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ABSTRACT

The theory of compressed sensing tells a dramatic story that sparse
signals can be reconstructed near-perfectly from a small number of
random measurements. However, recent work has found the story to
be more complicated. For example, the projections based on prin-
cipal component analysis work better than random projections for
some images while the reverse is true for other images. Which fea-
ture of images makes such a distinction and what is the optimal set of
projections for natural images? In this paper, we attempt to answer
these questions with a novel formulation of compressed sensing. In
particular, we find that bandwise random projections in which more
projections are allocated to low spatial frequencies are near-optimal
for natural images and demonstrate using experimental results that
the bandwise random projections outperform other kinds of projec-
tions in image reconstruction.

Index Terms— Compressed sensing, natural images, uncertain
component analysis, informative sensing.

1. INTRODUCTION

Given a set of linear measurements y ∈ Rp on a signal x ∈ Rn,
where y = Wx, which choice of W enables the best reconstruction
of x if p < n? It is well known that the optimal set of projections,
which minimizes the mean squared error, can be found by the prin-
cipal component analysis (PCA) when the reconstruction is linear.
However, if we relax the linear recovery constraint, the optimal pro-
jections may substantially differ from the PCA projections. In this
regard, compressed sensing of sparse signals [1, 2] is a spectacular
demonstration of nonlinear recovery from a small number of linear
projections.

The basic mathematical results in compressed sensing deal with
k-sparse signals. These are signals that have at most k active (non-
zero) elements, at unknown locations, in some basis. For such sig-
nals, it was shown in [1, 2], that O(k log n) generic linear measure-
ments are sufficient to recover the signal exactly. Furthermore, the
recovery can be done by a simple convex optimization or by a greedy
optimization procedure [3].

However, the theory says little about what types of linear mea-
surements are optimal for particular signals that are not ideally
sparse. The basic requirement is that the measurements should be
mutually incoherent with the basis in which the signal is assumed
to be sparse. Random projections have most typically been used
[1, 2, 4] because they prove mutually incoherent with almost any
basis, but the universality of random projections does not mean that
they are universally optimal. Elad [5] has shown that increasing
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the average incoherence of a measurement matrix using an iterative
algorithm, can give a small increase in compressed sensing perfor-
mance. For natural images, it has been found that more standard
low-pass filtering (e.g. PCA projections) often gives better recon-
struction results than random projections in noisy settings [6] and
even in noiseless settings [7]. Lustig, Donoho, and Pauly [8] noticed
that under-sampling low-pass signals less than high-pass signals can
produce a better performance for real images when using a random
Fourier matrix. In a similar context, Romberg [9] first takes 1,000
low-frequency DCT coefficients to get a rough sketch of the image
before switching to random projections for filling in the details.

In this paper, we consider the optimized compressed sensing for
natural images. Formally, for any given number of measurements,
we attempt to find a set of linear projections that are maximally infor-
mative about the images based on well-known statistics of images.
The optimal projections turn out to differ from PCA or random pro-
jections. We show, by experiments, that the newly found bandwise
random projections may far outperform random projections as well
as PCA projections.

2. INFORMATIVE PROJECTION: PRELIMINARY
ANALYSIS

Let x and y be the original signal and a set of measurements related
by y = Wx, where W is a p × n matrix (p < n) that consists of
orthonormal row vectors. Consider the subspace W⊥ ⊂ Rn which
is not spanned by the row vectors of W. It denotes the unmeasured
dimension of x. If we define W⊥ as an (n−p)×n matrix whose row
vectors form an orthonormal basis of W⊥ and if we let z = W⊥x,

[
y
z

]
=

[
Wx
W⊥x

]
=

[
W
W⊥

]
x = Ux. (1)

The pair of (y, z) corresponds to x in rotated basis because of the
unitarity of U. During the recovery, y is exactly known from the
measurement outputs, while z should be estimated based on y. Here,
to reduce the uncertainty of z as much as possible, we seek to min-
imize the conditional entropy h(z|y). By the formula that h(x) =
h(Ux) = h(y, z) = h(y) + h(z|y), the minimization of h(z|y)
is simply equivalent to the maximization of h(y) because h(x) is
fixed. Therefore, our problem can be formally defined as

W∗ = arg max
W:WWT=I

h(Wx). (2)

Because, in (2), we seek to maximize the uncertainty of linear pro-
jections of data, we call the optimization scheme uncertain compo-
nent analysis (UCA) [10]. Uncertainty minimization has also been
proposed recently in the context of the sequential design of com-
pressed sensing by [11, 7]. In this context, the projections are chosen
sequentially so that each projection minimizes the remaining uncer-
tainty about the signal given the results of the previous projections.



The UCA projections are often hard to obtain in a closed form
because of very complicated nature of the differential entropy. For
a random vector y ∈ Rp whose covariance is Σy, its entropy h(y)
can be decomposed into

h(y) = h(ỹ) +
1
2

ln det(Σy), (3)

where ỹ is a whitened version of y, e.g., ỹ = Σy
− 1

2 y. Note that,
in (3), h(ỹ) is covariance-free and depends only on the shape of the
probability density function (pdf) of ỹ, while the second term solely
depends on the covariance Σy. Hence, we call h(ỹ) the shape term
and 1

2 ln det(Σy) the variance term. Overall, an entropy is the sum
of these terms.

In fact, each term tends to be maximized by random projections
and by the PCA projections (see [12] for more details), and our ob-
jective is to accomplish a good balance between the two.

Case 1: For white data with the covariance matrix σ2I, the vari-
ance term remains constant (i.e. p ln σ) for any choice of W and
only the shape term plays a role. In this case, h(y) is maximized
by the projections that make the distribution as Gaussian as possi-
ble. Let GG(α) denote the generalized Gaussian distribution with
the shape parameter α and let cα be the shape term of its entropy
(see Appendix). If the data satisfies the source separation generative
model x = Vs where si is iid, GG(α) and where the columns of
V form a complete orthonormal basis, a random projection makes
p(y) be Gaussian when p = 1, as n → ∞, by the central limit the-
orem, and then h(y) ≈ c2 + ln σ = ln

√
2πeσ. For p > 1, a set

of random projections are still near-optimal, but the impact of a new
(kth) random projection on the overall entropy h(y), which we call
the capacity of the projection and denote by ν(k), decreases with k.
This is because the dependency increases with more projections. If
we neglect high-order multi-information terms (beyond the pairwise
dependency), the decreasing factor can be linearly approximated as
[12]

ν(k)
def
= E[h(y1, . . . , yk)− h(y1, . . . , yk−1)]

≈ c2 −
2(k − 1)
n− 1

(c2 − cα) + ln σ (4)

for sufficiently large n.
Case 2: For highly non-white data, the variance term dominates

the shape term, which makes the PCA projections almost optimal.

3. UNCERTAIN COMPONENTS OF NATURAL IMAGES

Interestingly, natural images have both properties from case 1 and 2.
Here, we assume several well-known statistical facts about natural
images: (1) Independent (or the sparsest) components of natural
images form a set of Gabor-like wavelet filters in multi-resolutions
[13, 14].1 (2) If we denote each filter by vk and its response to x by
sk, Var(sk) is nearly constant for all vk that are in the same band,
say B", while falling to about a fourth at the next band B"+1 [15].
(3) The pdf of sk is remarkably well modeled by GG(α) with α < 1
[16, 17].

Under these assumptions, we derive a near-optimal set of projec-
tions for natural images. First, because of the highly non-whiteness

1In fact, the independent components are over-complete. In a specific
band (resolution), each independent component corresponds to a local edge
at a particular location and angle. We assume as if there were only a complete
set of independent components orthogonal to each other.
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Fig. 1. Illustration of the band decomposition in spatial frequency
domain (top), and capacity diagrams of bandwise random projec-
tions (bottom) for two cases α = 0.33 (left) and α = 0.44 (right).
The assumed image size is 256×256 and then %max = 9. At the top
figure, fx and fy denote horizontal and vertical spatial frequency,
respectively.

in different bands, cross-band mixing is liable to decrease the overall
entropy (as in case 2), and thus we seek to find a solution among the
bandwise projections in which W is in the form of

W =





W0 0 · · · 0
0 W1 · · · 0
...

...
. . .

...
0 0 · · · W"max




VT (5)

where V is an orthonormal matrix whose columns are vk and where
W" are p" × |B"| matrices with p" satisfying

∑"max
"=0 p" = p. We

will later discuss how to determine p".
Next, when we sense the band-pass signals, we should use ran-

dom projections (as in case 1) since they are white. Overall, the
derived scheme corresponds to bandwise random projections. The
bandwise random projections act exactly like (4) within a single
band. More explicitly, for the band B",

ν(k") ≈ c2 −
2(k" − 1)
|B"| − 1

(c2 − cα) + ln(σ/2"),

k" = 1, 2, . . . , |B"| (6)

where k" denotes the index of each bandwise random projection
taken from B".

Finally, by the assumption of inter-band independency, we can
simply concatenate ν(k") to obtain the overall capacity diagram of
bandwise random projections. Fig. 1 illustrates such capacity dia-
grams throughout all the bands, for two example cases α = 0.33
and α = 0.44, as well as the band decomposition in the spatial fre-
quency domain. Note that the overall profile varies with the value of
α.

After evaluating the overall capacity ν(k), we should arrange
them in the decreasing order and pick the first p projections for the



optimal choice. The optimal set of projections depends on α. Note
that if the optimal number of random projections from a band p" is
equal to the size of the band |B"| then taking p" random projections
is equivalent to simply taking all the wavelet coefficients (or PCA
coefficients) in that band. As Fig. 1 shows, for α = 0.44 this hap-
pens with a small number of projections. Thus in this case, PCA is
the most informative projection. However, as the number of projec-
tions increases, it is better to take random projections from different
bands, while allocating more random projections to the low spatial
frequencies.

4. EXPERIMENTS

In this section, we apply the UCA scheme (i.e. bandwise random
projections) to natural images and make comparisons against PCA
and random projections in terms of signal reconstruction perfor-
mance. For the implementation, we conduct the band decomposition
as we have shown in Fig. 1 but without explicit use of Gabor-like
filters. Instead, we consider the DCT coefficients in the spatial
frequencies between

2"

4
√

n
fs ≤

√
f2

x + f2
y <

2"

2
√

n
fs, (7)

where fs denotes the image sampling frequency in both directions.
Because each DCT kernel in B" represents some harmonic (non-
random) mixing of the Gabor-like wavelets in that band, the band
separation in DCT domain as in (7) and subsequent band-by-band
random mixing of the DCT coefficients effectively implement the
proposed bandwise random projections. To carry out the random
mixing, we use a set of noiselets [9, 18], binary-valued random ma-
trix, for the efficient computer simulation.

The image recovery is based on Romberg’s implementation [9],
where we find the estimate x̂∗ of the latent image by minimizing the
total variation (TV), i.e.,

x̂∗ = arg min
x̂

∑

i,j

∣∣∣∇X̂ij

∣∣∣ , subject to y = Wx̂ (8)

where X̂ is the matrix representation of x̂. The TV minimization
is known to perform better than the L1-norm minimization on the
sparse basis (i.e. wavelets), avoiding high-frequency artifacts [9].

For the experiments, we used ten 256 × 256 images, which are
from Berkeley Database [19] and shown in Fig. 2, and compared the
performance, in terms of peak-signal-to-noise ratio (PSNR), of the
following four projection schemes: low-frequency DCT in zig-zag
order,2 pure random projections, Romberg’s method [9], and band-
wise random projections. As we mentioned before, Romberg takes
1,000 low-frequency DCT coefficients and then switches to random
projections.

Fig. 3 shows the reconstruction performance as a function of p,
the number of projections, for two cases (I1 and I7). For the full
range of p, Romberg’s method (green) is better than pure random
projections (cyan), which is not surprising. However, if we compare
the DCT projections (blue) and Romberg’s method (green), their rel-
ative performance changes completely, depending on the source im-
age. Indeed, the two images turn out to have very different char-
acteristics in terms of their sparsity. The generalized Gaussian pa-
rameters, roughly estimated from their wavelet coefficients, were
α ≈ 0.33 for I1 and α ≈ 0.44 for I7, as their capacity diagrams are
shown in Fig. 1.

2The DCT kernels are known to well approximate the principal compo-
nents of natural images.

(0.33) (0.33) (0.28) (0.35) (0.34)

(0.40) (0.44) (0.58) (0.54) (0.55)

Fig. 2. Ten test images from Berkeley Segmentation Database [19],
each cropped to 256 × 256. They are labeled I1–I10 from left to
right, top to bottom. Each parenthesized number denotes the sparsity
(GG shape parameter estimated from the wavelet coefficients) of the
above image.
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Fig. 3. Image recovery results for I1 (left) and for I7 (right). The
compared schemes are the DCT projections (blue), pure random pro-
jections (cyan), Romberg’s method (green), and the UCA projections
(red). For decoding, the TV minimization has been used.

The image I1 is quite sparse. A moderate number of random
projections could capture evenly all spatial frequency contents.
Meanwhile, the DCT projections use up all budget for the low-
frequency contents, which could be sensed with even fewer sensors,
while missing high-frequency details. On the other hand, I7 is not
that sparse. Referring to Fig. 1, we must devote almost all available
budget to low-frequency bands. Otherwise, even the low-resolution
version is hard to recover.

The UCA projections (red) consistently outperform Romberg’s
method (green) as well as the DCT projections (blue). For I7, the
DCT projection is quite comparable to the UCA projection. This is
because the DCT projection is nearly optimal for such a dense image
with α ≈ 0.44.

Note that the UCA scheme uses different sets of projections de-
pending on the sparsity of the source image. In case that the spar-
sity of the source image is unknown, we might have to use a value
learned in advance, from a large collection of natural images. Then,
we may achieve near-optimal performance in average sense, not in
every case. Using a common set of bandwise random projections
tuned specifically for α ≈ 0.41 (mean value) on the entire set of test
images, we obtained the results as shown in Table 1. For this exper-
iment, we used p = 21, 000. Note that this set of projections per-
forms best for most images (1dB better than the other projections on
average) while worse than the DCT projections for the last two im-
ages (I9, I10). As aforementioned, the DCT projections are nearly



Table 1. The PSNR performance of image reconstruction results
with p = 21, 000. †For the UCA scheme, the same set of bandwise
random projections tuned for α ≈ 0.41 has been commonly used.

Method I1 I2 I3 I4 I5

DCT 33.27 27.35 37.31 32.86 36.41
Rand 33.23 26.54 39.72 33.05 37.69

1k DCT + rand 33.42 26.74 39.92 33.30 37.88
UCA† 34.68 28.10 40.70 34.55 38.70

Method I6 I7 I8 I9 I10

DCT 30.15 29.94 33.72 30.26 30.26
Rand 29.58 28.61 32.06 27.88 27.99

1k DCT + rand 29.75 28.79 32.29 28.12 28.20
UCA† 31.20 30.01 33.78 29.83 29.56

optimal for fairly dense images I7–I10. If we tune the bandwise
random projections for α ≈ 0.5, the UCA projections give similar
performance for the two images as the DCT projections.

In certain applications, it may be allowed to sense a few hundred
wavelet coefficients so that we can estimate the sparsity before we
do tens of thousands of projections.

5. CONCLUSION

If we are allowed to take a small number of linear projections of sig-
nals in a dataset and then use the projections plus prior knowledge
of the dataset to recover the signals, what are the best projections to
use? We have shown that these projections should minimize the un-
certainty of a signal given its projections, or equivalently maximize
the uncertainty possessed by the projections.

For natural images, we have derived a set of near-optimal pro-
jections. They are bandwise random, but allocate more sensors to
the low spatial frequencies and the exact number of sensors in each
band depends on the sparsity.

6. APPENDIX: GENERALIZED GAUSSIAN

A random variable x is said to be GG(α) if its log pdf is given by
ln p(x) = β−γ |x− µ|α , for some β, γ, µ. Laplacian (α = 1) and
Gaussian (α = 2) belong to this family and the distribution becomes
sparser as α→ 0. The shape term of GG(α) is computed to

cα =
1
2

ln

(
4
α2

Γ3
(

1
α

)

Γ
(

3
α

)
)

+
1
α

(nats), (9)

as drawn in Fig 4.
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