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Abstract

This paper describes areas and problems where computer

vision can use help from the discrete algorithms community.

1 Introduction

Computer vision is a good target for the discrete algo-
rithms of computer science. While we are far from being
able to interpret images reliably using a computer, it is
clear that there will be many benefits when we do reach
that capability. Several aspects of the problem make it
particularly appropriate for computer science research:
we have large datasets of high-dimensional data, so ef-
ficient processing is crucial for success. The data are
noisy, and we search and analyze images over Internet
scales. Advanced algorithms research can help the field
significantly.

The goal of this paper is to bridge fields. I want
to describe the problems in a way that an outsider to
computer vision can understand, and in particular, in
a way that reveals the underlying discrete algorithm
problems. I want to entice outside experts to help solve
computer vision problems, and so I’ll also give some tips
at the end on how best to jump in.

This manuscript was partially crowd-sourced. At
recent computer vision conferences, I’ve asked my col-
leagues where they felt we needed help from computer
science and machine learning. Many of the points I
present here are from those conversations, which I cite
as “personal communication” with the appropriate re-
searchers. Of course, any awkward descriptions or mis-
takes are mine.
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2 Computer vision today

To better explain where we need help, let me first men-
tion what computer vision can do well. Under good con-
ditions, computer programs can find and detect frontal-
view faces almost as well as people can–most new cam-
eras use that capability to control exposure and focus
settings. In the controlled conditions of a factory, com-
puters routinely detect defects in manufactured parts
and labels. For example, most manufactured diapers are
visually inspected by computer [34]. Computers read li-
cense plates and digitized documents, monitor traffic,
and track traffic lanes from cars in highways.

But if you look more closely, even those successes
reveal where much more progress is needed. Face
recognition rates drop significantly for non-frontal faces,
or under illumination change. Stereo algorithms can fail
dramatically in the real world, failing to reconstruct
the depth of large regions of the image, because of
ambiguous correspondences or a lack of texture. It’s
thought that humans recognize thousands of object
categories [4] but computers can only recognize a few
categories reliably.

The curse of computer vision is variability, for which
there are many sources. Variations in lighting condi-
tions, viewpoint, and occlusion relationships change the
observed image immensely. In addition, many different
versions of the same thing simply look different: chairs
take on many different forms and humans are always
able to recognize them as such, but computers have
more difficulty. Likewise, a material might look very
different under different lighting or viewing conditions,
yet people are very good at ignoring those variations and
reliably perceiving the underlying material properties.

To illustrate current techniques, let me describe the
current approach to object categorization. This will
show how we convert the problem of computer vision
into one where computer science tools can be used.

The biggest recent advance in computer vision
has been the development of modern image features.
What makes a good image feature? If we take a
photograph under two different lighting or viewpoint
conditions, an ideal image feature would return the same
numerical description of the same image region under



those different conditions. Likewise, if we substituted
one instance of an object class for another, for example
one chair for another chair, we would want the feature
descriptors to remain the same, so that we could use
those descriptors to recognize object categories.

In the late 90’s, researchers developed feature de-
tectors which approximated those characteristics. The
most successful of those are SIFT features (scale invari-
ant feature transform), developed by David Lowe [31].
Through a combination of good design, good perfor-
mance, and software made available online, these fea-
tures have been phenomenally successful, and have been
one of the true innovations in computer vision over the
past decade. The 128 dimensional features are concate-
nations of histograms of local image orientations. Using
orientation, rather than intensity, provides some insen-
sitivity to lighting conditions [21]. The use of localized
image histograms gives a rich description of the local
image, while at the same time allows for slop in the pre-
cise configuration of image details. This works well to
match common image regions seen from different van-
tage points, or even to identify examples of objects in
the same category. These features may be measured at
a set of locations that are characteristic in some way,
or they may be measured over a dense grid of locations.
SIFT features are used all over computer vision. They
can be used for aligning images into a panorama, for
finding instances of a set of specific objects, or as part
of a system to recognize object categories. Often, the
features are vector quantized into a vocabulary of sev-
eral thousand “visual words”.

At this point, the computer vision problems of
image matching and object categorization begin to look
like discrete algorithms problems. For image matching,
we have a set of features fa

i in image a, indexed by i,
that we seek to match to the features f b

j of image b. The
spatial correspondences given by the matching features
may determine a low-dimensional mapping between the
images, called a homography, and that fact can be used
to find reliable correspondences even with significant
noise in the feature matches. Hypothesize-and-test
algorithms such as RANSAC [17] are often used.

For the object class recognition task, we may have
a training set of examples of many object categories, c.
Each instance k of an object category generates some
set of visual words, wc

k. In general, the set of words
wc will vary from example to example within an object
class, and because of differences in viewpoint, or lighting
conditions, or because of occlusions. From the set of
observed visual words, and comparison with the large,
labeled training set, we want to efficiently infer which
objects are present in the image, and where they are.

Relatively current methods for addressing these

problems lead to performance such as shown in Fig. 1.
The plots show object categorization performance as a
function of training set size, on an easy dataset (Caltech
101) and a harder one (Caltech 256) [22]. On the harder
dataset, of moderate complexity, the algorithm only
shows performance of around 30%.

Figure 1: Object categorization performance as a func-
tion of training examples, for two different datasets [22].

The field makes progress over time, and current
results are somewhat better [14], but we have a long
way to go. Caltech 101 is by now considered overfit
and results are no longer of interest. The PASCAL
Challenge [13] is the current testbed for object class
recognition research, but the best performances have
been relatively flat over the past few years.

3 Where we need help

3.1 Approximate nearest neighbor search in
high dimensions The object recognition task de-
scribed above, and many other vision tasks, can be
posed as one of nearest neighbor search in high di-
mensions: find the labeled training set examples that
most closely match features seen in the test image. In-
deed, the most common response from my computer vi-
sion colleagues to the question of how computer science
can help computer vision was: find fast, approximate
nearest neighbor algorithms that work well with high-
dimensional data [43, 16, 28, 30, 25, 47, 36]. The items
to be matched can be features, image patches, or entire
images, but they are almost always high-dimensional.
Current approximate methods, such as [1, 3, 35], are
used, but improvements in speed and accuracy for high-
dimensional data would give direct improvements to
many computer vision algorithms.

Often the approximate nearest neighbor problems



we want solved have some additional structure. One
may accumulate visual words over some region–we may
have N feature words to match corresponding feature
word collections from M candidate object classes in a
large dataset of labeled examples. The feature word
collections will have different sizes, and the matches
will be noisy. How can we quickly identify the most
probable object categories? How can we handle the
feature variations between examples in a principled
way? The image patches one may use are not random
vectors of data, they are cropped images, so there is also
structure within the vectors, and relationships between
the elements. That is taken advantage of in some
algorithms, such as patch match [3], but much more
can be done.

Beyond this, we want to scale-up several aspects of
the problem. For multi-class categorization, we want to
successfully recognize several thousand, or even tens of
thousands of object categories [4, 36]. The categories
often reside in taxonomies, and we would like to take
advantage of that structure. The unlabeled training
set can be huge, of Internet scale. The labeled set,
while large, will usually be much smaller. We need
to generalize from the few labeled training examples,
as discussed in [46]. We also want to scale-up current
online methods for approximate nearest neighbor, and
develop massive online quadratic programs for Support
Vector Machines. [18, 27, 47] Many vision problems
lead to integer programs, linear programs, quadratic
programs, and semi-definite programs for large amounts
of high-dimensional data. The standard solvers don’t
work and we need special purpose solvers that exploit
the sparsity or structure of the problem [47].

3.2 Low-level vision While we sometimes process
images to obtain a set of global labels–the name of
some objects in the image–we can also process images to
obtain labels, or a modified image, at every pixel. This
can be thought of as “low-level vision” and typically
uses a different set of tools. Prominent among those
tools are Markov random fields. They are widely used,
but still represent another area where computer vision
can use help.

3.2.1 Markov random fields A Markov random
field (MRF) is often used to describe images, since it
provides a simple, modular desription, but can model a
rich set of effects. For image applications, we typically
use a grid structure. Let xi be the unknown state at
node i, and yi be the observation there. The joint
probability over the MRF is

P (~x, ~y) =
∏
i

Φ(xi, yi)
∏
i,j

Ψ(xi, xj),(3.1)

where the second product is over neighboring nodes, i
and j. Φ(xi, yi) can be thought of as a local evidence
term. When the compatibility functions, described
here as pairwise functions Ψ(xi, xj) also depend on the
observations, y, this becomes a Conditional Random
Field (CRF). We often seek the set of states xi at each
node i that maximizes the joint probability P (~x, ~y) for
some given set of observations, ~y, or, equivalently, that
minimizes some function of the discrete variables, ~x.
Much progress has been made at this [5, 50, 48, 26, 45,
15], but what we can do is still limited by techniques
available to solve this problem; advances would be
immediately used in the community. We’d like efficient
algorithms for minimizing non-sub-modular functions,
and which give us bounds on the quality of the solution
[47, 25]. There is real benefit to handling higher-order
cliques in the MRF’s and CRF’s [26], modeling more
than pairwise interactions, and we need better ways to
do that.

Because topological constraints are often relevant in
images, we often need to perform discrete optimization
of Eq. (3.1) under such constraints. For example, we
may want to specify that all states taking a particular
label within some neighborhood should be connected, or
that a user-specified bounding box should somewhere
touch a member of some label set [29, 26]. We lack
optimal or efficient ways to do that, or even to give
bounds on performance [25]. In our graphical models,
we often work with one of two kinds of constraints:
structure constraints, such as planarity or treewidth,
and language constraints, such as submodularity or
convexity. It would be useful to be able to combine
these two [25].

3.2.2 Statistical models for images Markov ran-
dom fields are a statistical model of images, and has
broad application in image enhancement and interpre-
tation. While they have found much use, the field is
struggling to develop even more useful image models.
Other models have been developed [38, 37, 49], but eval-
uated by their utility for image synthesis, the best mod-
els are non-parametric texture synthesis algorithms such
as [12, 11]. This raises the questions, can we do better
than simply sampling from existing images to create a
new image? Can we structure such non-parametric ap-
proaches to gain control over the image synthesis? Con-
trollable models that created valid image samples would
have broad application.

While feature detectors have contributed to
progress in the field, there is probably much more that
can be done, and the problem should be amenable to
learning-based approaches. What is a natural encod-
ing of images? We know that we’ll need translation



and rotation invariance, so there’s no need to discover
that from data; there can be some supervision. Step-
ping back, an artist can indicate to us the trunk of an
elephant with just a few strokes, but none of our math-
ematical features reach that level of simple efficiency
[32, 36]. Issues of shape lead to more questions [36]:
What is the right description for shape? How do we de-
tect properties such as parallelism quickly? How do we
detect other symmetries (e.g. center symmetry, axial
symmetry etc).?

3.3 Miscellaneous Topics

3.3.1 Blind Vision Avidan and Butman introduced
a vision-based cryptography problem, “Blind Vision”
[2], allowing cooperation on a computer vision task be-
tween parties who don’t want to share data or algo-
rithms. For example, Alice may have a collection of sen-
sitive surveillance images over which she would like to
detect faces. Bob may have a proprietary face detection
algorithm that he wants to let Alice use, for a fee. Blind
vision applies secure, multi-party cryptographic tech-
niques to vision algorithms so that Bob learns nothing
about Alices surveillance images (not even the output
of his own algorithm), and Alice learns nothing about
Bob’s face detection algorithm. Issues of commerce and
privacy can be addressed through this line of research.

3.3.2 Compressed sensing While there is much
excitement for the potential of compressed sensing [8, 9],
the current sparsity assumptions are unrealistic for
natural images [6, 30]. Is there a relaxed set of sparsity
assumptions, that images meet, which would be useful
for compressed sensing? Is there a useful application of
compressed sensing in the domain of natural images?

3.3.3 Continuous to discrete From an engineering
perspective, there are several concerns to address in
using graphical models. For efficiency, multi-scale
approximations to energy functions are often used, but
this is done in an ad hoc way. What is the proper way
to approximate a fine-scale energy function by a coarse-
scale one [25]?

More ad hoc decisions are made in discrete-state
representation of variables over a continuous domain
[20]. For example, for stereo, a discrete-state graphical
model is typically used to infer the depth at each posi-
tion. Evidence for each depth state is gathered locally,
then propagated across space using belief propagation or
MRF energy minimization. How do the inferred states
relate to those one would solve for using a continuous
representation, or using a different number of discrete
states? With linear signal processing, the relationship

of discrete-domain to continuous-domain processing is
well-understood: under assumptions about the spectral
content of the signal, we know how to convert from the
discrete to continuous domains to be guaranteed the
same result in each domain. We would like to know how
sharp or broad we should make the likelihood functions
over continuous variables, such as depth. We should
know how many discrete states to use, and how our
discrete-state solution relates a continuous state solu-
tion.

Another representational issue relates to noisy evi-
dence versus the lack of evidence. Presently, we usually
treat those in the same way, but we might want to dis-
tinguish between there being a 10% similarity of some-
thing to a dog, versus a 10% probability that it’s a dog,
ie, to have a different description for weak relationship
between things, and uncertainty about the relationship
between things [10, 23]. It would be nice to allow for
multiple different relationships between nodes–to have
graphs with multi-colored edges [10].

3.4 Algorithms for learning and inference This
is a broad category, but over the past 10 years, algo-
rithms for inference or classification have swept through
the field and had enormous influence. Support vector
machines, boosting, belief propagation, and graph cuts
have each led to much progress and creativity within
the field. We’re ready for the next one [47].

3.4.1 Handling large, noisy datasets Some peo-
ple rank the relative importance of vision system com-
ponents in this order: (1) datasets; (2) features; (3)
algorithms [41].

Regarding datasets, we have three sources of data

1. hand-labeled data. This is slow and expensive to
generate, and can be inconsistent.

2. unlabeled data. It is usually simple to acquire as
much image or video data as might be desired.

3. synthetic data, fully labeled. Computer graphic
images can approach photorealism, but it is difficult
to fully model all the details and complexity of the
real world.

We could use help with how to best combine those
three sources of image information. Can we learn, from
the labeled and unlabeled photographs, how to translate
the rich, precise labeling of some computer graphic
world to apply to photographic test data from the real
world [39, 20]?

We also need progress handling our large, imperfect
datasets. We always assume that our training and test
distributions are the same, and they rarely are. Under



what circumstances can you break the assumption that
those two distributions are the same [51]? Independent,
identical distributions (IID) are generally assumed, but
again is rarely satisfied for images and video. What
is the effect on algorithms when the IID assumption
doesn’t hold [40]? The huge datasets we use, as well as
online tracking problems, lead to a growing interest in
online learning [47].

4 How to get involved

The “action” in computer vision happens at three IEEE-
sponsored conferences: Computer Vision and Pattern
Recognition (CVPR), the International Conference on
Computer Vision (ICCV), and the European Confer-
ence on Computer Vision (ECCV). In addition, the se-
ries Foundations and Trends in Computer Vision [7]
publishes a great series of long survey papers about par-
ticular topics in computer vision. It’s a great way to get
up-to-speed on a particular topic. I recommend these
textbooks and journals: [19, 44, 24, 42]. The book that
brought me into the field, Vision, by David Marr, has
recently been re-issued by the MIT Press [33]. It’s still
a marvelous book and will get you excited about the
field of vision.

Publishing at the top venues is difficult; they typ-
ically have 20-25% acceptance rates. By necessity, re-
viewers of submitted manuscripts are looking for reasons
to reject, and they can’t be as nurturing of some great,
but unconventionally presented, idea as we would want
them to be. To overcome this barrier, you’ll need to
collaborate with someone who is already in the field,
or at least get their help in framing or writing your
manuscript. You’ll want to be reading and citing the
relevant related work. The best way to get involved is
to visit the labs of your computer vision colleagues. Our
doors are open.
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