
Polygon-based representations of 3D
objects offer resolution independence

over a wide range of scales. With this approach, object
boundaries remain sharp when we zoom in on an object
until very close range, where faceting appears due to

finite polygon size (see Figure 1).
However, constructing polygon
models for complex, real-world
objects can be difficult. Image-
based rendering (IBR), a comple-
mentary approach for representing
and rendering objects, uses cameras
to obtain rich models directly from
real-world data. Unfortunately,
these representations no longer
have resolution independence.
When we enlarge a bitmapped
image, we get a blurry result. Figure
2 shows the problem for an IBR ver-
sion of a teapot image, rich with
real-world detail. Standard pixel
interpolation methods, such as
pixel replication (Figures 2b and 2c)
and cubic-spline interpolation (Fig-
ures 2d and 2e), introduce artifacts

or blur edges. For images enlarged three octaves (fac-
tors of two) such as these, sharpening the interpolated
result has little useful effect (Figures 2f and 2g).

We call methods for achieving high-resolution

enlargements of pixel-based images super-resolution
algorithms. Many applications in graphics or image pro-
cessing could benefit from such resolution indepen-
dence, including IBR, texture mapping, enlarging
consumer photographs, and converting NTSC video
content to high-definition television. We built on anoth-
er training-based super-resolution algorithm1 and devel-
oped a faster and simpler algorithm for one-pass
super-resolution. (The one-pass, example-based algo-
rithm gives the enlargements in Figures 2h and 2i.) Our
algorithm requires only a nearest-neighbor search in the
training set for a vector derived from each patch of local
image data. This one-pass super-resolution algorithm is
a step toward achieving resolution independence in
image-based representations. We don’t expect perfect
resolution independence—even the polygon represen-
tation doesn’t have that—but increasing the resolution
independence of pixel-based representations is an
important task for IBR.

Example-based approaches
Super-resolution relates to image interpolation—how

should we interpolate between the digital samples of a
photograph? Researchers have long studied this prob-
lem, although only recently with machine learning or
sampling approaches. (See the “Related Approaches”
sidebar for more details.)

Three complimentary ways exist for increasing an
image’s apparent resolution:

0272-1716/02/$17.00 © 2002 IEEE

Image-Based Modeling, Rendering, and Lighting

56 March/April 2002

To address the lack of

resolution independence in

most models, we developed

a fast and simple one-pass,

training-based super-

resolution algorithm for

creating plausible high-

frequency details in zoomed

images.

William T. Freeman, Thouis R. Jones, and
Egon C. Pasztor
Mitsubishi Electric Research Labs

Example-Based
Super-Resolution

1 (a) When we model an object
with traditional polygon
techniques, it lacks some of the
richness of real-world objects but
behaves properly under enlarge-
ment. (b) The teapot’s edge
remains sharp when we enlarge it.

(a) (b)



■ Sharpening by amplifying existing image details.
This is the change in the spatial frequency amplitude
spectrum of an image associated with image sharp-
ening. Existing high frequencies in the image are
amplified. This is often useful to do, provided noise
isn’t amplified.

■ Aggregating from multiple frames. Extracting a single
high-resolution frame from a sequence of low-
resolution video images adds value and is sometimes
referred to as super-resolution.

■ Single-frame super-resolution. The goal of this arti-
cle is to estimate missing high-resolution detail that
isn’t present in the original image, and which we can’t
make visible by simple sharpening.

We feel researchers should use each method wherever
applicable, but in this article, we focus on single-frame
super-resolution. Although integrating resolution
information over multiple frames is sometimes called
super-resolution, for the purposes of this article, super-
resolution will refer to the single-frame enlargement
problem.

Because the richness of real-world images is difficult
to capture analytically, for the past several years, we’ve
been exploring a learning-based approach for enlarg-
ing images.1-3 In a training set, the algorithm learns the
fine details that correspond to different image regions
seen at a low-resolution and then uses those learned
relationships to predict fine details in other images.
(Recently, Hertzmann et. al4 also used a training-based
method to perform super-resolution, in the context of
analogies between images. Baker and Kanade5 focused
on enlarging images of a known model class—for exam-
ple, faces. Liu et. al6 built on their and our work.)

To understand why this approach should work at all,

IEEE Computer Graphics and Applications 57

2 (a) An image (100 × 100 pixels)
of a real-world teapot shows a
richness of texture but yields a
blocky or blurred image when we
enlarge it by a factor of 8 in each
dimension by (b, c) pixel replication
or (d, e) cubic-spline interpolation.
((b) through (i) were 32 × 32 pixel
original subimages, zoomed by 8 to
256 × 256 images). Sharpening the
cubic-spline interpolation might not
help to increase the perceptual
sharpness; we used the “sharpen
more” option in Adobe Photoshop
(f, g). (h, i) The results of our one-
pass super-resolution algorithm,
maintaining edge and line sharp-
ness as well as inventing plausible
texture details.

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Related Approaches
The cubic spline1 is a common image

interpolation function, but it suffers from blurring
edges and image details. Recent attempts to
improve on cubic-spline interpolation2-4 have met
with limited success. Schreiber3 proposed a
sharpened Gaussian interpolator function to
minimize information spillover between pixels
and optimize flatness in smooth areas. Schultz
and Stevenson5 used a Bayesian method for
super-resolution, but it hypothesizes rather than
learns the prior probability.

These analytic approaches often suffer from
perceived loss of detail in textured regions. A
proprietary, undisclosed algorithm, Altamira
Genuine Fractals 2.0 (an Adobe Photoshop
plug-in, http://www.altamira.com), does as well
as any of the nontraining-based methods, but
can cause blurring in texture regions and at fine
lines. Recently, image interpolation-based level-
set methods6 have shown excellent results for
edges.

References
1. R. Keys, “Cubic Convolution Interpolation for Digital

Image Processing,” IEEE Trans. Acoustics, Speech, Sig-

nal Processing, vol. 29, no. 6, 1981, pp. 1153-1160.
2. F. Fekri, R.M. Mersereau, and R.W. Schafer, “A Gen-

eralized Interpolative Vq Method for Jointly Optimal
Quantization and Interpolation of Images,” Proc. Int’l

Conf. Acoustics, Speech, and Signal Processing 

(ICASSP), vol. 5, IEEE Press, Piscataway, N.J., 1998,
pp. 2657-2660.

3. W.F. Schreiber, Fundamentals of Electronic Imaging

Systems, Springer-Verlag, New York, 1986.
4. S. Thurnhofer and S. Mitra, “Edge-Enhanced Image

Zooming,” Optical Engineering, vol. 35, no. 7, July
1996, pp. 1862-1870.

5. R.R. Schultz and R.L. Stevenson, “A Bayesian
Approach to Image Expansion for Improved Defin-
ition,” IEEE Trans. Image Processing, vol. 3, no. 3, May
1994, pp. 233-242.

6. B. Morse and D. Schwartzwald, “Image Magnifica-
tion Using Levelset Reconstruction,” Proc. Interna-

tional Conf. Computer Vision (ICCV), IEEE CS Press,
Los Alamitos, Calif., 2001, pp. 333-341.



consider that a collection of image pixels are special sig-
nals that have much less variability than a correspond-
ing set of completely random variables. Researchers
have studied these regularities to account for the early
processing stages of the mammalian visual systems.7,8

We exploit these regularities in our algorithms as well.
We use small pieces of training images, modified for gen-
eralization by appropriate preprocessing, to create plau-
sible image information in other images. Without
restriction to a specific class of training images, it’s
unreasonable to expect to generate the correct high-
resolution information. We aim for the more attainable
goal of synthesizing visually plausible image details,
such as sharp edges, and plausible looking texture.

Training set generation
To generate our training set, we start from a collec-

tion of high-resolution images and degrade each of them
in a manner corresponding to the degradation we plan
to undo in the images we later process. Typically, we blur
and subsample them to create a low-resolution image
of one-half the number of original pixels in each dimen-
sion (one-quarter the total number of pixels). To change
resolution by higher factors, we typically use the single-
octave algorithm recursively.

We apply an initial analytic interpolation, such as
cubic spline, to the low-resolution image. This gener-
ates an image of the desired number of pixels that lacks
high-resolution detail. In our training set, we only need
to store the differences between the image’s cubic-spline
interpolation and the original high-resolution image.
Figures 3a and 3c show low- and high-resolution ver-
sions of an image. Figure 3b is the initial interpolation
(bilinear for this example).

We want to store the high-resolution patch corre-
sponding to every possible low-resolution image patch;
these patches are typically 5 ×5 and 7 ×7 pixels, respec-
tively. Even restricting ourselves to plausible image
information, this is a huge amount of information to
store, so we must preprocess the images to remove vari-

ability and make the training sets as generally applica-
ble as possible.

We believe that the highest spatial-frequency compo-
nents of the low-resolution image (Figure 3b) are most
important in predicting the extra details in Figure 3c. We
filter out the lowest frequency components in Figure 3b
so that we don’t have to store example patches for all pos-
sible lowest frequency component values. We also believe
that the relationship between high- and low-resolution
image patches is essentially independent of local image
contrast. We don’t want to have to store examples of that
underlying relationship for all possible values of the local
image contrast. Therefore, we apply a local contrast nor-
malization, which we describe later on in the “Prediction”
section. In Figures 3d and 3e, we used the resulting band-
pass filtered and contrast normalized image pairs for
training. We undo the contrast normalization step when
we reconstruct the high-resolution image.

Super-resolution algorithms
If local image information alone were sufficient to

predict the missing high-resolution details, we would
be able to use the training set patches by themselves for
super-resolution. For a given input image we want to
enlarge, we would apply the preprocessing steps, break
the image into patches, and look-up the missing high-
resolution detail. Unfortunately, that approach doesn’t
work, as Figure 4a illustrates. The resulting high-reso-
lution detail image looks like oatmeal. The local patch
alone isn’t sufficient to estimate plausible looking high-
resolution detail.

Figure 4b illustrates why the local method doesn’t
work. For a given low-resolution input patch, we
searched a typical training database of approximately
100,000 patches to find the 16 closest examples to the
input patch (see the second line in Figure 4b). Each of
these looks fairly similar to the input patch. The bottom
row shows the high-resolution detail corresponding to
each of these training examples; each of those looks fair-
ly different from the other. This illustrates that local

Image-Based Modeling, Rendering, and Lighting

58 March/April 2002

3 Image preprocessing steps for
training images. (a) We start from a
low-resolution image and (c) its
corresponding high-resolution
source. (b) We form an initial inter-
polation of the low-resolution
image to the higher pixel sampling
resolution. In the training set, we
store corresponding pairs of patch-
es from (d) and (e), which are the
band-pass or high-pass filtered and
contrast normalized versions of 
(b) and (c), respectively. This pro-
cessing allows the same training
examples to apply in different
image contrasts and low-frequency
offsets.

(a)

(b) (c)

(d) (e)



patch information alone is insufficient for super-
resolution, and we must take into account spatial neigh-
borhood effects.

We explored two different approaches to exploit neigh-
borhood relationships in super-resolution algorithms.
The first uses a Markov network to probabilistically model
the relationships between high- and low-resolution patch-
es, and between neighboring high-resolution patches.1-3

It uses an iterative algorithm, which usually converges
quickly. The second approach, which we describe in detail
in this article, is a one-pass algorithm that uses the same
local relationship information as the Markov network. It’s
a fast, approximate solution to the Markov network.

Markov network
We model the spatial relationships between patches

using a Markov network, which has many well-known
uses in image processing.9 In Figure 5, the circles rep-
resent network nodes, and the lines indicate statistical

dependencies between nodes. We let the low-resolution
image patches be observation nodes, y. We select the 16
or so closest examples to each input patch as the differ-
ent states of the hidden nodes, x, that we seek to esti-
mate. For this network, the probability of any given
high-resolution patch choice for each node is propor-
tional to the product of all sets of compatibility matri-
ces ψ relating the possible states of each pair of
neighboring hidden nodes, and vectors φrelating each
observation to the underlying hidden states: 

(1)

Z is a normalization constant, and the first product is
over all neighboring pairs of nodes, i and j. yi and xi are
the observed low-resolution and estimated high-reso-
lution patches at node i, respectively.

To specify the Markov network’s ψij (xi, xj) functions,

  

P x y
Z

x x x yij

ij

i j i

i

i i| , ,( ) = ( ) ( )
( )
∏ ∏1 ψ φ 

IEEE Computer Graphics and Applications 59

Input patch

Closest image
patches from database

Corresponding
high-resolution

patches from database

(a)

(b)

y3

y2

y4

y1

x3

x2

x4

x1

Φ(xi, yi)

Ψ(xi, xj)

Low-resolution patches

High-resolution patches

5 Markov
network model
for the super-
resolution
problem. The
low-resolution
patches at each
node yi are the
observed input.
The high-
resolution patch
at each node xi

is the quantity
we want to
estimate.

4 (a) Estimated high frequencies
for the tiger image (Figure 3e
shows the true high frequencies)
formed by substituting the high
frequencies of the closest training
patch to Figure 3d. The lack of a
recognizable image indicates that
an algorithm using only local low-
resolution information is insuffi-
cient; we must also use spatial
context. (b) An input patch and
similar low-resolution (middle
rows) and paired high-resolution
(bottom rows) patches. For many of
these similar low-resolution patch-
es, the high-resolution patches are
different, reinforcing the lesson
from (a).



we use a simple trick.1 We sample the input image’s nodes
so that the high-resolution patches overlap with each
other by one or more pixels. In the overlap region, the
pixel values of compatible neighboring patches should
agree. We measure dij (xi, xj), the sum of squared differ-
ences between patch candidates xi and xj in their overlap
regions at nodes i and j. The compatibility matrix between
nodes i and j is then

where σ is a noise parameter. We use a similar quadrat-
ic penalty on differences between the observed low-
resolution image patch, yi, and the candidate low-reso-
lution patch found from the training set, xi, to specify the
Markov network compatibility function, φi (xi, yi).

The optimal high-resolution patches at each node is the
collection that maximizes the Markov network’s proba-
bility. Finding the exact solution can be computationally
intractable, but we’ve found good results using the approx-
imate solution obtained by running a fast, iterative algo-
rithm called belief propagation. Typically, three or four
iterations of the algorithm are sufficient (see Figure 6).

The belief-propagation algorithm updates “mes-
sages,” mij from node i to node j, which are vectors of
the dimensionality of the state we estimate at node j.
For example, with Figure 4b, the incoming messages
would have dimension 16—one to modify the proba-
bility of each candidate high-resolution patch. Using
mij(xj) to indicate the component of the vector mij cor-
responding to the patch candidate xj, the rule1,10 for
updating the message from node i to node j is

(2)

The sum is over all patch candidates
xi at node i, and the product is over
all neighbors of the node i except for
node j. Upon convergence, the
belief-propagation estimate of the
marginal probability bi for each
high-resolution patch xi at each
node i is

(3)

(Yedidia, Freeman, and Weiss11

show the connection between this
estimate and an approximation used
in physics due to Bethe. Freeman,
Pasztor, and Carmichael1 provide
details of the belief-propagation
implementation.)

One-pass algorithm
The fact that belief propagation

converged to a solution of the
Markov network so quickly led us to
believe that simpler machinery

  
b x m x x yi i ki i i

k

i i( ) = ( ) ( )∏ φ ,

  

m x x x m x x yij j ij

x

i j ki i i

k j

i i

i

( ) = ( ) ( ) ( )∑ ∏
≠

φ φ, , 

  

ψ ij i j
ij i j

x x
d x x

, exp
,( ) = −

( )










2 2σ

Image-Based Modeling, Rendering, and Lighting

60 March/April 2002

Input

MeanAbs + ε
∗ α

÷

Concatenate

Best match

High
frequencies

Training data

∗

7 Block dia-
gram showing
raster-order
per-patch pro-
cessing. At each
step, we use
local low- and
high-frequency
details (in green
and red, respec-
tively) to search
the training set
for a new high-
frequency
patch, which we
add to the high-
frequency
image.

6 Belief-propagation solution to the Markov network
for super-resolution. (a, b, and c) Estimated high fre-
quencies after 0, 1, and 3 iterations of belief propaga-
tion. (d) Estimated full-resolution image. We applied
the inverse of the contrast normalization we used in
Figure 3d to (c). We added the result to Figure 3b to
obtain (d). The training set for this image was two
categories of the Corel database, including other tigers,
but not this image.1

(a)

(b)

(c) (d)



might suffice. We found a one-pass
algorithm that gives results that are
nearly as good as the iterative solu-
tion to the Markov network.

In the one-pass algorithm, we only
compute high-resolution patch com-
patibilities for neighboring high-res-
olution patches that are already
selected, typically the patches above
and to the left, in raster-scan order
processing. If we prestructure the
training data properly (see Figure 7),
we can match the local low-resolution image data and
select the compatible high-resolution patch candidate in
a single operation—finding the nearest neighbor to a
given input vector in the training set. The simplification
avoids various steps in setting up and solving the Markov
random field (MRF) of the previous section: finding the
candidate set at each node, finding the compatibility
matrices between all pairs of nodes, and using the itera-
tive belief-propagation algorithm. Figure 8 shows a sec-
tion of an image enlarged by both methods. We find that
the one-pass algorithm is of approximately the same
quality as the MRF-based algorithm for this problem.

Algorithm details
In the simplest terms, one-pass super-resolution gen-

erates the missing high-frequency content of a zoomed
image as a sequence of predictions from local image
information. We subdivide the input image into low-fre-
quency patches that are traversed in raster-scan order.
At each step, a high-frequency patch is selected by a
nearest neighbor search from the training set based on
the local low-frequency details and adjacent, previous-
ly determined high-frequency patches.

As we already mentioned, it takes two steps to create
an enlarged image with the desired number of pixels
and corresponding additional image details. First, we
double the number of pixels in the image, using a con-
ventional image interpolation method such as cubic-
spline or bilinear interpolation. Then, we predict
missing image details in the interpolated image to cre-
ate the super-resolution output.

In the algorithms we describe next, we perform the
initial interpolation via cubic-spline interpolation. We
scale an image down by convolving with a [0.25 0.5
0.25] blurring filter followed by subsampling on the even
indices. (Freeman, Pasztor, and Carmichael1 use linear
interpolation for the upsampling, which puts slightly
more interpolation burden on the rest of the algorithm.)

Prediction
Given the highest frequencies in an input image, the

super-resolution algorithm predicts the next octave up—
that is, the frequencies missing from an image zoomed
with cubic interpolation. The algorithm’s output is the
sum of its input and the high-frequency predictions.

We predict the high frequencies for the N × N pixel
patches in raster-scan order. Each prediction is based on
two competing requirements. First, the high-frequency
patch should come from a location in the training image
that has a similar low-frequency appearance. Second,

the high-frequency prediction should agree at the edges
of the patch with the overlapping pixels of its neighbors
to ensure that the high-frequency predictions are com-
patible with those of the neighboring patches.

We fulfill the first requirement by extracting a low-
frequency patch—M × M, not necessarily the same size
as the high-frequency patch—from the image we’re
looking at to find a match in the training set, which is
made up of pairs of low- and high-frequency patches.
To meet the second requirement, we overlap predicted
patches at their borders. When searching the training
set, we also use the high-frequency data previously pre-
dicted to select the best pair. A user-controlled weight-
ing factor α adjusts the relative importance of matching
the low frequency patch versus matching the neighbor-
ing high-frequency patches in the overlap regions.

The super-resolution algorithm operates under the
assumption that the predictive relationship between low-
and high-resolution images is independent of local image
contrast. Because of this, we normalize patch pairs by
the average absolute value of the low-frequency patch
across the color channels. (We add a small ε to avoid the
denominator becoming zero at very low contrasts. ε
effectively defines a floor of local image contrast below
which we assume patch variability is due to noise.)

The pixels in the low-frequency patch and the high-
frequency overlap are concatenated to form a search
vector. The training set is also stored as a set of such vec-
tors, so we search for a match by finding the nearest
neighbor in the training set. When we find a match, we
reverse the contrast normalization on the high-
frequency patch and add it to the initial interpolation to
obtain the output image (see Figure 7).

Search algorithm
We search for matches using an L2 norm. Due to the

high dimension of the search space, finding the absolute
best match would be computationally prohibitive.
Instead, we use a tree-based, approximate nearest
neighbor search. The tree is built by recursively splitting
the training set in the direction of higher variation. At
each step, we divide the set of tiles in half to maintain a
balanced tree.

We use a best-first tree search to find a good match.
This allows for a speed–quality trade-off: by searching
more tree branches, we can find a better match. Because
best-first search is unlikely to give the true best match
without searching most or all of the tree, we improve
the best-first match with a greedy downhill search in the
graph connecting approximate nearest neighbors in the

IEEE Computer Graphics and Applications 61

8 (a) Teapot image we enlarged by one octave using the belief-propagation
method.1 (b) Teapot image we enlarged by one octave using our one-pass
method with the search method we describe in the “Search algorithm”
section. The output of our simpler algorithm resembles that of the first.

(a) (b)



training set. This improves the match with negligible
cost. In all one-pass algorithm examples in this article,
we connect each patch pair to its 32 approximate near-
est neighbors, which we compute with a method simi-
lar to Nene and Nayar.12

Training set and parameters
We build training sets for the super-resolution algo-

rithm from band-pass and high-pass pairs taken from a
set of training images. Spatially corresponding M × M
low-frequency and N × N high-frequency patches are
taken from image pairs.

Patch pairs are contrast normalized, as we described
earlier. We create the search vector for a patch pair by
concatenating the low-frequency patch and the region
that will be overlapped in the high-frequency patch dur-
ing the prediction phase, adjusted by the weighting fac-
tor α (see Figure 9).

We used the same set of training images for all the
super-resolution examples in this article (see Figure 9).
We took them with a Nikon Coolpix 950 digital camera
at 640 × 480 resolution and used the highest quality

compression settings.
Paying attention to parameter set-

tings can improve image quality. For
both levels of zooming, we used 5 ×
5 pixel high-resolution patches (N =
5) with 7 × 7 pixel low-resolution
patches (M = 7). The overlap
between adjacent high-resolution
patches was 1 pixel. These patch
sizes capture small details well.

For a more conservative estimate
of the higher resolution detail (not
used here), we apply the algorithm
four times at staggered offsets rela-
tive to the patch sampling grid. This
gives four independent estimates of
the high frequencies, which we can
then average together, smoothing
some image details but potentially
reducing artifacts.

The parameter α controls the
trade-off between matching the low-
resolution patch data and finding a
high-resolution patch that is com-
patible with its neighbors. The value

gave good quality results in our
experiments. The fraction compen-
sates for the different relative areas
of the low-frequency patches and
overlapped high-frequency pixels as
a function of M and N.

Results
Figure 10 shows our algorithm

applied to a man’s face. The training
set is from the images in Figure 9.

The resulting zooms are significantly sharper than those
from cubic-spline interpolation, preserving sharp edges
and image details.

Figure 11 shows an example where our low-level train-
ing set alone isn’t enough to distinguish JPEG compres-
sion noise from correct image data. The algorithm
interprets the artifacts as image data and enhances them.
Extensions of specialized high-level models5 might prop-
erly handle images like this.

It might seem that to enlarge an image of one class—
for example, a flower—we would need a training set that
contained images of that same class—for example, other
flowers. However, this isn’t the case. Generic images can
be a good training set for other generic images. Figure
12 shows an image (blurred and down-sampled from
an original high-resolution image) zoomed with the
one-pass super-resolution algorithm along with the
same image zoomed with cubic spline and the original
high-resolution image. Figure 12c shows the images we
used from the training set in the super-resolution zoom.
Figure 12b shows the details of a few patches in the
zoomed image and their corresponding best matches in

  
α =

−
0 1

2 1

2

.
M
N

Image-Based Modeling, Rendering, and Lighting

62 March/April 2002

9 Training images we used for the
examples in this article (unless
otherwise stated). We sampled
patches at 1 pixel offsets over each
of these images and over their
synthetically generated low-resolu-
tion counterparts (after preprocess-
ing steps). These six 200 × 200
images yielded a training set of
slightly more than 200,000 high-
and low-resolution image patch
pairs.

10 (a) Original
image. 
(b) Cubic-spline
interpolation.
(c) One-pass
super-
resolution
interpolation.

(a) (b) (c)

11 Failure example. (a) Original
image. (b) Cubic-spline interpola-
tion by factor of 4 in each dimen-
sion. Note JPEG compression
artifacts are visible. (c) One-pass
super-resolution interpolation.
Without high-level information, the
algorithm treats the JPEG noise as a
signal and amplifies it.

(a) (b) (c)



IEEE Computer Graphics and Applications 63

Input

Cubic-spline zoom Super-resolution zoom True high-resolution image

Source image patches

Band-pass filtered and 
contrast normalized

True high-resolution pixels

High-resolution pixels 
chosen by super-resolution

Band-pass filtered and contrast 
normalized best-match 

patches from training data

Best-match patches 
from training data

Training images

(a)

(b)

(c)

12 Example showing how the
(one-pass) algorithm uses patches
in the training image to create
detail in the test image. (a) Test
image. (b) Patch matches. (c) Train-
ing images with location of best-
match patches marked.



the training set. Figure 12b’s top and bottom rows show
the image content of the patches in the super-resolution
image and the training set. The second and fifth rows in
Figure 12b show the low-resolution, contrast normal-
ized patches. Figure 12b’s third row shows the high-
resolution content of the original high-resolution image,
and the fourth shows the high-resolution patch chosen
by the super-resolution algorithm. Although not per-
fect, the matches between the original and estimated
high-resolution patches are reasonably good. Note that
the algorithm can use training patch examples from
source image regions that look different than the regions
where they are inserted into the zoomed image. For
example, the orange bordered patch corresponds to a
shadow boundary on wood in the training image (of
three girls), but the algorithm applies it to zoom up a
green plant occlusion boundary. The band-pass filter-
ing and contrast normalization allows for this reuse,
which makes the training set more powerful.

Although the training set doesn’t have to be very sim-
ilar to the image to be enlarged, it should be in the same
image class—such as text or color image. In Figure 13,
we enlarged the image in Figure 12a using a patholog-
ical training set of images of text. (Freeman, Pasztor,
and Carmichael1 give related experiments.) The algo-
rithm does its best to explain the observed low-
resolution image in its vocabulary of text examples,
resulting in a zoom with high-resolution detail formed
out of concatenated characters.

Discussion and conclusions
Recent patch-based texture synthesis models13,14 also

use spatial consistency constraints similar to those we
applied here. Our method differs from that of Hertz-
mann et. al4 because it operates on tiles rather than per-
pixel, providing a performance benefit. It also

normalizes the training set according to contrast and
assumes that the highest frequency details in an image
can be predicted using only the next lower octave. These
two generalizations let us enlarge a wider class of images
using a single, generic training set, rather than restrict-
ing us to operating on images that are very similar to the
training image. Pentland and Horowitz15 used a train-
ing-based approach to super-resolution, but they didn’t
use the spatial consistency constraints that we believe
are necessary for good image quality.

If well-known objects are sparsely sampled in the
image, an image extrapolation based on local image evi-
dence alone won’t produce the new details that the
viewer expects. Very small face images are susceptible
to this problem. To address these properly, we would
have to add higher level reasoning to the algorithm. (See
Baker and Kanade5 or Liu, Shum, and Zhang6 for super-
resolution algorithms tuned to a particular class of
images, such as faces or text.)

In the zoomed-up images, low-contrast details next to
high-contrast edges can be lost because of the contrast
normalization fixing on the level of the high-contrast
edge. Independent contrast normalization for different
image orientations, each zoomed separately, might
address this problem. However, it isn’t clear that a one-
pass implementation would suffice for that modification.

Finally, our algorithm works best when the data’s res-
olution or noise degradations match those of the images
to which it’s applied. Numerically, the root-mean-
squared error from the true high frequencies tend to be
approximately the same as for the original cubic-spline
interpolation. Unfortunately, this metric has only a loose
correlation with perceived image quality.16 Typical pro-
cessing time for the single-pass algorithm is 2 seconds to
enlarge a 100 × 100 image up to 200 × 200 pixels.

We’ve focused on enlarging single images. Enlarging

Image-Based Modeling, Rendering, and Lighting

64 March/April 2002

13 Super-
resolution
example using a
pathological
training set
composed
entirely of text
in one font. 
(a) An example
image from the
training set. 
(b) Zoomed
image and 
(c) close-up.
The algorithm
does its best to
invent plausible
detail for this
image, forming
contours by
concatenated
letters.

(a) (b) (c)



moving images is different in two respects. More input
data exists, so multiple observations of the same pixel
could be used for super-resolution. Also, we must take
care to ensure coherence across subsequent frames so
that the made-up image details don’t scintillate in the
moving image.

Our algorithms are an instance of a general training-
based approach that can be useful for image-processing
or graphics applications. Training sets can help enlarge
images, remove noise, estimate 3D surface shapes, and
attack other imaging applications. ■

Acknowledgments
We thank Ted Adelson, Owen Carmichael, and John

Haddon for helpful discussions.

References
1. W.T. Freeman, E.C. Pasztor, and O.T. Carmichael, “Learn-

ing Low-Level Vision,” Int’l J. Computer Vision, vol. 40, no.
1, Oct. 2000, pp. 25-47.

2. W.T. Freeman and E.C. Pasztor, “Learning to Estimate
Scenes from Images,” Adv. Neural Information Processing
Systems, M.S. Kearns, S.A. Solla, and D.A. Cohn, eds., vol.
11, MIT Press, Cambridge, Mass., 1999, pp. 775-781.

3. W.T. Freeman and E.C. Pasztor, “Markov Networks for
Superresolution,” Proc. 34th Ann. Conf. Information Sci-
ences and Systems (CISS 2000), Dept. Electrical Eng.,
Princeton Univ., 2000.

4. A. Hertzmann et al., “Image Analogies,” Computer Graph-
ics (Proc. Siggraph 2001), ACM Press, New York, 2001, pp.
327-340.

5. S. Baker and T. Kanade, “Limits on Super-Resolution and
How to Break Them,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), vol. II, IEEE CS Press, Los
Alamitos, Calif., 2000, pp. 372-379.

6. C. Liu, H. Shum, and C. Zhang, “A Two-Step Approach to
Hallucinating Faces: Global Parametric Model and Local
Non-Parametric Model,” Proc. Int’l Conf. Computer Vision
(ICCV), vol. I,  IEEE CS Press, Los Alamitos, Calif., 2001,
pp. 192-198.

7. D.J. Field, “What Is the Goal of Sensory Coding,” Neural
Computation, vol. 6, no. 4, July 1994, pp. 559-601.

8. O. Schwartz and E.P. Simoncelli, “Natural Signal Statistics
and Sensory Gain Control,” Nature Neuroscience, vol. 4, no.
8, Aug. 2001, pp. 819-825.

9. S. Geman and D. Geman, “Stochastic Relaxation, Gibbs
Distribution, and the Bayesian Restoration of Images,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 6, no.
4, Nov. 1984, pp. 721-741.

10. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference, Morgan Kaufmann, San Fran-
cisco, 1988.

11. J.S. Yedidia, W.T. Freeman, and Y. Weiss, “Generalized
Belief Propagation,” Advances in Neural Information Pro-
cessing Systems, T.K. Leen, T.G. Dietterich, and V. Tresp,
eds., vol. 13, MIT Press, Cambridge, Mass., 2001, 
pp. 689-695.

12. S.A. Nene and S.K. Nayar, “A Simple Algorithm for Nearest

Neighbor Search in High Dimensions,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, no. 9, Sept. 1997,
pp. 989-1003.

13. A.A. Efros and W.T. Freeman, “Image Quilting for Texture
Synthesis and Transfer,” Computer Graphics (Proc. Sig-
graph 2001), ACM Press, New York, 2001, pp. 341-346.

14. L. Liang et al. “Real-Time Texture Synthesis by Patch-Based
Sampling,” ACM Trans. Graphics, vol. 20, no. 3, July 2001,
pp. 127-150.

15. A. Pentland and B. Horowitz, “A Practical Approach to Frac-
tal-Based Image Compression,” Digital Images and Human
Vision. A.B. Watson, ed., MIT Press, Cambridge, Mass.,
1993.

16. W.F. Schreiber, Fundamentals of Electronic Imaging Sys-
tems, Springer-Verlag, New York, 1986.

William T. Freeman is an associ-
ate professor of computer science at
the Massachusetts Institute of Tech-
nology in the Artificial Intelligence
Lab. His research interests include
machine learning applied to com-
puter vision and computer graphics,

Bayesian models of visual perception, and interactive
applications of computer vision. He has a PhD in comput-
er vision from MIT and worked at Mitsubishi Electric
Research Labs for nine years. 

Thouis R. Jones is a graduate stu-
dent in the Computer Graphics
Group at the MIT Laboratory for
Computer Science. His research inter-
ests include shape representation for
computer graphics, antialiasing, and
super-resolution. He has a BS in com-

puter science from the University of Utah.

Egon C. Pasztor is a graduate stu-
dent at the MIT Media Lab, where he
has worked on computer vision and
is currently working on interfaces for
computer-assisted musical composi-
tion. His research interests include
human–computer interfaces and

interaction technologies that make machine interaction a
more natural and productive experience. He has a BS in
computer science from California Institute of Technology.

Readers may contact William Freeman at the MIT Arti-
ficial Intelligence Lab, 200 Technology Square, Cambridge,
MA 02139, email wtf@ai.mit.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 65


