framework of Church encodings, we could create a
modular feature for boolean expressions such as if expressions and
boolean literals as follows:

data LogicF a = If a a a | BLit Bool -- Boolean functor
evalLogic :: Algebra LogicF Value
evalLogic (If v1 v2 v3) = if (v1 ≡ B True) then v2 else v3

evalLogic (BLit b) = B b

However, an important difference with the big-step semantics
above is that evalLogic cannot control where evaluation happens.
All it has in hand are the values v1, v2 and v3 that result from eval-
uation. While this difference is not important for simple features
like arithmetic expressions, it does matter for if expressions.

Semantics guides the development of implementations. Accord-
ingly, we believe that it is important that a semantic specification
does not rely on a particular evaluation strategy (such as laziness).
This definition of evalLogic might be reasonable in a lazy meta-
language like Haskell (which is the language used by DTC), but
it is misleading when used as a basis for an implementation in a
strict language like ML. In a strict language evalLogic is clearly not
a desirable definition because it evaluates both branches of the if
expression. Aside from the obvious performance drawbacks, this is
the wrong thing to do if the object language features, for example,
non-termination. Furthermore, this approach can be quite brittle: in
more complex object languages using folds and laziness can lead
to subtle semantic issues [4].

2.4 Mendler-style Church Encodings
To express semantics in a way that allows explicit control over
evaluation and does not rely on the evaluation semantics of the
meta-language, MTC adapts Church encodings to use Mendler-
style algebras and folds [44] which make recursive calls explicit.

type AlgebraM f a = ∀r .(r → a)→ f r → a

A Mendler-style algebra differs from a traditional f -algebra in that
it takes an additional argument (r → a) which corresponds to

recursive calls. To ensure that recursive calls can only be applied
structurally, the arguments that appear at recursive positions have
a polymorphic type r . The use of this polymorphic type r pre-
vents case analysis, or any other type of inspection, on those ar-
guments. Using AlgebraM f a , Mendler-style folds and Mendler-
style Church encodings are defined as follows:

type FixM f = ∀a.AlgebraM f a → a

foldM :: AlgebraM f a → FixM f → a
foldM alg fa = fa alg

Mendler-style folds allow algebras to state their recursive calls
explicitly. As an example, the definition of the evaluation of if
expressions in terms of a Mendler-style algebra is:

evalLogic :: AlgebraM LogicF Value
evalLogic J·K (BLit b) = B b
evalLogic J·K (If e1 e2 e3) = if (Je1K ≡ B True) then Je2K

else Je3K

Note that this definition allows explicit control over the evaluation
order just like the big-step semantics definition. Furthermore, like
the fold-definition, evalLogic enforces compositionality because all
the algebra can do to e1, e2 or e3 is to apply the recursive call J·K.

2.5 A Compositional Framework for Mendler-style Algebras
DTC provides a convenient framework for composing conventional
fold algebras. MTC provides a similar framework, but for Mendler-
style algebras instead of f -algebras. In order to write modular
proofs, MTC regulates its definitions with a number of laws.

Modular Functors Individual features can be modularly defined
using functors, like ArithF and LogicF . Functors are composed
with the ⊕ operator:

data (⊕) f g a = Inl (f a) | Inr (g a)

FixM (ArithF ⊕ LogicF) represents a data type isomorphic to:

data Exp = Lit Nat | Add Exp Exp
| If Exp Exp Exp | BLit Bool

Modular Mendler Algebras A type class is defined for every
semantic function. For example, the evaluation function has the
following class:

class Eval f where evalalg :: AlgebraM f Value

In this class evalalg represents the evaluation algebra of a feature f .
Algebras for composite functor are built from feature algebras:

instance (Eval f ,Eval g)⇒ Eval (f ⊕ g) where
evalalg J·K (Inl fexp) = evalalg J·K fexp
evalalg J·K (Inr gexp) = evalalg J·K gexp

Overall evaluation can then be defined as:

eval :: Eval f ⇒ FixM f → Value
eval = foldM evalalg

In order to avoid the repeated boilerplate of defining a new type
class for every semantic function and corresponding instance for⊕,
MTC defines a single generic Coq type class, FAlg , that is indexed
by the name of the semantic function. This class definition can be
found in Figure 3 and subsumes all other algebra classes found in
this paper. The paper continues to use more specific classes to make
a gentler progression for the reader.

Injections and Projections of Functors Figure 1 shows the
multi-parameter type class≺:. This class provides a means to lift or
inject (inj) (sub)functors f into larger compositions g and project
(prj) them out again. The inj prj and prj inj laws relate the

class f ≺: g where

inj :: f a → g a

prj :: g a → Maybe (f a)
inj prj :: prj ga = Just fa → ga = inj fa -- law
prj inj :: prj ◦ inj = Just -- law

instance (f ≺: g)⇒ f ≺: (g ⊕ h) where

inj fa = Inl (inj fa)

prj (Inl ga) = prj ga
prj (Inr ha) = Nothing

instance (f ≺: h)⇒ f ≺: (g ⊕ h) where
inj fa = Inr (inj fa)

prj (Inl ga) = Nothing
prj (Inr ha) = prj ha

instance f ≺: f where
inj fa = fa

prj fa = Just fa

Figure 1. Functor subtyping.

injection and projection methods in the ≺: class, ensuring that the
two are effectively inverses. The idea is to use the type class resolu-
tion mechanism to encode (coercive) subtyping between functors.
In Coq this subtyping relation can be nicely expressed because
Coq type classes [42] perform a backtracking search for match-
ing instances. Hence, highly overlapping definitions like the first
and second instances are allowed. This is a notable difference to
Haskell’s type classes, which do not support backtracking. Hence,
DTC’s Haskell solution has to provide a biased choice that does
not accurately model the expected subtyping relationship.

The inf function builds a new term from the application of f to
some subterms.

inf :: f (FixM f)→ FixM f
inf fexp = λalg → alg (foldM alg) fexp

Smart constructors are built using inf and inj as follows:

inject :: (g ≺: f)⇒ g (FixM f)→ FixM f
inject gexp = inf (inj gexp)

lit :: (ArithF ≺: f)⇒ Nat → FixM f
lit n = inject (Lit n)

blit :: (LogicF ≺: f)⇒ Bool → FixM f
blit b = inject (BLit b)

cond :: (LogicF ≺: f)
⇒ FixM f → FixM f → FixM f → FixM f

cond c e1 e2 = inject (If c e1 e2)

Expressions are built with the smart constructors and used by oper-
ations like evaluation:

exp :: FixM (ArithF ⊕ LogicF)
exp = cond (blit True) (lit 3) (lit 2)

> eval exp
3

The outf function exposes the toplevel functor again:

outf :: Functor f ⇒ FixM f → f (FixM f)
outf exp = foldM (λrec fr → fmap (inf ◦ rec) fr) exp

We can pattern match on particular features using prj and outf :

project :: (g ≺: f ,Functor f)⇒
FixM f → Maybe (g (FixM f))

project exp = prj (outf exp)

isLit :: (ArithF ≺: f ,Functor f)⇒ FixM f → Maybe Nat

isLit exp = case project exp of
Just (Lit n)→ Just n
Nothing → Nothing

2.6 Extensible Semantic Values
In addition to modular language features, it is also desirable to
have modular result types for semantic functions. For example,
it is much cleaner to separate natural number and boolean values
along the same lines as the ArithF and LogicF features. To easily
achieve this extensibility, we make use of the same sorts of exten-
sional encodings as the expression language itself:

data NValF a = I Nat
data BValF a = B Bool
data StuckF a = Stuck

vi :: (NValF ≺: r)⇒ Nat → FixM r
vi n = inject (I n)

vb :: (BValF ≺: r)⇒ Bool → FixM r
vb b = inject (B b)

stuck :: (StuckF ≺: r)⇒ FixM r
stuck = inject Stuck

Besides constructors for integer (vi) and boolean (vb) values, we
also include a constructor denoting stuck evaluation (stuck).

To allow for an extensible return type r for evaluation, we need
to parametrize the Eval type class in r :

class Eval f r where
evalalg :: AlgebraM f (FixM r)

Projection is now essential for pattern matching on values:

instance (StuckF ≺: r ,NValF ≺: r ,Functor r)⇒
Eval ArithF r where

evalalg J·K (Lit n) = vi n
evalalg J·K (Add e1 e2) =

case (project Je1K, project Je2K) of
(Just (I n1), (Just (I n2)))→ vi (n1 + n2)

→ stuck

This concludes MTC’s support for extensible inductive data types
and functions. To cater to meta-theory, MTC must also support
reasoning about these modular definitions.

3. Reasoning with Church Encodings
While Church encodings are the foundation of extensibility in
MTC, Coq does not provide induction principles for them. It is
an open problem to do so without resorting to axioms. MTC solves
this problem with a novel axiom-free approach based on adapta-
tions of two important aspects of folds discussed by Hutton [19].

3.1 The Problem of Church Encodings and Induction
Coq’s own original approach [35] to inductive data types was based
on Church encodings. It is well-known that Church encodings of
inductive data types have problems expressing induction principles
such as Aind , the induction principle for arithmetic expressions.

Aind :: ∀P :: (Arith → Prop).
∀Hl :: (∀n.P (Lit n)).
∀Ha :: (∀a b.P a → P b → P (Add a b)).
∀a.P a

Aind P Hl Ha e =
case e of Lit n → Hl n

Add x y → Ha a b (Aind P Hl Ha x)
(Aind P Hl Ha y)

The original solution to this problem in Coq involved axioms for
induction, which endangered strong normalization of the calculus
(among other problems). This was the primary motivation for the
creation of the calculus of inductive constructions [34] with built-in
inductive data types.

Why exactly are proofs problematic for Church encodings,
where inductive functions are not? After all, a Coq proof is es-
sentially a function that builds a proof term by induction over a
data type. Hence, the Church encoding should be able to express a
proof as a fold with a proof algebra over the data type, in the same
way it represents other functions.

The problem is that this approach severely restricts the proposi-
tions that can be proven. Folds over Church encodings are destruc-
tive, so their result type cannot depend on the term being destructed.
For example, it is impossible to express the proof for type sound-
ness because it performs induction over the expression e mentioned
in the type soundness property.

∀e.Γ ` e : t → Γ ` JeK : t

This restriction is a showstopper for the semantics setting of this
paper, as it rules out proofs for most (if not all) theorems of inter-
est. Supporting reasoning about semantic functions requires a new
approach that does not suffer from this restriction.

3.2 Type Dependency with Dependent Products
Hutton’s first aspect of folds is that they become substantially more
expressive with the help of tuples. The dependent products in Coq
take this observation one step further. While an f -algebra cannot
refer to the original term, it can simultaneously build a copy e of
the original term and a proof that the property P e holds for the
new term. As the latter depends on the former, the result type of
the algebra is a dependent product Σ e.P e . A generic algebra can
exploit this expressivity to build a poor-man’s induction principle,
e.g., for the ArithF functor:

A2
ind :: ∀P :: (FixM ArithF → Prop).

∀Hl :: (∀n.P (lit n)).
∀Ha :: (∀a b.P a → P b → P (add a b)).
Algebra ArithF (Σ e.P e)

A2
ind P Hl Ha e =
case e of

Lit n → ∃ (lit n) (Hl n)
Add x y → ∃ (add (π1 x) (π1 y)) (Ha (π1 x) (π1 y)

(π2 x) (π2 y))

Provided with the necessary proof cases, A2
ind can build a specific

proof algebra. The corresponding proof is simply a fold over a
Church encoding using this proof algebra.

Note that since a proof is not a computational object, it makes
more sense to use regular algebras than Mendler algebras. Fortu-
nately, regular algebras are compatible with Mendler-based Church
encodings as the following variant of fold ′

M shows.

fold ′
M :: Functor f ⇒ Algebra f a → FixM f → a

fold ′
M alg = foldM (λrec → alg ◦ fmap rec)

3.3 Term Equality with the Universal Property
Of course, the dependent product approach does not directly prove
a property of the original term. Instead, given a term, it builds a
new term and a proof that the property holds for the new term. In
order to draw conclusions about the original term from the result,
the original and new term must be equal.

Clearly the equivalence does not hold for arbitrary terms that
happen to match the type signatures FixM f for Church encodings
and Algebra f (Σ e.P e) for proof algebras. Statically ensuring

this equivalence requires additional well-formedness conditions on
both. These conditions formally capture our notion of Church en-
codings and proofs algebras.

3.3.1 Well-Formed Proof Algebras
The first requirement, for algebras, states that the new term pro-
duced by application of the algebra is equal to the original term.

∀alg :: Algebra f (Σ e.P e).π1 ◦ alg = inf ◦ fmap π1

This constraint is encoded in the typeclass for proof algebras, PAlg .
It is easy to verify that A2

ind satisfies this property. Other proof
algebras over ArithF can be defined by instantiating A2

ind with
appropriate cases for Hl and Ha . In general, well-formedness needs
to be proven only once for any data type and induction algebra.

3.3.2 Well-Formed Church Encodings
Well-formedness of proof algebras is not enough because a proof
is not a single application of an algebra, but rather a fold ′

M of it.
So the fold ′

M used to build a proof must be a proper fold ′
M . As the

Church encodings represent inductive data types as their folds, this
boils down to ensuring that the Church encodings are well-formed.

Hutton’s second aspect of folds formally characterizes the defi-
nition of a fold using its universal property:

h = fold ′
M alg ⇔ h ◦ inf = alg h

In an initial algebra representation of an inductive data type,
there is a single implementation of fold ′

M that can be checked once
and for all for the universal property. In MTC’s Church-encoding
approach, every term of type FixM f consists of a separate fold ′

M

implementation that must satisfy the universal property. Note that
this definition of the universal property is for a fold ′

M using a tradi-
tional algebra. As the only concern is the behavior of proof algebras
(which are traditional algebras) folded over Church encodings, this
is a sufficient characterization of well-formedness. Hinze [18] uses
the same characterization for deriving Church numerals.

Fortunately, the left-to-right implication follows trivially from
the definitions of fold ′

M and inf , independent of the particular term
of type FixM f . Thus, the only hard well-formedness requirement
for a Church-encoded term e is that it satisfies the right-to-left
implication of the universal property.

type UP f e =
∀a (alg :: AlgebraM f a) (h :: FixM f → a).

(∀e ′.h (inf e ′) = alg h e ′)→ h e = fold ′
M alg e

This property is easy to show for any given smart constructor.
MTC actually goes one step further and redefines its smart con-
structors in terms of a new inf , that only builds terms with the
universal property:

in ′
f :: Functor f ⇒ f (Σ e.UP f e)→ Σ e.UP f e

about Church-encoded terms built from these smart-er construc-
tors, as all of the nice properties of initial algebras hold for these
terms and, importantly, these properties provide a handle on rea-
soning about these terms.

Two known consequences of the universal property are the
famous fusion law, which describes the composition of a fold with
another computation,

h ◦ alg1 = alg2 ◦ fmap h ⇒ h ◦ fold ′
M alg1 = fold ′

M alg2

and the lesser known reflection law,

fold ′
M inf = id

3.3.3 Soundness of Input-Preserving Folds
Armed with the two well-formedness properties, we can prove the
key theorem for building inductive proofs over Church encodings:

Theorem 3.1. Given a functor f , property P , and a well-formed
P -proof algebra alg , for any Church-encoded f -term e with the
universal property, we can conclude that P e holds.

Proof. Given that fold ′
M alg e has type Σ e ′.P e ′, we have

that π2 (fold ′
M alg e) is a proof for P (π1 (fold ′

M alg e)). From
that the lemma is derived as follows:

P (π1 (fold ′
M alg e))

=⇒ {-well-founded algebra and fusion law -}
P (fold ′

M inf e)
⇐⇒ {-reflection law -}

P e

Theorem 3.1 enables the construction of a statically-checked proof
of correctness as an input-preserving fold of a proof algebra. This
provides a means to achieve our true goal: modular proofs for
extensible Church encodings.

4.Modular Proofs for Extensible Church Encodings
The aim of modularity in this setting is to first write a separate
proof for every feature and then compose the individual proofs into
an overall proof for the feature composition. These proofs should
be independent from one another, so that they can be reused for
different combinations of features.

Fortunately, since proofs are essentially folds of proof algebras,
all of the reuse tools developed in Section 2 apply here. In partic-
ular, composing proofs is a simple matter of combining proof al-
gebras with⊕. Nevertheless, the transition to modular components
does introduce several wrinkles in the reasoning process.

4.1 Algebra Delegation
Due to injection, propositions range over the abstract (super)functor
f of the component composition. The signature of A2

ind , for exam-
ple, becomes:

A2
ind :: ∀f .ArithF ≺: f ⇒
∀P :: (FixM f → Prop).
∀Hl :: (∀n.P (lit n)).
∀Ha :: (∀a b.P a → P b → P (add a b)).
Algebra ArithF (Σ e.P e)

Consider building a proof of

∀e.typeof e = Just nat → ∃ m :: nat .eval e = vi m

using A2
ind . Then, the first proof obligation is

typeof (lit n) = Just nat → ∃ m :: nat .eval (lit n) = vi m

While this appears to follow immediately from the definition of
eval , recall that eval is a fold of an abstract algebra over f and is
thus opaque. To proceed, we need the additional property that this
f -algebra delegates to the ArithF -algebra as expected:

∀r (rec :: r → Nat).evalalg rec ◦ inj = evalalg rec

This delegation behavior follows from our approach: the intended
structure of f is a⊕-composition of features, and⊕-algebras are in-
tended to delegate to the feature algebras. We can formally capture
the delegation behavior in a type class that serves as a precondition
in our modular proofs.

class (Eval f ,Eval g , f ≺: g)⇒
WF Eval f g where
wf eval alg :: ∀r (rec :: r → Nat) (e :: f r).

evalalg rec (inj e :: g r) =
evalalg rec e

instance (Eval f ,Eval g,Eval h,WF Eval f g)⇒
WF Eval (f ≺: g ⊕ h)

instance (Eval f ,Eval g,Eval h,WF Eval f h)⇒
WF Eval (f ≺: g ⊕ h)

instance (Eval f)⇒WF Eval f f

Figure 2. WF Eval instances.

MTC provides the three instances of this class in Figure 2, one for
each instance of≺:, allowing Coq to automatically build a proof of
well-formedness for every composite algebra.

4.1.1 Automating Composition
A similar approach is used to automatically build the definitions
and proofs of languages from pieces defined by individual features.
In addition to functor and algebra composition, the framework de-
rives several important reasoning principles as type class instances,
similarly to WF Eval . These include the DistinctSubFunctor
class, which ensures that injections from two different subfunctors
are distinct, and the WF Functor class that ensures that fmap dis-
tributes through injection.

Figure 3 provides a summary of all the classes defined in MTC,
noting whether the base instances of a particular class are provided
by the user or inferred with a default instance. Importantly, in-
stances of all these classes for feature compositions are built au-
tomatically, analogously to the instances in Figure 2.

4.2 Extensible Inductive Predicates
Many proofs appeal to rules which define a predicate for an im-
portant property. In Coq these predicates are expressed as inductive
data types of kind Prop. For instance, a soundness proof makes use
of a judgment about the well-typing of values.

data WTValue :: Value → Type → Prop where
WTNat :: ∀n.WTValue (I n) TNat
WTBool :: ∀b.WTValue (B b) TBool

When dealing with a predicate over extensible inductive data types,
the set of rules defining the predicate must be extensible as well.
Extensibility of these rules is obtained in much the same way as
that of inductive data types: by means of Church encodings. The
important difference is that logical relations are indexed data types:
e.g., WTValue is indexed by a value and a type. This requires
functors indexed by values x of type i . For example, WTNatF v t
is the corresponding indexed functor for the extensible variant of
WTNat above.

data WTNatF :: v → t → (WTV :: (v , t)→ Prop)
→ (v , t)→ Prop

where WTNat :: ∀n.(NValF ≺: v ,Functor v ,
NTypF ≺: t ,Functor t)

⇒WTNatF v t WTV (vi n, tnat)

This index is a pair (v , t) of a value and a type. As object-language
values and types are themselves extensible, the corresponding
meta-language types v and t are parameters of the WTNat functor.

To manipulate extensible logical relations, we need indexed
algebras, fixpoints and operations:

type iAlg i (f :: (i → Prop)→ (i → Prop)) a
= ∀x :: i .f a x → a x

type iFix i (f :: (i → Prop)→ (i → Prop)) (x :: i)
= ∀a :: i → Prop.iAlg f a → a x ...

As these indexed variants are meant to construct logical rela-
tions, their parameters range over Prop instead of Set . Fortunately,

Class Definition Description
class Functor f where

fmap :: (a → b)→ (f a → f b)

fmap id :: fmap id = id

fmap fusion :: ∀g h.

fmap h ◦ fmap g = fmap (h ◦ g)

Functors
Supplied by the user

class f ≺: g where

inj :: f a → g a

prj :: g a → Maybe (f a)

inj prj :: prj ga = Just fa →
ga = inj fa

prj inj :: prj ◦ inj = Just

Functor Subtyping
Inferred

class (Functor f ,Functor g, f ≺: g)⇒
WF Functor f g where

wf functor :: ∀a b (h :: a → b).

fmap h ◦ inj = inj ◦ fmap h

Functor Delegation
Inferred

class (Functor h, f ≺: h, g ≺: h)⇒
DistinctSubFunctor f g h where

inj discriminate :: ∀a (fe :: f a)

(ge :: g a).inj fe 6= inj ge

Functor Discrimina-
tion
Inferred

class FAlg name t a f where

f algebra : Mixin t f a

Function Algebras
Supplied by the user

class (f ≺: g,FAlg n t a f ,FAlg n t a g)⇒
WF FAlg n t a f g where

wf algebra :: ∀rec (fa :: f t).

f algebra rec (inj fa) =

f algebra rec fa

Algebra Delegation
Inferred

class (Functor f ,Functor g, f ≺: g)⇒
PAlg name f g a where

p algebra :: Algebra f a

proj eq :: ∀e.π1 (p algebra e) =

inf (inj (fmap π1 e))

Proof Algebras
Supplied by the User

Figure 3. Type classes provided by MTC

this shift obviates the need for universal properties for iFix -ed
values: it does not matter how a logical relation is built, but sim-
ply that it exists. Analogues to WF Functor , WF Algebra , and
DistinctSubFunctor are similarly unnecessary.

4.3 Case Study: Soundness of an Arithmetic Language
Here we briefly illustrate modular reasoning with a case study
proving soundness for the ArithF ⊕ LogicF language.

The previously defined eval function captures the operational
semantics of this language in a modular way and reduces an ex-
pression to a NValF ⊕BValF ⊕ StuckF value. Its type system is
similarly captured by a modularly defined type-checking function
typeof that maybe returns a TNatF⊕TBoolF type representation:

data TNatF t = TNat
data TBoolF t = TBool

For this language soundness is formulated as:

Theorem soundness ::
∀e t env , typeof e = Just t →WTValue (eval e env) t

The proof of this theorem is a fold of a proof algebra over the ex-
pression e which delegates the different cases to separate proof al-
gebras for the different features. A summary of the most notewor-
thy aspects of these proofs follows.

Sublemmas The modular setting requires every case analysis to
be captured in a sublemma. Because the superfunctor is abstract,
the cases are not known locally and must be handled in a distributed
fashion. Hence, modular lemmas built from proof algebras are not

just an important tool for reuse in MTC – they are the main method
of constructing extensible proofs.

Universal Properties Everywhere Universal properties are key to
reasoning, and should thus be pervasively available throughout the
framework. MTC has more infrastructure to support this.

As an example of their utility when constructing a proof, we
may wish to prove a property of the extensible return value of an
extensible function. Consider the LogicF case of the soundness
proof: given that typeof (If c e1 e2) = Some t1, we wish to
show that WTValue (eval (If c e1 e2)) t1. If c evaluates to
false , we need to show that WTValue e2 t1.

Since If c e1 e2 has type t1, the definition of typeof says that
e1 has type t1:

typeof alg rec (If c e1 e2) =
case project (rec c) of

Just TBool →
case (rec e1, rec e2) of

(Just t1, Just t2)→
if eqtype t1 t2 then Just t1 else Nothing

→ Nothing
Nothing → Nothing

In addition, the type equality test function, eqtype, says that e1 and
e2 have the same type: eqtype t1 t2 = true . We need to make use
of a sublemma showing that ∀t1 t2. eqtype t1 t2 = true → t1 =
t2. As we have seen, in order to do so, the universal property must
hold for typeof e1. This is easily accomplished by packaging a
proof of the universal property alongside t1 in the typeof function.

Using universal properties is so important to reasoning that
this packaging should be the default behavior, even though it is
computationally irrelevant. Thankfully, packaging becomes trivial
with the use of smarter constructors. These constructors have the
additional advantage over standard smart constructors of being
injective: lit j = lit k → j = k , an important property for
proving inversion lemmas. The proof of injectivity requires that
the subterms of the functor have the universal property, established
by the use of in ′

f . To facilitate this packaging, we provide a type
synonym that can be used in lieu of FixM in function signatures:

type UPF f = Functor f ⇒ Σ e.(UP f e)

Furthermore, the universal property should hold for any value sub-
ject to proof algebras, so it is convenient to include the property in
all proof algebras. MTC provides a predicate transformer, UPP ,
that captures this and augments induction principles accordingly.

UPP :: Functor f ⇒
(P :: ∀e.UP f e → Prop)→ (e :: FixM f)→ Σ e.(P e)

Equality and Universal Properties While packaging universal
properties with terms enables reasoning, it does obfuscate equality
of terms. In particular, two UPF terms t and t ′ may share the same
underlying term (i.e., π1 t = π1 t ′), while their universal property
proof components are different.2

This issue shows up in the definition of the typing judgment
for values. This judgment needs to range over UPF fv values and
UPF ft types (where fv and ft are the value and type functors),
because we need to exploit the injectivity of inject in our inversion
lemmas. However, knowing WTValue v t and π1 t = π1 t ′

no longer necessarily implies WTValue v t ′ because t and t ′

may have distinct proof components. To solve this, we make use of
two auxiliary lemmas WTVπ1,v and WTVπ1,t that establish the
implication:

2 Actually, as proofs are opaque, we cannot tell if they are equal.

Theorem WTVπ1,v (i :: WTValue v t) =
∀v ′.π1 v = π1 v ′ →WTValue v ′ t

Theorem WTVπ1,t (i :: WTValue v t) =
∀t ′.π1 t ′ = π1 t ′ →WTValue v t ′

Similar lemmas are used for other logical relations. Features which
introduce new rules need to also provide proofs showing that they
respect this ”safe projection” property.

5. Higher-Order Features
Binders and general recursion are ubiquitous in programming lan-
guages, so MTC must support these sorts of higher-order features.
The untyped lambda calculus demonstrates the challenges of im-
plementing both these features with extensible Church encodings.

5.1 Encoding Binders
To encode binders we use a parametric HOAS (PHOAS) [8] repre-
sentation. PHOAS allows binders to be expressed as functors, while
still preserving all the convenient properties of HOAS.

LambdaF is a PHOAS-based functor for a feature with func-
tion application, abstraction and variables. The PHOAS style re-
quires LambdaF to be parameterized in the type v of variables, in
addition to the usual type parameter r for recursive occurrences.

data LambdaF v r = Var v | App r r | Lam (v → r)

As before, smart constructors build extensible expressions:

var :: (LambdaF v ≺: f)⇒ v → FixM f
var v = inject (Var v)

app :: (LambdaF v ≺: f)⇒ FixM f → FixM f → FixM f
app e1 e2 = inject (App e1 e2)

lam :: (LambdaF v ≺: f)⇒ (v → FixM f)→ FixM f
lam f = inject (Lam f)

5.2 Defining Non-Inductive Evaluation Algebras
Defining an evaluation algebra for the LambdaF feature presents
additional challenges. Evaluation of the untyped lambda-calculus
can produce a closure, requiring a richer value type than before:

data Value =
Stuck | I Nat | B Bool | Clos (Value → Value)

Unfortunately, Coq does not allow such a definition, as the closure
constructor is not strictly positive (recursive occurrences of Value
occur both at positive and negative positions). Instead, a closure is
represented as an expression to be evaluated in the context of an
environment of variable-value bindings. The environment is a list
of values indexed by variables represented as natural numbers Nat .

type Env v = [v]

The modular functor ClosureF integrates closure values into the
framework of extensible values introduced in Section 2.6.

data ClosureF f a = Clos (FixM f) (Env a)

closure :: (ClosureF f ≺: r)⇒
FixM f → Env (FixM r)→ FixM r

closure mf e = inject (Clos mf e)

A first attempt at defining evaluation is:

evalLambda :: (ClosureF f ≺: r ,StuckF ≺: r ,Functor r)⇒
AlgebraM (LambdaF Nat) (Env (FixM r)→ FixM r)

evalLambda J·K exp env =
case exp of

Var index → env !! index

Lam f → closure (f (length env)) env
App e1 e2 →

case project $ Je1K env of
Just (Clos e3 env ′)→ Je3 K (Je2K env : env ′)

→ stuck

The function evalLambda instantiates the type variable v of the
LambdaF v functor with a natural number Nat , representing an
index in the environment. The return type of the Mendler algebra
is now a function that takes an environment as an argument. In
the variable case there is an index that denotes the position of the
variable in the environment, and evalLambda simply looks up that
index in the environment. In the lambda case evalLambda builds
a closure using f and the environment. Finally, in the application
case, the expression e1 is evaluated and analyzed. If that expression
evaluates to a closure then the expression e2 is evaluated and added
to the closure’s environment (env ′), and the closure’s expression e3

is evaluated under this extended environment. Otherwise e1 does
not evaluate to a closure, and evaluation is stuck.

Unfortunately, this algebra is ill-typed on two accounts. Firstly,
the lambda binder function f does not have the required type
Nat → FixM f . Instead, its type is Nat → r , where r is uni-
versally quantified in the definition of the AlgebraM algebra. Sec-
ondly, and symmetrically, in the App case, the closure expression
e3 has type FixM f which does not conform to the type r expected
by J·K for the recursive call.

Both these symptoms have the same problem at their root.
The Mendler algebra enforces inductive (structural) recursion by
hiding that the type of the subterms is FixM f using universal
quantification over r . Yet this information is absolutely essential for
evaluating the binder: we need to give up structural recursion and
use general recursion instead. This is unsurprising, as an untyped
lambda term can be non-terminating.

5.3 Non-Inductive Semantic Functions
Mixin algebras refine Mendler algebras with a more revealing type
signature.

type Mixin t f a = (t → a)→ f t → a

This algebra specifies the type t of subterms, typically FixM f , the
overall expression type. With this mixin algebra, evalLambda is now
well-typed:

evalLambda :: (ClosureF e ≺: v ,StuckF ≺: v)⇒
Mixin (FixM e) (LambdaF Nat)
(Env (FixM v)→ FixM v)

Mixin algebras have an analogous implementation to Eval as type
classes, enabling all of MTC’s previous composition techniques.

class EvalX f g r where
evalxalg :: Mixin (FixM f) g (Env (FixM r)→ FixM r)

instance (StuckF ≺: r ,ClosureF f ≺: r ,Functor r)⇒
EvalX f (LambdaF Nat) r where

evalxalg = evalLambda

Although the code of evalLambda still appears generally recursive,
it is actually not because the recursive calls are abstracted as a
parameter (like with Mendler algebras). Accordingly, evalLambda

does not raise any issues with Coq’s termination checker. Mixin
algebras resemble the open recursion style which is used to model
inheritance and mixins in object-oriented languages [10]. Still,
Mendler encodings only accept Mendler algebras, so using mixin
algebras with Mendler-style encodings requires a new form of fold.

In order to overcome the problem of general recursion, the open
recursion of the mixin algebra is replaced with a bounded inductive

fixpoint combinator, boundedFix , that returns a default value if the
evaluation does not terminate after n recursion steps.

boundedFix :: ∀f a.Functor f ⇒ Nat → a →
Mixin (FixM f) f a → FixM f → a

boundedFix n def alg e =
case n of

0 → def
m → alg (boundedFix (m − 1) def alg) (outf e)

The argument e is a Mendler-encoded expression of type FixM f .
boundedFix first uses outf to unfold the expression into a value
of type f (FixM f) and then applies the algebra to that value re-
cursively. In essence boundedFix can define generally recursive
operations by case analysis, since it can inspect values of the recur-
sive occurrences. The use of the bound prevents non-termination.

Bounded Evaluation Evaluation can now be modularly defined
as a bounded fixpoint of the mixin algebra EvalX . The definition
uses a distinguished bottom value,⊥, that represents a computation
which does not finish within the given bound.

data ⊥F a = Bot
⊥= inject Bot

evalX :: (Functor f ,⊥F≺: r ,EvalX f f r)⇒
Nat → FixM f → Env → FixM r

evalX n e env = boundedFix n (\ →⊥) evalxalg e env

5.4 Backwards compatibility
The higher-order PHOAS feature has introduced a twofold change
to the algebras used by the evaluation function:

1. evalX uses mixin algebras instead of Mendler algebras.

2. evalX now expects algebras over a parameterized functor.

The first change is easily accommodated because Mendler al-
gebras are compatible with mixin algebras. If a non-binder feature
defines evaluation in terms of a Mendler algebra, it does not have to
define a second mixin algebra to be used alongside binder features.
The mendlerToMixin function automatically derives the required
mixin algebra from the Mendler algebra.

mendlerToMixin :: AlgebraM f a → Mixin (FixM g) f a
mendlerToMixin alg = alg

This conversion function can be used to adapt evaluation for the
arithmetic feature to a mixin algebra:

instance Eval ArithF f ⇒ EvalX f ArithF r where
evalxalg J·K e env =

mendlerToMixin evalAlgebra (flip J·K env) e

The algebras of binder-free features can be similarly adapted to
build an algebra over a parametric functor. Figure 4 summarizes
the hierarchy of algebra adaptations. Non-parameterized Mendler
algebras are the most flexible because they can be adapted and
reused with both mixin algebras and parametric superfunctors.
They should be used by default, only resorting to mixin algebras
when necessary.

6. Reasoning with Higher-Order Features
The switch to a bounded evaluation function over parameterized
Church encodings requires a new statement of soundness.

Theorem soundnessX :: ∀f ft env t Γ n.
∀e1 :: FixM (f (Maybe (FixM ft))).
∀e2 :: FixM (f Nat).

Algebras

Parameterized
Algebras

B
in

de
rs

Controlled
Evaluation

Mendler
Algebras

Parameterized
Mendler
Algebras

Parameterized
Mixin Algebras

Mixin
Algebras

General
Recursion

Figure 4. Hierarchy of Algebra Adaptation

Γ ` e1 ≡ e2 →WF Environment Γ env →
typeof e1 = Just t →WTValue (evalX n e2 env) t

The proof of soundnessX features two substantial changes to
the proof of soundness from Section 4.3.

6.1 Proofs over Parametric Church Encodings
The statement of soundnessX uses two instances of the same
PHOAS expression e :: ∀v .FixM (f v). The first, e1 , instanti-
ates v with the appropriate type for the typing algebra, while e2

instantiates v for the evaluation algebra.
In recursive applications of soundnessX , the connection be-

tween e1 and e2 is no longer apparent. As they have different types,
Coq considers them to be distinct, so case analysis on one does
not convey information about the other. Chlipala [8] shows how the
connection can be retained with the help of an auxiliary equivalence
relation Γ ` e1 ≡ e2, which uses the environment Γ to keep track
of the current variable bindings. The top-level application, where
the common origin of e1 and e2 is apparent, can easily supply a
proof of this relation. By induction on this proof, recursive appli-
cations of soundnessX can then analyze e1 and e2 in lockstep.
Figure 5 shows the rules for determining equivalence of lambda
expressions.

(x, x′) ∈ Γ

Γ ` var x ≡ var x′

(EQV-VAR)

Γ ` e1 ≡ e′
1 Γ ` e2 ≡ e′

2

Γ ` app e1 e2 ≡ app e′
1 e

′
2

(EQV-APP)

∀xx′.(x, x′),Γ ` f(x) ≡ f ′(x′)

Γ ` lam f ≡ lam f ′ (EQV-ABS)

Figure 5. Lambda Equivalence Rules

6.2 Proofs for Non-Inductive Semantics Functions
Proofs for semantic functions that use boundedFix proceed by
induction on the bound. Hence, the reasoning principle for mixin-
based bounded functions f is in general: provided a base case
∀e, P (f 0 e), and inductive case ∀n e, (∀e′, P (f n e′)) →
∀e, P (f (n+ 1) e) hold, ∀n e, P (f n e) also holds.

In the base case of soundnessX , the bound has been reached
and evalX returns ⊥. The proof of this case relies on adding to the
WTValue judgment the WF-BOT rule stating that every type is
inhabited by ⊥.

`⊥: T
(WF-BOT)

Hence, whenever evaluation returns ⊥, soundness trivially holds.
The inductive case is handled by a proof algebra whose state-

ment includes the inductive hypothesis provided by the induction
on the bound: IH :: ∀n e, (∀e′, P (f n e′)) → P (f (n + 1) e).
The App e1 e2 case of the soundness theorem illustrates the rea-
son for including IH in the statement of the proof algebra. After

using the induction hypothesis to show that evalX e1 env pro-
duces a well-formed closure Clos e3 env ′, we must then show
that evaluating e3 under the (evalX e2 env) : env ′ environment is
also well-formed. However, e3 is not a subterm of App e1 e2, so
the conventional induction hypothesis for subterms does not apply.
Because evalX e3 ((evalX e2 env) : env ′) is run with a smaller
bound, the bounded induction hypothesis IH can be used.

6.3 Proliferation of Proof Algebras
In order to incorporate non-parametric inductive features in the
soundnessX proof, existing proof algebras for those features need
to be adapted. To cater to the four possible proof signatures of
soundness (one for each definition of J·K), a naive approach re-
quires four different proof algebras for an inductive non-parametric
feature.3 This is not acceptable, because reasoning about a fea-
ture’s soundness should be independent of how a language adapts
its evaluation algebra. Hence, MTC allows features to define a sin-
gle proof algebra, and provides the means to adapt and reuse that
proof algebra for the four variants. These proof algebra adaptations
rely on mediating type class instances which automatically build an
instance of the new proof algebra from the original proof algebra.

6.3.1 Adapting Proofs to Parametric Functors
Adapting a proof algebra over the expression functor to one over
the indexed functor for the equivalence relation first requires a
definition of equivalence for non-parametric functors. Fortunately,
equivalence for any such functor fnp can be defined generically:

Γ ` a ≡ b
Γ ` inject(C a) ≡ inject(C b)

(EQV-NP)

EQV-NP states that the same constructor C of fnp , applied to
equivalent subterms ā and b̄, produces equivalent expressions.

The mediating type class adapts fnp proofs of propositions on
two instances of the same PHOAS expression, like soundness, to
proof algebras over the parametric functor.

instance (PAlg N P fnp)⇒ iPAlg N P (EQV-NP fnp)

This instance requires a small concession: proofs over fnp have to
be stated in terms of two expressions with distinct superfunctors f
and f ′ rather than two occurrences of the same expression. Induc-
tion over these two expressions requires a variant of PAlg for pairs
of fixpoints.

6.3.2 Adapting Proofs to Non-Inductive Semantic Functions
To be usable regardless of whether foldM or boundedFix is used
to build the evaluation function, an inductive feature’s proof needs
to reason over an abstract fixpoint operator and induction principle.
This is achieved by only considering a single step of the evaluation
algebra and leaving the recursive call abstract:

type soundness e tp ev =
∀env t .tp (outf (π1 e)) = Just t →

WTValue (ev (out t ′ (π1 e)) env) t)

type soundnessalg rect rece
(typeof alg :: Mixin (FixM f) f (Maybe (FixM t))
(evalalg :: Mixin (FixM f) f (Env (FixM r)→ FixM r))
(e :: FixM f) (e UP ′ :: UP e) =
∀IHc :: (∀e ′.

soundness e ′ (typeof alg rect) (evalalg rece)→
soundness e ′ rect rece).

soundness e (typeof alg rect) (evalalg rece)

3 Introducing type-level binders would further compound the situation with
four possible signatures for the typeof algebra.

The hypothesis IHc is used to relate calls of rece and rect to
applications of evalalg and typeof alg .

A mediating type class instance again lifts a proof algebra with
this signature to one that includes the Induction Hypothesis gener-
ated by induction on the bound of boundedFix .

instance (PAlg N P E)⇒ iPAlg N (IH → P) E

7. Case Study
As a demonstration of the MTC framework, we have built a set
of five reusable language features and combined them into a mini-
ML [9] variant. The study also builds five other languages from
these features.4 Figure 6 presents the syntax of the expressions,
values, and types provided by the features; each line is annotated
with the feature that provides that set of definitions.

The Coq files that implement these features average roughly
1100 LoC and come with a typing and evaluation function in ad-
dition to soundness and continuity proofs. Each language needs on
average only 100 LoC to build its semantic functions and soundness
proofs from the files implementing its features. The framework it-
self consists of about 2500 LoC.

e ::= N | e + e Arith
| B | if e then e else e Bool
| case e of { z ⇒ e ; S n ⇒ e} NatCase
| lam x : T.e | e e | x Lambda
| fix x : T.e Recursion

V ::= N Arith
| B Bool
| closure e V Lambda

T ::= nat Arith
| bool Bool
| T → T Lambda

Figure 6. mini-ML expressions, values, and types

The generic soundness proof, reused by each language, relies
on a proof algebra to handle the case analysis of the main lemma.
Each case is handled by a sub-algebra. These sub-algebras have
their own set of proof algebras for case analysis or induction over
an abstract superfunctor. The whole set of dependencies of a top-
level proof algebra forms a proof interface that must be satisfied by
any language which uses that algebra.

Such proof interfaces introduce the problem of feature interac-
tions [5], well-known from modular component-based frameworks.
In essence, a feature interaction is functionality (e.g., a function or
a proof) that is only necessary when two features are combined. An
example from this study is the inversion lemma which states that
values with type nat are natural numbers: ` x : nat→ x :: N.
The Bool feature introduces a new typing judgment, WT-BOOL
for boolean values. Any language which includes both these fea-
tures must have an instance of this inversion for WT-BOOL. Our
modular approach supports feature interactions by capturing them
in type classes. A missing case, like for WT-BOOL, can then be
easily added as a new instance of that type class, without affecting
or overriding existing code.

In the case study, feature interactions consist almost exclusively
of inversion principles for judgments and the projection principles
of Section 4.3. Thankfully, their proofs are relatively straightfor-
ward and can be dispatched by tactics hooked into the type class
inference algorithm. These tactics help minimize the number of in-
teraction type class instances, which could otherwise easily grow
exponentially in the number of features.

4 Also available at http://www.cs.utexas.edu/~bendy/MTC

8. Related Work
This section discusses related work.

Modular Reasoning There is little work on mechanizing mod-
ular proofs for extensible components. An important contribution
of our work is how to use universal properties to provide modular
reasoning techniques for encodings of inductive data types that are
compatible with theorem provers like Coq. Old versions of Coq,
based on the calculus of constructions [11], also use Church en-
codings to model inductive data types [35]. However, the inductive
principles to reason about those encodings had to be axiomatized,
which endangered strong normalization of the calculus. The calcu-
lus of inductive constructions [34] has inductive data types built-in
and was introduced to avoid the problems with Church encodings.
MTC returns to Church encodings to allow extensibility, but does
not use standard, closed induction principles. It instead uses a rea-
soning framework based on universal properties which allow mod-
ular reasoning without axioms in Coq.

Extensibility Our approach to extensibility combines and extends
ideas from existing solutions to the expression problem. The type
class infrastructure for (Mendler-style) f -algebras is inspired by
DTC [14, 43]. However the type-level fixpoints that are central to
DTC cannot be used in Coq because of their use of general recur-
sion. To avoid general recursion, MTC encodes least-fixpoints with
Church encodings [6, 35]. Church encodings have inspired other
solutions to the expression problem (especially in object-oriented
languages) [30–32]. Those solutions do not use f -algebras: in-
stead, they use an isomorphic representation called object alge-
bras [31]. Object algebras are a better fit for languages where
records are the main structuring construct (such as OO languages).
MTC differs from previous approaches by using Mendler-style f -
algebras instead of conventional f -algebras or object algebras. Un-
like previous solutions to the expression problem, which focus only
on the extensibility aspects of implementations, MTC also deals
with modular reasoning and extensibile inductively defined predi-
cates.

Mechanized Meta-Theory and Reuse Several ad-hoc tool-based
approaches provide reuse, but none is based on a proof assistant’s
modularity features alone. The Tinkertype project [23] is a frame-
work for modularly specifying formal languages. It was used to
format the language variants used in Pierce’s “Types and Program-
ming Languages” [37], and to compose traditional pen-and-paper
proofs. The Ott tool [41] allows users to write definitions and the-
orem statements in an ASCII format designed to mirror pen-and-
paper formalizations. These are then automatically translated to
definitions in either LATEX or a theorem prover and proofs and func-
tions are then written using the generated definitions.

Both Boite [7] and Mulhern [29] consider how to extend exist-
ing inductive definitions and reuse related proofs in the Coq proof
assistant. Both their techniques rely on external tools which are no
longer available and have users write extensions with respect to an
existing specification. As such, features cannot be checked inde-
pendently or easily reused with new specifications. In contrast, our
approach is fully implemented within Coq and allows for indepen-
dent development and verification of features.

Delaware et al. [13] applied product-line techniques to modu-
larizing mechanized meta-theory proofs. As a case study, they built
type safety proofs for a family of extensions to Featherweight Java
from a common base of features. Importantly, composition of these
features was entirely manual, as opposed to the automated compo-
sition developed here.

Concurrently with our development of MTC, Schwaab et al.
have been working on modularizing meta-theory in Agda [40].
While MTC uses Church encodings to encode extensible datatypes,

their approach achieves extensibility by using universes which can
be lifted to the type level. Encodings and their associated proofs
can be modified to derive new languages.

Transparency One long-standing criticism of mechanized meta-
theory has been that it interferes with adequacy, i.e. convincing
users that the proven theorem is in fact the desired one [39]. Cer-
tainly the use of PHOAS can complicate the transparency of mech-
anized definitions. The soundnessX theorem, for example, uses
a more complicated statement than the pen-and-paper version be-
cause PHOAS requires induction over the equivalence relation.
Modular inductive datatypes have the potential for exacerbating
transparency concerns, as the encodings are distributed over dif-
ferent components. Combining a higher-level notation provided by
a tool like Ott with the composition mechanisms of MTC is an
interesting direction for future work. Such a higher-level notation
could help with transparency; while MTC’s composition mecha-
nisms could help with generating modular code for Ott specifica-
tions.

Binding To minimize the work involved in modeling binders,
MTC provides reusable binder components. The problem of mod-
eling binders has previously received a lot of attention. Some proof
assistants and type theories address this problem with better sup-
port for names and abstract syntax [36, 38]. In general-purpose
proof assistants like Coq, however, such support is not available.
A popular approach, widely used in Coq formalizations, is to use
mechanization-friendly first-order representations of binders such
as the locally nameless approach [1]. This involves developing a
number of straightforward, but tedious infrastructure lemmas and
definitions for each new language. Such tedious infrastructure can
be automatically generated [2] or reused from data type-generic
definitions [21]. However this typically requires additional tool
support. A higher-order representation like PHOAS [8] avoids most
infrastructure definitions. While we have developed PHOAS-based
binders in MTC, it supports first-order representations as well.

Semantics and Interpreters While the majority of semantics for-
malization approaches use inductively defined predicates, we pro-
pose an approach based on interpreters. Of course, MTC supports
standard approaches as well.

A particularly prominent line of work based on interpreters is
that of using monads to structure semantics. Moggi [28] pioneered
monads to model computation effects and structure denotation se-
mantics. Liang et al. [25] introduced monad transformers to com-
pose multiple monads and build modular interpreters. Jaskelioff
et al. [20] used an approach similar to DTC in combination with
monads to provide modular implementation of mathematical oper-
ational semantics. Our work could benefit from using monads to
model more complex language features. However, unlike previous
work, we also have to consider modular reasoning. Monads intro-
duce important challenges in terms of modular reasoning. Only
very recently have some modular proof techniques for reasoning
about monads have been introduced [15, 33]. While these are good
starting points, it remains to be seen whether these techniques are
sufficient to reason about suitably generalized modular statements
like soundness.

Mechanization of interpreter-based semantics clearly poses its
own challenges. Yet, it is highly relevant as it bestows the high de-
gree of confidence in correctness directly on the executable artifact,
rather than on an intermediate formulation based on inductively de-
fined relations. The only similar work in this direction, developed
concurrently to our own, is that of Danielsson [12]. He uses the
partiality monad, which fairly similar to our bounded fixpoint, to
formalize semantic interpreters in Agda. He argues that this style
is more easily understood and more obviously deterministic and

computable than logical relations. Unlike us, Danielsson does not
consider modularization of definitions and proofs.

9. Conclusion
Formalizing meta-theory can be very tedious. For larger program-
ming languages the required amount of work can be overwhelming.

We propose a new approach to formalizing meta-theory that al-
lows modular development of language formalizations. By build-
ing on existing solutions to modularity problems in conventional
programming languages, MTC allows modular definitions of lan-
guage components. Furthermore, MTC supports modular reason-
ing about these components. Our approach enables reuse of modu-
lar inductive definitions and proofs that deal with standard language
constructs, allowing language designers to focus on the interesting
constructs of a language.

This paper addresses many, but obviously not all, of the funda-
mental issues for providing a formal approach to modular seman-
tics. We will investigate further extensions of our approach, guided
by the formalization of larger and more complex languages on top
of our modular mini-ML variant. A particularly challenging issue
we are currently considering of is the pervasive impact of new side-
effecting features on existing definitions and proofs. We believe
that existing work on modular monadic semantics [20, 24, 25] is a
good starting point to overcome this hurdle.

Acknowledgements We would like to especially thank William
Cook for his help in structuring the presentation of this work. Fur-
ther thanks to Don Batory, Twan van Laarhoven and the reviewers
for their comments and suggestions. This work was supported by
the National Science Foundation under Grant CCF 0724979.

References
[1] B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and

S. Weirich. Engineering Formal Metatheory. In POPL ’08, 2008.

[2] B. E. Aydemir and S. Weirich. LNgen: Tool Support for Locally
Nameless Representations, 2009. Unpublished manuscript.

[3] B.E. Aydemir et al. Mechanized Metatheory for the Masses: The
PoplMark Challenge. In TPHOLs’05, 2005.

[4] P. Bahr. Evaluation à la carte: Non-strict evaluation via compositional
data types. In Proceedings of the 23rd Nordic Workshop on Program-
ming Theory, NWPT ’11, pages 38–40, 2011.

[5] D. Batory, J. Kim, and P. Höfner. Feature interactions, products, and
composition. In GPCE, 2011.

[6] C. Böhm and A. Berarducci. Automatic synthesis of typed lambda-
programs on term algebras. Theor. Comput. Sci., 39, 1985.

[7] O. Boite. Proof reuse with extended inductive types. In Theorem
Proving in Higher Order Logics, pages 50–65, 2004.

[8] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In ICFP’08, 2008.

[9] D. Clément, T. Despeyroux, G. Kahn, and J. Despeyroux. A Simple
Applicative Language: mini-ML. In LFP ’86, 1986.

[10] W. R. Cook. A denotational semantics of inheritance. PhD thesis,
Providence, RI, USA, 1989. AAI9002214.

[11] T. Coquand and Gérard Huet. The calculus of constructions. Technical
Report RR-0530, INRIA, May 1986.

[12] N. A. Danielsson. Operational semantics using the partiality monad.
In ICFP’12, 2012.

[13] B. Delaware, W. R. Cook, and D. Batory. Product lines of theorems.
In OOPSLA ’11, 2011.

[14] L. Duponcheel. Using catamorphisms, subtypes and monad transform-
ers for writing modular functional interpreters., 1995.

[15] J. Gibbons and R. Hinze. Just do it: simple monadic equational
reasoning. In ICFP ’11, 2011.

[16] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial
algebra semantics and continuous algebras. J. ACM, 24(1), Jan. 1977.

[17] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make ad
hoc proof automation less ad hoc. In ICFP ’11, 2011.

[18] R. Hinze. Church numerals, twice! JFP, 15(1):1–13, 2005.
[19] G. Hutton. A tutorial on the universality and expressiveness of fold. J.

Funct. Program., 9(4):355–372, 1999.
[20] M. Jaskelioff, N. Ghani, and G. Hutton. Modularity and implemen-

tation of mathematical operational semantics. Electron. Notes Theor.
Comput. Sci., 229(5), March 2011.

[21] G. Lee, B. C. d. S. Oliveira, S. Cho, and K. Yi. Gmeta: A generic
formal metatheory framework for first-order representations. In ESOP
2012, 2012.

[22] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7), 2009.

[23] M. Y. Levin and B. C. Pierce. Tinkertype: A language for playing with
formal systems. Journal of Functional Programming, 13(2), March
2003.

[24] S. Liang and P. Hudak. Modular denotational semantics for compiler
construction. In ESOP ’96, 1996.

[25] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In POPL ’95, 1995.

[26] D. MacQueen. Modules for standard ML. In LFP ’84, 1984.
[27] G. Malcolm. Algebraic Data Types and Program Transformation. PhD

thesis, Rijksuniversiteit Groningen, September 1990.
[28] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1),

July 1991.
[29] A. Mulhern. Proof weaving. In WMM ’06, September 2006.
[30] B. C. d. S. Oliveira. Modular visitor components. In ECOOP’09,

2009.
[31] B. C. d. S. Oliveira and W. R. Cook. Extensibility for the masses:

Practical extensibility with object algebras. In ECOOP’12, 2012.
[32] B. C. d. S. Oliveira, R. Hinze, and A. Löh. Extensible and modular

generics for the masses. In Trends in Functional Programming, 2006.
[33] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. Effectiveadvice:

disciplined advice with explicit effects. In AOSD ’10, 2010.
[34] C. Paulin-Mohring. Inductive definitions in the system Coq - rules and

properties. In TLCA ’93, 1993.
[35] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the

calculus of constructions. In MFPS V, 1990.
[36] F. Pfenning and C. Schürmann. System description: Twelf - a meta-

logical framework for deductive systems. In CADE ’99, 1999.
[37] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[38] A. M. Pitts. Nominal logic, a first order theory of names and binding.

Inf. Comput., 186(2):165–193, 2003.
[39] Robert Pollack. How to believe a machine-checked proof. In Twenty

Five Years of Constructive Type Theory, 1998.
[40] Christopher Schwaab and Jeremy G. Siek. Modular type-safety proofs

using dependant types. CoRR, abs/1208.0535, 2012.
[41] Peter Sewell et al. Ott: effective tool support for the working semanti-

cist. In ICFP ’07, 2007.
[42] M. Sozeau and N. Oury. First-class type classes. In TPHOLs ’08,

2008.
[43] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4), 2008.
[44] T. Uustalu and V. Vene. Coding recursion a la Mendler. In WGP ’00,

pages 69–85, 2000.
[45] P. Wadler. The Expression Problem. Email, November 1998. Discus-

sion on the Java Genericity mailing list.
[46] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad

hoc. In POPL ’89, pages 60–76, 1989.

