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Abstract

The patch transform represents an image as bag of overlapping patches sampled on a regular grid. This representation
allows users to manipulate images in the patch domain, which then seeds the inverse patch transform to synthesize a
modified image. Possible modifications in the patch domain include the spatial locations of patches, the size of the output
image, or the pool of patches from which an image is reconstructed. When no modifications are made, the inverse patch
transform reduces to solving a jigsaw puzzle. The inverse patch transform is posed as a patch assignment problem on a
Markov random field (MRF), where each patch should be used only once, and neighboring patches should fit to form a
plausible image. We find an approximate solution to the MRF using loopy belief propagation, introducing an approximation
that encourages the solution to use each patch only once. The image reconstruction algorithm scales well with the total
number of patches through the use of a label pruning method that finds loops of patches that are likely to fit together. In
addition, structural misalignment artifacts are supressed through a patch jittering scheme that spatially shifts the assigned
patches by a sub-patch size. We demonstrate the patch transform and its effectiveness on natural images.
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The patch transform

1 INTRODUCTION

THe patch transform represents an image as a bag of
patches sampled on a regular grid, and treats each

patch as a basic element of an image. Image editing can
be formulated as shuffling patches on the image grid
to generate a visually pleasing image while conforming
to user constraints. Reconstructing images from a set
of patches is called the “inverse patch transform”. One
can think of the inverse patch transform as solving a
jigsaw puzzle subject to user constraints. When no user
constraints are specified, the inverse patch transform
reduces to solving a standard jigsaw puzzle. The inverse
patch transform is solved by formulating a Markov
random field (MRF) on image nodes, and using loopy
belief propagation to solve for the patch label at each
image node.

This enables users to manipulate images in the “patch
domain”: users can constrain patch positions, and add
or remove patches from the image. Such a characteristic
gives rise to many useful image editing operations. For
example, the user can easily relocate objects in an image
by specifying the desired location of certain patches.
Also, the user can easily “retarget” an image by spec-
ifying the desired size of the image. Alternatively, the
user can modify the amount of texture in the image by
adding or removing patches that belong to a particular
class (say, blue sky or clouds). The user can also mix
patches from multiple images to generate a collage of
them. All these image editing operations follow a unified
pipeline with coarse, simple user input.

Image edits, such as hole filling, texture synthesis,
object removal and image retargeting have already been
successfully addressed in literature. Yet, there are two
important benefits to our method. First, we propose a
unified framework that addresses many editing opera-
tions. Any improvement to our algorithmic engine can,
therefore, improve all image editing operations that rely
on it. Second, our approach simplifies user interactions.
For example, with current techniques, moving an object
in the image from one location to another involves
carefuly segmenting the object, making room for it in
its target location, pasting it to its new location and
filling the hole created in the process. In contrast, our
algorithm only requires the user to roughly select a small
number of patches and place them in their new location.
The inverse patch algorithm will automatically make
room for the newly located patches, fill in the hole, and
rearrange the image to comply with user constraints.

This paper extends the work of Cho et al. [1] in a
number of aspects. First, we sample overlapping patches
from the grid, instead of non-overlapping patches con-
sidered in [1], to enhance the compatibility measure and
reduce visual artifacts. Secondly, we introduce a new

pruning technique, termed the patch loop based label
pruning, to reduce the complexity of belief propagation
from O(N3) to sub-quadratic in N , where N is the total
number of patches. Using label pruning, we can edit
images with thousands of patches. We also introduce a
patch jittering technique to reduce sub-patch size struc-
tural alignment error.

We describe related work in Section 2, and introduce
the patch transform based image editing framework in
Section 3. Then we develop the inverse patch transform
algorithm and implementation details in Section 4, and
introduce several image editing applications leveraging
the patch transform in Section 5. To handle thousands of
patches and improve edited image quality, we introduce
a label pruning method and a patch jittering scheme in
Section 6 and Section 7.

2 RELATED WORK

The inverse patch transform is closely related to solv-
ing jigsaw puzzles. Some types of jigsaw puzzles were
shown to be NP-complete by Demaine and Demaine [2]
because they can be reduced to the Set Partition Problem.
Nevertheless, there has been much work in the literature
to (approximately) solve the problem, and for jigsaws
with discriminative shapes, we can prove that a polyno-
mial algorithm solves the puzzle. Image jigsaw puzzles
can be solved by exploiting the shape and content of the
jigsaw. In a shape-based approach, the boundary shape
of the jigsaw is used to find valid neighbors. Even if
valid neighbors can be found using shape, the problem
is still NP-complete because finding the correct order of
the boundary jigsaws can be reduced to the traveling
salesman problem. Chung et al. [3] used both shape
and color to reconstruct an image and explore several
graph-based assignment techniques. To our knowledge,
the largest jigsaw puzzle solved by computer is with 320
jigsaw pieces [4].

Many scientific problems have been formulated as
solving a jigsaw puzzle as well: reconstructing relics
from its fragments [5], [6], [7], fitting a protein with
known amino acid sequence to a 3D electron density
map [8], reconstructing documents from its fragments
[9], [10], and reconstructing a speech signal from its
scrambles [11].

Patch-based image representations have been intro-
duced in the literature in the form of “epitomes” [12] and
“jigsaws” [13], where an image is represented by a small
source image and a transformation map. While these
models can generate an image with overlapping patches
from the source image, they are applied primarily for
image analysis.
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There has been an evolution in the patch-based image
editing community. A patch based propagation method
was introduced by Criminisi et al. [14], which was
augmented with a global optimization framework by
the follow-up papers [15], [16]. However, the global
methods allow the same patch to be used multiple times,
which limits the amount of control a user has over the
synthesis. Also, it may result in tiling the same bland
patch across the image, which would look unpleasant.
This issue was addressed in Kopf et al. [17] by keeping
a counter for each patch and reducing the probability
of re-using a patch accordingly. We address this issue in
a probabilistic framework by introducing a term in the
image model that penalyzes the use of the same patch
multiple times.

While the patch transform is also closely related to
existing image editing frameworks, the patch transform
tries to side-step other typical image editing tasks, such
as region selection [18] and object placement or blending
[19], [20], [21]. Techniques on image matting and image
composition [21], [22] work at a pixel-level accuracy, and
were shown to perform well in extracting foreground
layers in images and placing them on a new background,
thus avoiding the difficult tasks of hole filling, image re-
organization or image retargetting. The patch transform
inherently works with patch-level accuracy - thus not
requiring the user to provide very accurate input-, and it
adjusts the image to the user input as to make the output
image as plausible as possible. Related functionalities
have been obtained using the notion of bidirectional
similarity, which is described in [23].

The patch transform stitches patches together to syn-
thesize new images, thus it’s closely related to larger
spatial scale versions of that task, including Digital
Tapestry [24], Auto Collage [25] and panorama stitching
[26], although with different goals. Some techniques em-
ployed in Digital Tapestry [24] are similar to this work,
although Digital Tapestry focuses more on synthesizing
a single summary image from multiple input images
and does not require the exclusion constraint. Non-
parametric texture synthesis algorithms, such as [27],
and image filling-in, such as [14], [28], [29], can involve
combining smaller image elements and are more closely
related to our task. Also related, in terms of goals and
techniques, are the patch-based image synthesis methods
[14], [30], which also require compatibility measures
between patches. Efros and Freeman [30] and Liang et
al. [31] used overlapping patches to synthesize a larger
texture image. Neighboring patch compatibilities were
found through squared difference calculations in the
overlap regions. Freeman, Pasztor and Carmichael [32]
used similar patch compatibilities, and used loopy belief
propagation in an MRF to select image patches from
a set of candidates. Kwatra et al. [33], and Komodakis
and Tziritas [34] employed related Markov random field
models, solved using graph cuts or belief propagation,
for texture synthesis and image completion. The most
salient difference from all texture synthesis methods is

the patch transform’s constraint against multiple uses
of a single patch. This allows for the patch transform’s
controlled rearrangement of an image.

The patch loop based label pruning algorithms are
related to numerous label pruning algorithms for belief
propagation. Label pruning has been useful in acceler-
ating belief propagation in many applications, including
pose estimation [35], object recognition [36], image anal-
ysis [37], stereo depth map inference [38], and in medical
applications [39]. On a theoretical note, Bishop et al. [40]
and Koller et al. [41] proposed effective label pruning
algorithms for MRFs with potentials from an exponential
family. Freeman et al. [32] proposed a method to select
state labels that have high potential to be the final
solution. The state label selection can be thought of as
maintaining only the top k state labels with highest prob-
ability before running belief propagation. While such
first order label pruning scheme works well in many
applications, it may break down in the inverse patch
transform: in inverse patch transform, there should be at
least one state label per node that its four neighboring
nodes can agree on. We call this a concensus constraint,
and the first order label pruning does not guarantee a
concensus constraint.

Komodakis et al. [34] proposed a dynamic label prun-
ing method that reduces the number of state labels as
belief propagation runs: a state label is discarded if its
marginal probability is lower than a certain threshold.
The patch loop based label pruning scheme is static:
the number of patch labels does not change as belief
propagation proceeds. A dynamic label pruning method
would be too expensive for the inverse patch transform
since it should make sure that the concensus constraint
is satisfied after each BP iteration.

3 THE PATCH TRANSFORM IMAGE EDITING
FRAMEWORK

We introduce the image editing framework (Fig. 1) lever-
aging the patch transform. Given an input image, the
system samples overlapping patches from a regular grid,
each with the same size and the same amount of overlap,
and computes the compatibility among all possible pairs
of patches.

The inverse patch transform reconstructs an image
given the user input by first formulating an MRF, in
which nodes represent spatial positions where we place
the patches. We call these nodes the “image nodes”. The
inverse patch transform runs loopy belief propagation
on the MRF to solve for the patch assignment that is
visually pleasing while satisfying user inputs.

Once patches are assigned to the image nodes, we
stitch patches together in a way similar to Efros and Free-
man [30]: image nodes are scanned in a horizontal-first
manner, and at each image node, the patch is stitched
to the image thus far blended by finding the seam
that results in minimum artifacts. The stitched image
can still contain artifacts due to luminance difference if
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Fig. 1. This figure illustrates the pipeline of the patch transform based image editing scheme. First, we compute the
patch transform representation of the input image, and use loopy BP on MRF to solve for the patch labels on the image
grid, respecting the user input, compatibility requirement, and the exclusion constraint. In the inverse patch transform
block, the red ball denotes the image node, and the green block denotes the exclusion factor node that steers the
solution to use each patch seldom more than once.

neighboring patches were not adjacent in the original
image. Thus, we remove the intensity gradients along
the seam if two patches that generated the seam were not
adjacent in the original image. We use the poisson solver
provided by Agrawal et al. [42] to generate an image
with suppressed seam artifacts. Section 4 introduces the
inverse patch transform algorithm and implementation
details.

4 THE INVERSE PATCH TRANSFORM

4.1 The image model

The unknown state at the ith image node is the index
of the patch xi to be placed at that position. Based
on how plausibly one patch fits next to another, we
define a compatibility, ψ. Each image node has four
neighbors (except at the image boundary), and we write
the compatibility between patch k and patch l, placed at
neighboring image positions i and j, to be ψi,j(k, l).

We let x be a vector of the unknown patch indices xi at
each of the N image positions i. We define the probability
of an assignment, x, of patches to image positions to be

P (x) ∝




∏

i

φi(xi)
∏

j∈N (i)

ψij(xi, xj)



E(x) (1)

A “patch exclusion” function, E(x), is zero if any two
elements of x are the same (if any patch is used more
than once) and is otherwise one. The user’s constraints
on patch positions are represented by a local evidence
term, φi(xi). We show later that φi(xi) is also used to
aid the image reconstruction.

By maximizing P (x), we seek a solution that matches
compatible patches locally while ensuring that each
patch is used only once. In the next section, we introduce
a message passing scheme to find the patch assignment
x that approximately maximizes P (x) in Eq. (1).

4.2 Approximate solution by belief propagation

Finding the assignment x that maximizes P (x) in the
MRF of Eq. (1) is NP-hard, but approximate methods can
nonetheless give good results. One such method is belief
propagation. Belief propagation is an exact inference
algorithm for Markov networks without loops, but can
give good results even in some networks with loops [43].
For belief propagation applied in networks with loops,
different factorizations of the MRF joint probability can
lead to different results. Interestingly, we found better
results for solving the patch assignments using an alter-
native factorization of Eq. (1) as a directed graph.

To derive a directed graph image model, we define a
normalized compatibility,

pi,j(xi|xj) ≈ ψi,j(xi, xj)∑M
i=1 ψi,j(xi, xj)

(2)

and the local evidence term p(yi|xi) = φi(xi). We can
then approximate the joint probability of Eq. (1) in terms
of conditional probabilities as

P (x) ∝
N∏

i=1

∏

j∈N (i)

p(yi|xi)pi,j(xj |xi)p(xi)E(x) (3)

where N (i) is the neighboring indices of xi, yi is the
patch at location i in the original image, and pi,j is the
appropriate normalized compatibility determined by the
relative location of j with respect to i. This expression
is exact for a tree, but only approximate for a MRF with
loops. A similar factorization for an MRF was used in
[32]. We can manipulate p(xi) to steer the MRF to favor
patches with certain characteristics, but in most cases we
model p(xi) as a uniform distribution.

The approximate marginal probability at node i can be
computed by iterating the sum-product message passing
scheme until convergence [43]. Ignoring the exclusion
term E(x) for now, the message update rules for this
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factorization are as follows. Let us suppose that j is in
the neighborhood of i. The message from j to i is:

mji(xi) ∝
∑
xj

pi,j(xi|xj)p(yj |xj)
∏

l∈N (j)\i
mlj(xj) (4)

and the patch assignment at node i is:

x̂i = argmax
l

bi(xi = l) (5)

where the belief at node i is defined as follows:

bi(xi) = p(yi|xi)
∏

j∈N (i)

mji(xi) (6)

4.3 Message updates with the patch exclusion term

The message passing scheme introduced in the previous
section may fail to reconstruct the original image because
each patch can be used more than once. In this section,
we propose a message passing scheme that integrates
the exclusion term so that it favors a solution that uses
each patch seldom more than once.

Since the exclusion term is a global function involving
all xi, we represent it as a factor node (shown in Fig. 1)
that is connected to every image node i [43]. The message
from the node i to the factor (mif ) can be shown to be
the belief bi(xi) (Eq. (6)), and the message from the factor
to the node i can be computed as follows:

mfi(xi) =
∑

{x1,...,xN}\xi

ψF (x1, ..., xN )
∏

t∈S\i
mtf (xt) (7)

where S is the set of all image nodes. If any of the
two nodes in S share the same patch, ψF (· ) is zero,
and is one otherwise. The message computation involves
marginalizing N−1 state variables (i.e. the image nodes)
that can take on M different values (i.e. the number
of patches), so the complexity of the marginalization
operation becomes O(M (N−1)), which is intractable.

We propose an approximate solution to Eq. (7). In-
stead of marginalizing variables over a joint potential
ψF (x1, ..., xN ), we approximate ψF (x1, ..., xN ) as a prod-
uct of pair-wise exclusion potentials. For computing the
message from the exclusion factor node to an image node
i,

ψFi(x1, ..., xN ) ≈
∏

t∈S\i
ψFt(xt|xi)

(8)

where
ψFj (xj |xi) = 1− δ(xj − xi) (9)

The full joint potential ψF (x1, ..., xN ) can be zero even
if the patch to be placed at node i is not being shared
with other image nodes if two other nodes, say u, w ∈ S,
share the same patch. However, the product of pair-wise
exclusion potential

∏
t∈S\i ψFt(xt|xi) is zero only if the

Fig. 2. This figure illustrates how we compute the left-
right seam energy for two overlapping patches. The white
line is the seam along which the color difference between
the patches is minimum. The color difference along the
white line is defined as the seam energy.

patch to be assigned to node i has already been used by
another image node. Combining Eq. (7 - 9),

mfi(xi = l) ≈
∏

t∈S\i

M∑
xt=1

ψFt
(xt|xi = l)mtf (xt)

=
∏

t∈S\i
(1−mtf (xt = l))

(10)

where we have assumed that mtf is normalized to 1.
In words, the exclusion factor node f tells the node i
to place low probability on claiming patch l if patch l
has already been claimed by another node with a high
probability, and is intuitively satisfying.

4.4 Implementation details
4.4.1 The compatibility measure
In [1] the patches are assumed to be non-overlapping
and the patch-to-patch compatibility is defined in terms
of natural image statistics prior. In this paper, we sample
overlapping patches from the grid, and compute the
pair-wise compatibility using the seam energy. We found
that this patch sampling strategy reduces visual artifacts
from tiling patches.

Fig 2 illustrates how we compute the left-right seam
energy for two overlapping patches, k and l. We first find
the seam, within the overlapped region denoted with the
red strip, along which the color difference between the
two patches is minimum. We use the dynamic program-
ming method described in Efros and Freeman [30] to
find the optimal seam. The color difference along the
optimal seam is the seam energy Eseam(k, l), and we
exponentiate it to compute the compatibility ψ:

ψi,j(k, l) ∝ exp(−Eseam(k, l)
σc(l)2

) (11)

where σc(l) is a parameter that controls how much we
penalyze finite seam energy with reference patch l.

One notable characteristic of Eseam is that it’s zero
for two patches that were adjacent in the original image.
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This characteristic allows a greedy polynomial-time algo-
rithm to reconstruct the original image. However, such a
greedy algorithm does not generalize well to accomodate
image editing operations, as MRF based algorithm does.

4.4.2 Computing σc(l)
In Cho et al. [1], σc(l) in Eq. (11) was the same for all
pairs of patches, and was set through cross-validation. In
this work, we automatically set σc(l) differently for every
reference patch l. The main motivation is to simplify the
image completion problem such that for each reference
patch l, the algorithm considers only few patches as a
plausible neighbor, effectively reducing the combinato-
rial complexity. This tends to shape our optimization
function (Eq. (1)) to have a wide peak around the global
maximum. We define σc(l) as follows,

σc(l) = El(2)− El(1) (12)

where El(1) is the seam energy between patch l and the
best match, and El(2) is the seam energy between patch
l and the second best match.

4.4.3 The user input in the image model
The user-specified constraint can be incorporated into
the image model with the local evidence term. If the user
has fixed the patch k at image position i, then p(yi|xi =
k) = 1 and p(yi|xi = l) = 0, for l 6= k. At unconstrained
nodes, the mean color of the original patch yi can serve
as an observation:

p(yi|xi = l) ∝ exp

(
− (m(yi)−m(l))2

σ2
evid

)
(13)

where m(·) is the mean color of the argument, and
σevid = 0.4 determined through cross-validation. While
m(·) denotes the mean color in this work, it can be
defined to meet application’s needs. The local evidence
term (Eq. (13)) steers the algorithm to retain the input
image’s color structure. For example, if upper part of
the input image was blue, upper part of the output
image will favor blue patches. Eq. (13) steers the MRF
to reconstruct the original image, but the user input will
steer the MRF to modify the image. This local evidence
term is used in all applications described in the next
section unless specified otherwise.

5 IMAGE EDITING APPLICATIONS

We introduce a number of image editing applications
that leverage the patch transform. All the applications
introduced here follow a unified pipeline introduced in
Fig. 1.

5.1 Image reorganization
A user may want to change the location of an object
after capturing the picture. We show the image editing
example for relocating a person in Fig. 3. Fig. 3(a) is the
original image, and the user wants to move the woman

(a) (b)

(c) (d)

Fig. 4. (a - c) show the inverse patch transform results
with and without the local evidence and the exclusion
term. (a) Without the local evidence and without the
exclusion term. (b) With the local evidence and without
the exclusion term. (c) Without the local evidence and
with the exclusion term. (d) The image editing result using
PhotoshopTM and the image completion algorithm [14].

to the left side of the image. Fig. 3(b) shows how the user
specifies the input. The user grabs patches that belong
to the woman (the black bounding box), and snaps them
at the desired location (the green bounding box.) We
have deliberately placed the woman to occlude two men
in the background to show how two men get relocated
automatically. The local evidence p(yi|xi) in image nodes
where the woman used to stand is now uniform over all
xi since the inverse patch transform doesn’t know apriori
what to place there.

With this user input, the inverse patch transform finds
the patch configuration, and the reconstructed image,
prior to Poisson blending, is shown in Fig. 3(c), with
corresponding seams overlaid. One observation from the
reconstructed image is that two men in the background
“got-out-of-the-way” and placed themselves at a new
location. The inverse transform did not just swap patches
that belonged to the woman with the patches that the
woman is placed upon.

The reconstructed image Fig. 3(c) does contain an arti-
fact. As shown in the inset, the inverse patch transform
cuts off the head of the man with a white jacket. The op-
timal seam search algorithm decided that it’d be cheaper
to cut off his head so that his white jacket abuts the white
building, which is a legitimate approach to reduce the
seam energy. Other than that, the overall image looks
plausible after supressing the seam artifact using Poisson
blending. The resulting image after Poisson blending is
shown in Fig. 3(d).

To see how each term in the image model contributes
to the output image, we have conducted an experiment
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(a) (b) (c) (d)

Fig. 3. This figure shows a typical example of a patch transform based image editing. (a) The input image. (b) The
user input (c) The inverse patch transform result, prior to Poisson blending, with overlaid seams. (d) The final output
image. The black bounding box denotes patches that are taken from, and the green bounding box denotes where
those patches should be moved to.
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Fig. 5. Subject reorganization examples. The red bound-
ing box denotes patches that are fixed at the original
location.

where the local evidence and the exclusion term are each
turned on and off during the inverse patch transform.
Fig. 4 (a-c) shows the results. Fig. 4(a) shows the recon-
structed image when the local evidence term is uniform
(except in nodes with fixed patches) and the exclusion
term is turned off. While the patch assignments are
locally compatible, the output image does not have the
same structure as the input image. If we incorporate the
local evidence term while keeping the exclusion term
off, we get a much better structured image shown in
Fig. 4(b), but the reconstructed image has duplicates of
the woman in the foreground. If we only turn on the
exclusion term, and keep the local evidence uniform,
we get the result shown in Fig. 4(c). While there aren’t
any repeating patches that generate visual artifacts, the
structure of the input image is not maintained. When

Input image User input Output image

Fig. 6. The object removal examples. The inverse
patch transform reconstructs an image discarding the
user specified patches. The blue bounding box denotes
patches that should be removed from the pool of patches.

we incorporate both terms, we can reconstruct a more
plausible image.

We compare the patch transform result with that of
the conventional pipeline: the user blends the woman
at the desired location using PhotoshopTM , and fills in
the missing hole using the image completion algorithm
proposed by Criminisi et al. [14]. The editing result
is shown in Fig. 4(d). While the woman is blended
seemlessly into the background, the hole now has many
artifacts. A possible explanation for the failure is that
the image size is very large, so the number of pixels
the algorithm needs to fill in is correspondingly large.
Most image completion algorithms are very effective at
handling small regions, but tend to fail in completing
such large regions. Also, two men in the background
are removed because they are not relocated as in the
patch transform framework. Fig. 5 has more examples
of relocating subjects.

5.2 Object removal
The patch transform can be used to remove objects quite
trivially: the user can simply remove patches that belong
to the object of interest, and reconstruct the image with
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Fig. 7. The image retargeting example. The inverse patch
transform reconstructs a resized image by solving for the
patch assignment on a smaller canvas.

the reduced set of patches. Since the exclusion term is
not a hard constraint, the inverse patch transform will
judiciously re-use some patches.

Fig. 6 shows some examples of object removal. In the
first row, the user wants to remove large trees on the
left side of the building. To make up for the missing tree
patches, the algorithm chooses to reuse some patches
of the building, propagating the building structure. In
the second example, the user wants to remove the long
tower under construction while keeping the dome at
its current location. To complete the missing region, the
inverse patch transform reuses some patches from the
building to propagate it.

5.3 Image retargeting
A user may be interested in resizing the image while
keeping as much content of the original image as possi-
ble. One effective method to retarget an image is “seam
carving” by Avidan and Shamir [44]. The seam carving
method finds a seam along which the energy is mini-
mum, and removes the seam from the image. While it
achieves excellent result on many images, the algorithm
is inherently based on low level cues, and sometimes it
fails to retain the overall structure of the image.

We argue that the patch transform allows users to
resize the image while keeping the structure of the image
through the local evidence term. The image retargeting
in the patch transform framework can be thought of as
solving a jigsaw puzzle on a smaller canvas (leaving
some patches unused.) The local evidence on a smaller
canvas is the low resolution version of the bi-cubically
resized image.

We show an image retargetting example in Fig. 7, in
which the user wants to reduce the image size to be 80%
in height and width. The patch assignment result just
with the local evidence term is shown on the right. While
the image contains many artifacts, the overall structure
of the original image is maintained. After running belief
propagation, we can generate a resized image: A whole
floor of the building has been removed to fit the vertical
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Fig. 8. The user can manipulate the patch statistics
of an image through the image prior term, which can
be designed to favor user specified patches (shown in
white.)

size of the image, and some pillars have been removed
to fit the lateral size of the image. At the same time,
some pavement patches as well as some people have
disappeared. When we retarget the image using Seam
Carving [44], the scene can be well summarized, but the
overall structure of the image is not maintained. Notice
that sky occupies a smaller portion of the whole image.

What makes retargeting work in the patch transform
framework is that while the compatibility term tries to
simply crop the original image, the local evidence term
competes against that to retain the color structure of
the original image as much as possible. The inverse
patch transform will balance these competing interests
to generate a retargeted image.

5.4 Manipulating patch statistics
The patch transform is well suited for controlling the
amount of textures, or the patch statistics, in an image.
One method of manipulating the patch statistics is by
explicitly controlling how many patches of a certain class
appears in the image. In this section, we present another
method to control the patch statistics: by manipulating
p(xi) in the image model (Eq. (3).)

Let’s consider the input image in Fig. 8, and suppose
that the user wants to have more clouds, say similar
to patch xs, in the output image. The patch preference
information can be folded into the p(xi) we modeled as
a constant:

p(xi; xs) ∝ exp

(
− (f(xi)− f(xs))2

2σ2
sp

)
(14)
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Input image 1

Input image 2

User input

Output image

Fig. 9. We generate a photomontage of the two input
images. The user wants to copy the large mountain in
image 2 to the background of image 1, while keeping the
person at the original location.

where σsp is a specificity parameter, and f(· ) is a func-
tion that captures the characteristic of the argument.
In this work, f(· ) is the mean color of the argument,
but can be defined to meet application’s needs. The
reconstructed image, with σsp = 0.2, is shown in the
last row. Cloud patches are used multiple times: the
energy penalty paid for using these patches multiple
times is compensated by the energy preference specified
by the prior Eq.(14). We can also favor sky patches, and
generate an image consisting primarily of sky.

We have observed that manipulating p(xi) introduces
a few local minima, so we had to run the inverse patch
transform a few times to find a plausible image. Never-
theless, all local minima have more cloud/sky patches
than the original image.

5.5 Photomontage
Until now, we have focused on manipulating patches
from a single image. In this section, we introduce a
photomontage application where we mix patches from
multiple images to generate a single image.

A photographer may find it hard to capture the person
and the desired background at the same time at a given
shooting position. In this case, the user can take multiple
shots using different lenses or zooms, and combine them
in the patch domain: in Fig. 9, the user wants to transfer
the large mountain from image 2 to the background of
image 1. This operation is simple in the patch transform
framework: the user specifies which portion of image 2
should be in the background of image 1, and what region
should be affixed in image 1. Then the inverse patch
transform reconstructs a plausible image using patches
from both images. There’s a region of contention that
transitions from one image to the next. The inverse patch
transform finds the best region to make such transitions.

Fig. 10. Structural misalignments cause visible artifacts.

6 THE FAST INVERSE PATCH TRANSFORM

We have introduced a number of image editing applica-
tions that leverage the patch transform. In all examples,
the input image was broken into 192 patches. We ran
BP with 2-3 randomized initial conditions, and chose
visually the most pleasing image. With our relatively
unoptimized MATLAB implementation on a 2.66GHz
CPU, 3GB RAM machine, the compatibility computation
takes about 3 seconds, and belief propagation takes
about 7 seconds for 50 message passing iterations.

One source of artifacts in the edited image is the
structural alignment error. We could reduce the patch
size to suppress the structural misalignments. We cannot,
however, indefinitely reduce the patch size because of
the belief propagation complexity. The complexity of
belief propagation algorithm for discrete probabilities is
O(NMK), where N is the number of nodes, M is the
number of state labels per node, and K is the number
of candidate neighbors per state. By reducing the patch
size, we are, in effect, increasing the number of patches
as well as number of image nodes in the MRF, which
slows down belief propagation significantly.

We present a patch-loop based label pruning method
that reduces the number of patch candidates per image
node, which reduces M and K. We show experimentally
that the image reconstruction algorithm is sub-quadratic
in the total number of patches.

6.1 Finding patch loops
Label pruning algorithms in the MRF energy minimiza-
tion framework are cast as finding state labels that are
potential candidates at each node. The set of potential
candidates, termed active labels, is much smaller than
the total number of states, thus reducing the complexity
of the energy minimization algorithm. Most label prun-
ing algorithms are first order: the algorithm retains top
k states that are most likely under the local evidence
measure, and does not consider what the active labels
are in the neighboring nodes. This tends to increase the
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(a)

u i

jv
(b)

Fig. 11. (a) For a reference patch (shown in blue), there
are 4 different types of neighboring loops (not considering
the directions.) (b) A RDL loop.

number of active labels at each node, and sometimes
fails to retain active labels with which its neighboring
nodes’ active labels have high compatibility. The pro-
posed patch loop label pruning algorithm takes into
account which labels are active in the neighboring nodes,
overcoming some limitations of the first order label
pruning algorithms.

A patch loop is a sequence of patches that form a loop
on an MRF, as shown in Fig. 11(a). We can form 4 types of
loops given a reference patch (shown in blue), ignoring
the directionality. We name each loop LUR, LDR, RUL,
RDL based on the order in which we traverse the loop.
For an image to be visually pleasing, the product of
compatibility along the patch loop should be high. Thus,
we reduce the number of patch labels at each node by
only “activating” patches that form highly compatible
loops with patch candidates in the neighboring nodes.

We introduce an algorithm that returns l approxi-
mately best patch loops, given a fixed reference patch
u, that minimize the seam energy across the loop. The
optimal l loops can only be computed by enumerating all
N3 candidates, where N is the total number of patches.

Consider Fig. 11(b). Let cH(ζ, η) be the seam energy
incurred by placing ζ to the left of η, and cV (ζ, η) be the
seam energy incurred by placing ζ to the top of η. The
following algorithm finds patch labels i∗, j∗, and v∗ that
minimize the seam energy across the loop.

1) Find the patch label i that minimizes Ei(j) =
mini (cH(u, i) + cV (i, j)) for each j.

2) Find the patch label j, with the
corresponding patch i, that minimizes
Ej(v) = minj (Ei(j) + cH(v, j) + cV (u, v)) for
each v.

3) Find l patches v∗ that minimize Ej(v) with the
corresponding j.

4) Find patches i∗, j∗ for each v∗ through back track-
ing: j∗ = arg minj (Ej(v∗)) , i∗ = arg mini (Ei(j∗))

In words, for each reference patch u, the algorithm
returns l approximately best patch loops by first sorting
Ej(v), picking l best patches v∗ that minimize Ej(v),
and returning i∗, j∗ with the corresponding v∗ through
back tracing. The patch loops can be precomputed. The

: Visited

: Current node’s neightbor

: Current node

: Loop direction

(a)

: Visited

: Assigned, but not yet visited

:No local evidence

(b)

Fig. 12. (a) The active labels are added by scanning
the image nodes from the top-left corner to the bottom-
right. (b)The active label assignment algorithm initially
steps over the region without valid local evidence. Then
the algorithm assigns active labels to these regions by
propagating the active labels from the boundary nodes.

algorithm is applicable for all other loops with minor
modifications.

6.2 Pruning patch labels with patch loops
We propose a patch label pruning method leveraging the
highly compatible patch loops. This label pruning rou-
tine serves as a preprocessing step to belief propagation:
the active label (i.e. the patch candidates) is fixed during
belief propagation.

We assign the active labels to image nodes by scanning
the image nodes from the top-left corner to the bottom-
right corner (Fig. 12(a)). At each node, say the yellow
node in Fig. 12(a), we take k most probable patches
according to the local evidence, compute l best patch
loops for each of the k chosen patches, and add patches
that form highly compatible patch loops as active labels
at the corresponding locations in the neighboring nodes
(shown in red.) In the case of RDL loop (Fig. 11(b)), the
algorithm finds k patches for node u, and adds active
labels to i, j and v in the order they form the patch
loop.

The active label assignment algorithm relies heavily
on the local evidence. When the user removes patches,
the local evidence is essentially uniform for all patches
at those image nodes, and does not have any cue to
select the initial k best patch candidates. Therefore, if
an image node has a uniform local evidence, the active
label assignment algorithm initially steps over it. Once
the algorithm finishes the node scanning process, the
algorithm propagates the active labels from the bound-
ary of the patch removed region into the core of the
patch removed region (Fig. 12(b).) We scan the uniform
local evidence region from the top-left corner to the
bottom-right corner with RDL loops, and reverse-scan
from the bottom-right corner to the top-left corner with
LUR loops. At each node, for every active labels (instead
of top k patch labels according to the local evidence)
we compute l∗ patch loops (where l∗ can be different
from l), and assign patches that participate in patch loops
as active labels at the corresponding neighboring nodes.
The initial active labels at node i are patches added by
its neighbors before the algorithm reached node i. In
practice l∗ = 1 performs well.
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Fig. 13. (a) The run-time comparison with and without
label pruning. Note that the y axis is in log-scale. (b) The
average number of active labels in nodes with/without lo-
cal evidence as we increase the total number of patches.

6.3 Evaluation
We experimentally show that reducing the patch size
tends to improve the edited image quality. We show
that the label pruning step becomes necessary due to
excessive computation time as we reduce the patch size.
The label pruning scheme reduces the run-time per
message pass iteration as well as the total number of
required message pass iterations for convergence.

6.3.1 Run-time comparison
We have performed the image reconstruction task by
breaking the image into 192, 432, 768, 1200, and 1728
patches. The corresponding patch sizes are 76x76, 56x56,
46x46, 40x40, and 36x36, all with 16 pixels overlap. We
recorded the time it takes to run 50 iterations of belief
propagation with these patches, with and without the
label pruning. k = 6, l = 2 in these experiments. The
number of patch loops for nodes without valid local
evidence, l∗, was 1.

The blue plot in Fig. 13(a) shows the runtime of 50
message passing iterations without label pruning. Notice
that the image reconstruction slows down rapidly as the
number of image nodes (thus the number of patches)
increases. When there are 1728 patches, it takes nearly 5
hours to run 50 message passing iterations.

The red plot in Fig. 13(a) shows the runtime of 50
message passing iterations with label pruning. Even with
1728 patches, it takes about 2.5 minutes to complete 50
message passing iterations. While the runtime is much
less than the case without label pruning, the complexity
of BP after label pruning is not perfectly linear in the
number of patches. This can be attributed to the fact
that the number of active labels in image nodes increases
roughly linearly to the number of patches.

Fig. 13(b) shows the average number of active labels
in nodes with and without local evidence as we increase
the total number of patches. These plots show that the
number of active labels increase approximately linearly
in the total number of patches. In the case of nodes with
local evidence, the proportionality constant is roughly
0.01, and in the case of nodes without local evidence, the
proportionality constant is roughly 0.3. This shows that

the bulk of the BP runtime is spent in regions without
local evidence.

The belief propagation runtime reduction comes at
a cost of computing the patch loops. The patch loop
computation takes 8 minutes with a mex code implemen-
tation in MATLAB. Note that the patch loop is computed
only once before running belief propagation, and is not
visible to the user during the image editing process.

6.3.2 Image quality comparison after 50 iterations of
belief propagation
The benefit of label pruning is not just the per-iteration
message passing runtime reduction, but also the faster
convergence of messages. In this section, we show that
50 message passing iterations is enough, even with 1728
patches, to reconstruct a plausible image with label
pruning, but is not enough to reconstruct a plausible
image without label pruning.

Fig. 14 shows reconstructed images with label pruning
after 50 iterations of belief propagation using 192, 432,
768, 1200, and 1728 patches. The top row in Fig. 14
shows reconstructed images without label pruning. One
observation is that the reconstructed images contain
repeating-patch artifacts. Also, the reconstructed images
contain severe structural misalignments: belief propa-
gation did not converge to a stable solution after 50
iterations of belief propagation.

In the bottom row of Fig. 14, we show reconstructed
images with label pruning, with k = 6, l = 2. A notable
observation is that as we use smaller patches, artifacts
due to structure misalignments are reduced. In the left
two columns, the structural misalignment along the
black pavement and the red pavement stands out, but
such misalignments disappear as we increase the total
number of patches. Also, note that artifacts due to patch
repetition (which is introduced when belief propagation
has not converged) is unnoticeable in all examples. The
label pruning not only helps in reducing the runtime
per message passing iteration, but also in reducing the
number of message passing iterations. Experimenting
with k and l revealed that messages converge within 50
iterations of BP, even with 1700 patches, if 4 ≤ k ≤ 8, 1 ≤
l ≤ 4.

Variables k and l balance the fast convergence of
belief propagation and the ability to explore the space of
images that can be generated with a given set of patches.
If k and l are small, the messages will converge faster,
but the resulting image would look similar to the original
image. If k and l are large, belief propagation requires
more message passing iterations to converge, but the
algorithm will explore a larger space of plausible images.
If l = 1, the inverse patch transform with label pruning
becomes O(N).

We show some more images edited with the acceler-
ated patch transform. k = 6, l = 2 is used in these exper-
iments. Each image is broken into patches of size 36x36,
with 16 pixel overlap, generating about 1700 patches per
image. A rough breakdown of the processing time is
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Fig. 14. Reducing the patch size improves the edited image quality. Also, the label pruning helps the faster
convergence of the message passing algorithm.

Patch loop computation
Inverse 

patch transform*
~50 sec ~8 minutes ~2.5 minutes

* compatibility computation

{ Precomputable {User interaction

Fig. 15. The run-time breakdown for 1728 patches. The
run-time is measured in MATLAB.

shown in Figure 15. Images in Fig. 16 are generated by
running the inverse patch transform 3 times and taking
the visually most pleasing image.

In Fig. 17 we show some failure examples. Since the
patches are smaller, the patch transform sometimes finds
it hard to transfer a whole object in tact: on the top row
of Fig. 17, the right bench should have reappeared on the
left side of the image, but it reappeared only partially.
Also, if different regions have small color difference (the
middle row of Fig. 17), the different textures may try to
merge.

While the use of small patches drastically improved
the edited image quality, sub-patch size structural mis-
alignments still generate visual artifacts. The next section
introduces a scheme to suppress such misalignment
artifacts.

7 PATCH JITTERING

We present a method to suppress a sub-patch size
structural misalignments through a post processing step
called the patch jittering. The patch jittering operation
refers to finding an optimal spatial offset to patches that
are assigned to image nodes. The patch jittering is an
attempt to overcome the rigidity imposed by the rect-
angular grid. Patches can be jittered without generating
a hole in the output image since patches overlap. The
maximum amount of possible jitter is determined by the
amount of patch overlap. When there is p pixel overlap,

Input image User input Edited image

Fig. 16. More image editing examples.

we can jitter each patch p/2 pixels in top, down, left,
right directions without generating a hole.

7.1 A local jittering scheme and its limitations

To automatically suppress the misalignment artifact, we
should first detect it. One method to find two patches
with structural misalignment is through pair-wise com-
patibility. If the pair-wise compatibility is low between
two abutting patches, we jitter those patches. This op-
eration is illustrated in Fig. 18(a). The gray overlapping
squares denote the underlying patch grid, and the red
square is the patch that we jitter. Notice that the red
patch perfectly matches the patch on its left. By moving
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Input image User input Edited image

Fig. 17. Some failure examples.

(a) (b)

Fig. 18. (a) The misalignment between the red patch and
the patch to its right can be reduced by jittering the red
patch towards the right. (b) A simple local jitter operation
cannot fix the misalignment error for this example. Moving
the red patch upward would better fit the side on the right,
but it would cause misalignment with a patch on its left.

the red patch to the right, the red patch will better fit
the patch to its right: the “dip” between the red tile
and the white dress will disappear. The increase in the
seam energy between the red patch and the patch to
its left will not be drastic since the patch has a lateral
structure. Essentially, we are re-using some pixels in the
overlapped region to mask alignment errors.

Jittering each patch one by one has its own limitations.
Consider Fig. 18(b). By jittering the red patch upward,
the red patch will better fit the patch to its right. How-
ever, the upward jitter causes a misalignment of the red
patch with the patch to its left, and increases the total
seam energy between the red patch and its neighbors.
Therefore, we need to jitter the neighboring patches in
unison to find a global optimal jitter at every node in
the neighborhood.

7.2 The jitter MRF
Our approach to globally jitter patches is to use an MRF.
We call this new MRF the jitter MRF. Once the inverse
patch transform assigns patches to image nodes, we
formulate a jitter MRF where the state labels at each
node is the jittered versions of the assigned patches.
Then belief propagation on the jitter MRF searches for
the globally optimal jittered patch at each node.

One drawback of the jitter MRF is that the number of
patch labels per node can be large. When there is p pixel
overlap between patches, and if each patch can move
±p/2 pixels in x-y directions, the number of possible
translations per patch becomes p2. Also, we need to
compute the compatibility between each jittered patch
to all other jittered patches in 4 neighboring nodes. This
amounts to N × 4 × p2 × p2 number of seam energy
computation, which can quickly become computation-
ally expensive.

One way to reduce this number is to allow the jitter
only in steps of pixels. In our implementation, p = 16
and the maximum amount of jitter is 8 pixels. Therefore,
we allow the jitter in steps of [−6,−3, 0, 3, 6] pixels.
We should note that the structural misalignment occurs
only in small regions of the image. In other words,
we don’t need to jitter patches in the entire image, but
only few that are near the misalignment artifacts. While
it’s easy to spot the misalignment artifacts using pair-
wise compatibility, it’s hard to find a region that should
participate in jittering. Since the patch jittering is a post
processing step, we require users to specify the region
that needs jittering.

The patch jittering operation proceeds as follows:
1) The inverse patch transform assigns patches to

image nodes. If there are any structural misalign-
ments, the user selects regions that need jittering.

2) The algorithm computes the compatibility among
neighboring patches with all possible jitters.

3) Formulate an MRF where the state variable at each
node is the amount of jitter. The MRF is formed
only on nodes that the user specified. Run belief
propagation to find the optimal jitter at each node.

As we jitter the patch, the overlapped region between
patches also changes. To compute the compatibility with
different amount of overlap, we find the seam energy
between two patches by finding an optimal seam only
within the overlapping region, and normalize the sum
of color difference along the seam by the length of the
overlapped region. This way, we do not unnecessarily
penalize the no-jitter state.

7.3 Evaluation
We show the patch jittering operation on our image
Fig. 19(a). The inset shows that the edited image before
the patch jittering contains visible alignment artifacts.
Fig. 19(b) shows how the user specifies the region to be
jittered, and Fig. 19(c) shows the final edited image after
the patch jittering. It takes about one second to setup
the jitter MRF (computing the pair-wise compatibility)
and less than 0.5 second to run 20 iterations of belief
propagation.

The jittering operation removes much of the struc-
tural alignment artifact. The alignment error along the
black pavement has been removed by gradually jittering
patches upward to connect the pavements. During the
patch jittering, some grass pixels have been used twice
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(a) (b) (c)

Fig. 19. (a) An edited image before the patch jittering. (b) A user input for the patch jittering. (c) An edited image after
the patch jittering.

(a)

(b)

Fig. 20. Two other local minima of patch jittering opera-
tion.

and some bush pixels have disappeared. To fix the
alignment error along the red pavement to the left side
of the woman, the algorithm performed a local patch
jittering operation to the patch that abuts the woman’s
dress. To fix the alignment error to the right side of the
woman, the jitter MRF decided to shorten her wrist and
reuse some finger pixels.

Jittering operation has a few local minima since most
of the jittered patches are compatible with its neighbors.
We explored some local minima by randomly initializing
BP messages. Fig. 20 shows two other local minima of
the patch jittering operation to user input Fig. 19(b).
Since running 20 iterations of belief propagation takes
much less than 1 second, the user could try different
message initializations to explore different local minima,
and choose the best one.

Fig. 21 shows more patch jittering examples on dif-
ferent images. The patch jittering on the first example
removed the alignment error along the stair case, and
the jittering on the second example removed the residual
error from the water bottle.
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Fig. 21. More patch jittering examples.

8 CONCLUSIONS

We have presented the patch transform and its appli-
cations to image editing. The patch transform allows
users to manipulate images in the patch domain, and
the inverse patch transform reconstructs an image that
conforms to the user input. The inverse patch transform
reconstructs an image from a bag of patches by consid-
ering three elements: (i) neighboring patches should be
compatible to one another so that visible artifacts can
be minimized, (ii) each patch should be used only once
in generating the output image, (iii) the user specified
changes in the patch domain should be reflected in the
reconstructed image. We model the inverse patch trans-
form as solving for patch labels on a Markov Random
Field (MRF) where each node denotes a location where
we can place the patches. We introduced various image
editing applications that leverages the patch transform,
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and verified that the patch transform framework works
well with real images. To further improve the edited
image quality, we introduced the patch loop based label
pruning, and the patch jitter based structure misalign-
ment correction. These improvements give the appear-
ance of making object-level manipulations, while using
the low-level computations of the patch transform.
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