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Abstract. Computer vision has traditionally focused on extractingicture,

such as depth, from images acquired using thin-lens or fgnbytics. The de-
velopment of computational imaging is broadening this s¢@pvariety of un-

conventional cameras do not directly capture a traditiomalge anymore, but
instead require the joint reconstruction of structure andge information. For
example, recent coded aperture designs have been optitoifailitate the joint

reconstruction of depth and intensity. The breadth of imgglesigns requires
new tools to understand the tradeoffs implied by differérategies.

This paper introduces a unified framework for analyzing corafonal imaging

approaches. Each sensor element is modeled as an innecpowduthe 4D light

field. The imaging task is then posed as Bayesian inferereen ghe observed
noisy light field projections and a prior on light field sigeaestimate the origi-
nal light field. Under common imaging conditions, we compaeeperformance
of various camera designs using 2D light field simulatiortsisTramework al-

lows us to better understand the tradeoffs of each cameeaayp analyze their
limitations.

1 Introduction

The flexibility of computational imaging has led to a rangeuotonventional cam-
era designs. Cameras with coded aperturgs],[ plenoptic cameras3[4], phase
plates |,6], and multi-view systems/] record different combinations of light rays. Re-
construction algorithms then convert the data to viewatnleges, estimate depth and
other quantites. These cameras involves tradeoffs amaraugaguantites—spatial and
depth resolution, depth of focus or noise. This paper dessra theoretical framework
that will help to compare computational camera designs aderstand their tradeoffs.

Computation is changing imaging in three ways. First, tHierination recorded at
the sensor may not be the final image, and the need for a decaldjarithm must be
taken into account to assess camera quality. Second, b&ibinadages, the new designs
enable the extraction of 4D light fields and depth informatid=inally, newpriors
can capture regularities of natural scenes to complemergghsor measurements and
amplify decoding algorithms. The traditional evaluationls based on the image point
spread function (PSF3[9] are not able to fully model these effects. We seek tools for
comparing camera designs, taking into account those tlspexts. We want to evaluate
the ability to recover a 2D image as well as depth or othermédion and we want to
model the decoding step and use natural-scene priors.



A useful common denominator, across camera designs and sdermation, is the
lightfield [7], which encodes the atomic entities (lightrays) reachivgdamera. Light
fields naturally capture some of the more common photogrgphis such as high spa-
tial image resolution, and are tightly coupled with the &sgof mid-level computer
vision: surface depth, texture, and illumination inforimoat Therefore, we cast the re-
construction performed in computational imaging as ligitfinference. We then need
to extend prior models, traditionally studied for 2D imagesAD light fields.

Camera sensors sum over sets of light rays, with the optesfging the mapping
between rays and sensor elements. Thus, a camera providesagdrojection of the
4D light field where each projected coordinate correspondse measurement of one
pixel. The goal of decoding is to infer from such projecti@smuch information as
possible about the 4D light field. Since the number of sensnents is significantly
smaller than the dimensionality of the light field signaliopiknowledge about light
fields is essential. We analyze the limitations of tradiilosignal processing assump-
tions [10,11,17] and suggest a new prior on light field signals which exgli@ccounts
for their structure. We then define a new metric of cameraoperince as follows:
Given a light field prior, how well can the light field be rectmgted from the data
measured by the camera? The number of sensor elements isrsea critical vari-
able, and we chose to standardize our comparisons by ingasiixed budget ofV
sensor elements to all cameras.

We focus on the information captured by each camera, andtwiatioid the con-
founding effect of camera-specific inference algorithmghar decoding complexity.
For clarity and computational efficiency we focus on the 2bsian of the problem
(1D image/2D light field). We use simplified optical modelsdado not model lens
aberrations or diffraction (these effects would still &l a linear projection model and
can be accounted for with modifications to the light field potijon function.)

Our framework captures the three major elements of the ctatipnal imaging
pipeline — optical setup, decoding algorithm, and priorsnd anables a systematic
comparison on a common baseline.

1.1 Related Work

Approaches to lens characterization such as Fourier dti¢kanalyze an optical ele-
ment in terms of signal bandwidth and the sharpness of theok&Fhe depth of field,
but do not address depth information. The growing intenestD light field render-
ing has led to research on reconstruction filters and aasiag in 4D [L0,11,17], yet
this research relies mostly on classical signal processisgmptions of band limited
signals, and do not utilize the rich statistical correlatiof light fields. Research on
generalized camera familiesd,14] mostly concentrates on geometric properties and
3D configurations, but with an assumption that approxinyatek light ray is mapped
to each sensor element and thus decoding is not taken inboiaicc

Reconstructing data from linear projections is a fundaalecdmponent in CT
and tomography15]. Fusing multiple image measurements is also used for super
resolution, and{6] studies uncertainties in this process.
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Fig. 1. (a) Flat-world scene with 3 objects. (b) The light field, anjt({) cameras and the light
rays integrated by each sensor element (distinguishedlby) co

2 Light fields and camera configurations

Light fields are usually represented with a two-plane patarmtion, where each ray
is encoded by its intersections with two parallel planeguFé1(a,b) shows a 2D slice
through a diffuse scene and the corresponding 2D slice offhkght field. The color
at position(ao, bg) of the light field in fig.1(b) is that of the reflected ray in fig(a)
which intersects tha andb lines at pointsyg, by respectively. Each row in this light
field corresponds to a 1D view when the viewpoint shifts alanigght fields typically
have many elongated lines of nearly uniform intensity. B@meple the green object in
fig. 1 is diffuse and the reflected color does not vary alongetldénension. The slope
of those lines corresponds to the object depth11].

Each sensor element integrates light from some set of layfs. iFor example, with
a conventional lens, the sensor records an integral of regstbe lens aperture. We
review existing cameras and how they project light rays fseeelements. We assume
that the camera aperture is positioned onaliee parameterizing the light field.

Pinhole Each sensor element collects light from a single ray, anadémeera pro-
jection just slices a row in the light field (fig{c)). Since only a tiny fraction of light is
let in, noise is an issue.

Lensesgather more light by focusing all light rays from a point astdhceD
to a sensor point. In the light field,/ D is the slope of the integration (projection)
stripe (figl(d,e)). An object is in focus when its slope matches thisesk@pg. green in
fig 1(d)) [10,11,17]. Objects in front or behind the focus distance will be baatrLarger
apertures gather more light but can cause more defocus.

Stereo[17] facilitate depth inference by recording 2 views (fifg), to keep a con-
stant sensor budget, the resolution of each image is halved)



Plenoptic camerascapture multiple viewpoints using a microlens arr&y!]. If
each microlens covelris sensor elements one achievedifferent views of the scene,
but the spatial resolution is reduced by a factok ¢k = 3 is shown in fig1(g)).

Coded aperturd 1,2] place a binary mask in the lens aperture (f{§)). As with
conventional lenses, objects deviating from the focusidapg blurred, but according
to the aperture code. Since the blur scale is a function ofhdéyy searching for the
code scale which best explains the local image window, degattbe inferred. The blur
can also be inverted, increasing the depth of field.

Wavefront coding introduces an optical element with an unconventional slsape
that rays from any world point do not converge. Thus, intéggeover a curve in light
field space (figl(i)), instead of the straight integration of lenses. Thislésigned to
make defocus at different depths almost identical, englol@convolution without depth
information, thereby extending depth of field. To achievs,th cubic lens shape (or
phase plate) is used. The light field integration curve, Wligca function of the lens
normal, can be shown to be a parabola {fig), which is slope invariant (se€ §] for
a derivation, also independently shown by M. Levoy and Z.righ@ersonal communi-
cation).

3 Bayesian estimation of light field

3.1 Problem statement

We model an imaging process as an integration of light raysamera sensors, or in
an abstract way, as a linear projection of the light field

y=Tx+n Q)

wherez is the light field,y is the captured image; is an iid Gaussian noise ~
N(0,7%I) andT is the projection matrix, describing how light rays are megbpo
sensor elements. Referring to figurel’ includes one row for each sensor element, and
this row has non-zero elements for the light field entrieskadiby the corresponding
color (e.g. a pinhol@ matrix has a single non-zero element per row).

The set of realizabld” matrices is limited by physical constraints. In particular
the entries ofl” are all non-negative. To ensure equal noise conditions,ssame a
maximal integration time, and the maximal value for eachyeott 7" is 1. The amount
of light reaching each sensor element is the sum of the eritrithe corresponding
row. It is usually better to collect more light to increase 8NR (a pinhole is noisier
because it has a single non-zero entry per row, while a leagdtiple ones).

To simplify notation, most of the following derivation wilddress a 2D slice in the
4D light field, but the 4D case is similar. While the light fig&dnaturally continuous,
for simplicity we use a discrete representation.

Our goal is to understand how well we can recover the lighd fiefrom the noisy
projectiony, and whichT matrices (among the camera projections described in the
previous section) allow better reconstructions. That sne is allowed to takév mea-
surementsq can haveN rows), which set of projections leads to better light field re
construction? Our evaluation methodology can be adapted&ightw which specifies



how much we care about reconstructing different parts ofigitie field. For example, if
the goal is an all-focused, high quality image from a singégswpoint (as in wavefront
coding), we can assign zero weight to all but one light field.ro

The number of measurements taken by most optical systengsificantly smaller
than the light field data, i.€l’ contains many fewer rows than columns. As a result,
it is impossible to recover the light field without prior knadge on light fields. We
therefore start by modeling a light field prior.

3.2 Classical priors

State of the art light field sampling and reconstruction epphes 10,11,12] apply
signal processing techniques, typically assuming bamédd signals. The number of
non-zero frequencies in the signal has to be equal to the auaflsamples, and there-
fore before samples are taken, one has to apply a low-paastéilimeet the Nyquist
limit. Light field reconstruction is then reduced to a comtan with a proper low-pass
filter. When the depth range in the scene is bounded, thedegies can further bound
the set of active frequencies within a sheared rectangteadsof a standard square of
low frequencies and tune the orientation of the low pasg filewever, they do not
address inference for a general projection such as the ayubzture.

One way to express the underlying band limited assumptioagprior terminology
is to think of an isotropic Gaussian prior (where by isotoope mean that no direction
in the light field is favored). In the frequency domain, theagance of such a Gaussian
is diagonal (with one variance per Fourier coefficientpwlhg zero (or very narrow)
variance at high frequencies above the Nyqusit limit, andidewone at the lower
frequencies. Similar priors can also be expressed in thigaspl@main by penalizing
the convolution with a set of high pass filters:
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wheref;, ; denotes théth high pass filter centered at tité light field entry. In sed,
we will show that band limited assumptions and Gaussiarrpiaeed lead to equiva-
lent sampling conclusions.

More sophisticated prior choices replace the Gaussiam pfieq 2 with a heavy-
tailed prior [L9). However, as will be illustrated in secti®, such generic priors ignore
the very strong elongated structure of light fields, or that faat the variance along the
disparity slope is significantly smaller than the spatialasce.

3.3 Mixture of Gaussians (MOG) Light field prior

To model the strong elongated structure of light fields, weppse using a mixture of
oriented Gaussians. If the scene depth (and hence lightdief) is known we can
define an anisotropic Gaussian prior that accounts for tlemi@d structure. For this,
we define a slope field that represents the slope (one over the depth of the visible
point) at every light field entry (fig2(b) illustrates a sparse sample from a slope field).
For a given slope field, our prior assumes that the light fislaussian, but has a



variance in the disparity direction that is significantlyadhar than the spatial variance.
The covarianc@g corresponding to a slope fieklis then:

_ 1 1
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whereg; ; is a derivative filter in orientatior centered at théth light field entry g ;
is the derivative in the horizontal/spatial direction)dan << oq, especially for non-
specular objects (in practice, we consider diffuse scendseto, = 0). Conditioning
on depth we hav®(z|S) ~ N(0,%s).

We also need a pridP(,S) on the slope field'. Given that depth is usually piecewise
smooth, our prior encourages piecewise smooth slope fikkestiie regularization of
stereo algorithms). Note however that S and its prior areesged in light-field space,
not image or object space. The resulting unconditionalt [fghd prior is an infinite
mixture of Gaussians (MOG) that sums over slope fields

/ P(S)P(z|S) ()

We note that while each mixture component is a Gaussian wd@ohbe evaluated in
closed form, marginalizing over the infinite set of sloped®&b is intractable, and
approximation strategies are described below.

Now that we have modeled the probability of a light fieldve turn to the imaging
problem: Given a camefB and a noisy projectiop we want to find a Baysian estimate
for the light fieldz. For this, we need to definB(z|y; T'), the probability that: is the
explanation of the measurementUsing Bayes’ rule:

P(aly;T / P(z, S|y;T) = / P(S]y; T)P(aly, S:T) 5)

To express the above equation, we note thahould equall’x up to measurement
noise, thatispP(y|x; T') e:vp(—# |Tx —y|?) . As a result, for a given slope fielg}
P(z|y,S;T) < P(x|S)P(y|z; T) is also Gaussian with covariance and mean:

_ _ 1 1
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Similarly, P(y|S; T) is also a Gaussian distribution measuring how well we cafa@xp
y with the slope componerf, or, the volume of light fields: which can explain the
measuremeny, if the slope field wasS. This can be computed by marginalizing over
light fieldsz: P(y|S;T) = [ P(z|S)P(y|z; T) Finally, P(S|y; T) is obtained from
Bayes' rule:P(S|y; )_ P(S)(y|S;T)/ [ P(S)(ylS;T)

To recap, the probabilityP(x|y; T') that a light fieldz explalns a measurements
also a mixture of Gaussians (MOG) To evaluate it, we medsmrewell z can explain
y, conditioning on a particular slope fiel§i, and weight it by the probability’(S|y)
thatsS is actually the slope field of the scene. This is integratext all slope fieldsS.

Inference Given a camerd’ and an observation we seek to recover the light field
x. In this section we consider MAP estimation, while in sectiove approximate the
variance as well in an attempt to compare cameras. Even MidRaton forx is hard,
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Fig. 2. Light field reconstruction.

as the integral in e§ is intractable. We approximate the MAP estimate for the slop
field S, and conditioning on this estimate, solve for the MAP ligbtdix.

The slope field inference is essentially inferring the sceapth. Our inference
generalizes MRF stereo algorithms/] or the depth regularization of the coded aper-
ture [1]. Details regarding slope inference are providedlid[but as a brief summary,
we model slope in local windows as constant or having ondesitigcontinuity, and we
then regularize the estimate using an MRF.

Given the estimated slope fieldl, our light field prior is Gaussian, and thus the
MAP estimate for the light field is the mean of the conditio@aussian:s in eq6.
This mean minimizes the projection error up to noise, andlegge the estimate by
minimizing the oriented variancé&s. Note that in traditional stereo formulations the
multiple views are used only for depth estimation. In costirave seek a light field
that satisfies the projection in all views. Thus, if each viegludes aliasing, we obtain
“super resolution”.

3.4 Empirical illustration of light field inference

Figure2(a,b) presents an image and a light field slice, involvingtldeliscontinuities.
Fig 2(c) presents the numerical SSD estimation errors. Figymeesents the estimated
light fields and (sparse samples from) the correspondinmedields. Seelld] for more
results. Note that slope errors in the 2nd row often accompiaging in the 1st row.
We compare the results of the MOG light field prior with simpBaussian priors (ex-
tending the conventional band limited signal assumptiang.[L,17]) and with modern
sparse (but isotropic) derivative priorsd. For the plenoptic camera we also explic-
itly compare with signal processing reconstruction (lastih fig 2(c))- as explained in
sec3.2this approach do not apply directly to any of the other camera

The prior is critical, and resolution is significantly re@adn the absence of a slope
model. For example, if the plenoptic camera includes al@sfigure3(left) demon-
strates that with our slope model we can super-resolve tlasunements and the actual
information encoded by the recorded plenoptic data is higien that of the direct
measurements.

The ranking of cameras also changes as a function of priotlewire plenoptic
camera produced best results for the isotropic priors,ragigamera achieves a higher
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Fig. 3. Reconstructing a light field from projections. Top row: raswuction with our MOG light

field prior. Middle row: slope field (estimated with MOG prjoplotted over ground truth. Note
slope changes at depth discontinuities. Bottom row: retcactson with isotropic Gaussian prior

resolution under an MOG prior. Thus, our goal in the nextieacis to analytically
evaluate the reconstruction accuracy of different camenad to understand how it is
affected by the choice of prior.

4 Camera Evaluation Metric

We want to assess how well a light fietd can be recovered from a noisy projection
y = Tz° + n, or, how much the projection nails down the set of possible light field
interpretations. The uncertainty can be measured by thectsg reconstruction error:

B(W (= a")5T) = [ Plaly )W - o) )

wherelV = diag(w) is a diagonal matrix specifying how much we care about diffier
light field entries, as discussed in sed.

Uncertainty computation To simplify eq7, recall that the average distance between
2 and the elements of a Gaussian is the distance from the cphtethe variance:

E(W (z = a")?|$;T) = W (us — «")* + Y diag(W*Ls) ®
In a mixture model, the contribution of each component isghid by its volume:
E(|W(z—2")%T) = /S P(Sy)E(W (z — 2°)]*|S; T) )

Since the integral in e§ can not be computed explicitly, we evaluate cameras using
synthetic light fields whose ground truth slope field is knpaumd evaluate an approxi-
mate uncertainty in the vicinity of the true solution. We asgiscrete set of slope field
samplegS?, ..., S¥} obtained as perturbations around the ground truth slopk ¢
approximate e@ using a discrete average:

B(W (@ — ")) = = 37 Py B(W (2 — )8 7) (10)
k

Finally, we use a set of typical light fields) (generated using ray tracing) and
evaluate the quality of a cameTaas the expected squared error over these examples

E(T) =3 B(W(z—a?)[ 1) ()



Note that this solely measures information captured by tte® together with the
prior, and omits the confounding effect of specific infereatyorithms (like in se8.4).

5 Tradeoffs in projection design

Which designs minimize the reconstruction error?

Gaussian prior. We start by considering the isotropic Gaussian prior ir2etf the
distribution of light fieldsz is Gaussian, we can integrate owein eq11 analytically
to obtain:E(T) = 2" diag(1/n*T"T + ¥, ')~'. Thus, we reach the classical PCA
conclusion: to minimize the residual varian@eshould measure the directions of max-
imal variance in%,. Since the prior is shift invarian%‘1 is diagonal in the frequency
domain, and the principal components are the lowest fretjgenThus, an isotropic
Gaussian prior agrees with the classical signal procesginglusion [0,11,17] - to
sample the light field one should convolve with a low passrftiblemeet the Nyquist
limit and sample both the directional and spatial axis, ateagptic camera does. (if
the depth in the scene is bounded, fewer directional sangplede usedl[]). This

is also consistent with our empirical prediction, as for @eussian prior, the plenop-
tic camera achieved the lowest error in #igg). However, this sampling conclusion is
conservative as the directional axis is clearly more reduhthan the spatial one. The
second order statistics captured by a Gaussian distribdtaot capture the high order
dependencies of light fields.

Mixture of Gaussian light field prior. We now turn to the MOG prior. While the
optimal projection under this prior cannot be predictedlosed-form, it can help us
understand the major components influencing the perforeainexisting cameras. The
score in e reveals two aspects which affect a camera quality - firstjmizing the
varianceX's of each of the mixture components (i.e., the ability to taijaecover the
light field given the true slope field), and second, the neddentify depth and make
P(S|y) peaked at the true slope field. Below, we elaborate on thempaoents.

5.1 Conditional light field estimation — known depth

Fig 4 shows light fields estimated by several cameras, assumagtke depth (and
therefore slope field), was successfully estimated. We dilgglay the variance of the
estimated light field - the diagonal &fs (eq6).

In the right part of the light field, the lens reconstructisrsharp, since it averages
rays emerging from a single object point. On the left, uraety is high, since it av-
erages light rays from multiple points.In contrast, ingggrg over a parabolic curve
(wavefront coding) achieves low uncertainties for botipsk since a parabola “cov-
ers” all slopes (see 1B,2(] for derivation). A pinhole also behaves identically at all
depths, but it collects only a small amount of light and theartainty is high due to the
small SNR. Finally, the uncertainty increases in stereop@loptic cameras due to the
smaller number of spatial samples.

The central region of the light field demonstrates the ytditmultiple viewpointin
the presence of occlusion boundaries. Occluded parts velneehot measured properly
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Fig. 4. Evaluating conditional uncertainty in light field estimateft: projection model. Middle:
estimated light field. Right: variance in estimate (equagrisity scale used for all cameras). Note
that while for visual clarity we plot perfect square sampleur implementation samples were
convolved with low pass filters to simulate realistic optibsr.

lead to higher variance. The variance in the occluded pantrigmized by the plenoptic
camera, the only one that spends measurements in this reffioa light field.

Since we deal only with spatial resolution, our conclusiooisespond to common
sense, which is a good sanity check. However, they cannoekieed from a naive
Gaussian model, which emphasizes the need for a prior suek asr new mixture
model.

5.2 Depth estimation

Light field reconstruction involves slope (depth) estimatiindeed, the error in €g
also depends on the uncertainty in the slope fReléVe need to maké(S|y) peaked
at the true slope field®. Since the observatiopis Tz + n, we want the distributions
of projectionsT’x to be as distinguishable as possible for different slopddigl One
way to achieve this is to make the projections corresponttirdjfferent slope fields
concentrated within different subspaces of the N-dimeradispace. For example, a
stereo camera yields a linear constraint on the projectlom?V/2 samples from the
first view should be a shifted version (according to slopehefotherN/2. The coded
aperture camera also imposes linear constraints: cereguéncies of the defocused
signals are zero, and the location of these zeros shiftsdeipith [L].

To test this, we measure the probability of the true slopé figl(S®|y), aver-
aged over a set of test light fields (created with ray tracifidje stereo score is
< P(S%y) >= 0.95 (where< P(S°|y) >= 1 means perfect depth discrimination)
compared to< P(S°|y) >= 0.84 for coded aperture. This suggests that the disparity
constraint of stereo better distributes the projectionsesponding to different slope
fields than the zero frequency subspace in coded aperture.
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We can also quantitatively compare stereo with depth frofoaless (DFD) - two
lenses with the same center of projection, focused at twWerdifit depths. As predicted
by [21], with the same physical size (stereo baseline shift dbesoeed aperture width)
both designs perform similarly, with DFD achieviag P(S°|y) >= 0.92.

Our probabilistic treatment of depth estimation goes beylarear subspace con-
straints. For example, the average slope estimation s¢@réeas was< P(S°|y) >=
0.74, indicating that, while weaker than stereo, a single motawémage captured with
a standard lens contains some depth-from-defocus infavmas well. This result can-
not be derived using a disjoint-subspace argument, bugifuh probability is consid-
ered, the Occam’s razor principle applies and the simplelagation is preferred.

Finally, a pinhole camera-projection just slices a row duthe light field, and this
slice is invariant to the light field slope. The parabola filté a wavefront coding lens
is also designed to be invariant to depth. Indeed, for theeecameras, the evaluated
distribution P(S|y) in our model is uniform over slopes.

Again, these results are not surprising but they are olbdairinin a general frame-
work that can qualitatively and quantitatively compare aetg of camera designs.
While comparisons such as DFD vs. stereo have been conductieel past P1], our
framework encompasses a much broader family of cameras.

5.3 Light field estimation

In the previous section we gained intuition about the variparts of the expected error
in eq 9. We now use the overall formula to evaluate existing camarsisg a set of
diffuse light field generated using ray tracing (describefid]). Evaluated configura-
tions include a pinhole camera, lens, stereo pair, deptm-flefocus (2 lenses focused
at different depths), plenoptic camera, coded apertureecasrand a wavefront coding
lens. Another advantage of our framework is that we can bdar@ptimal parameters
within each camera family, and our comparison is based am@ed parameters such
as baseline length, aperture size and focus distance afdhedual lens in a stereo pair,
and various choices of codes for coded aperture cameraslédaovided in [ g]).

By changing the weightd}” on light field entries in eq, we evaluate cameras for
two different goals: (a) Capturing a light field. (b) Achiegian all-focused image from
a single view point (capturing a single row in the light figld.

We consider both a Gaussian and our new MOG prior. We conditferent depth
complexity as characterized by the amount of discontiesitiVe use slopes between
—45° to 45° and noise with standard deviatign= 0.01. Additionally, [1&] evaluates
changes in the depth range and noise. 5(g-b) plot expected reconstruction error with
our MOG prior. Evaluation with a generic Gaussian prior isliiled in [L&]. Source
code for these simulations is available on the authors’ \wgbp
Full light field reconstruction Fig. 5(a) shows full light field reconstruction with our
MOG prior. In the presence of depth discontinues, lowekt fiigld reconstruction error
is achieved with a stereo camera. While a plenoptic camepaowes depth informa-
tion our comparison suggests it may not pay for the largaealpasolution loss. Yet, as
discussed in s€6.1a plenoptic camera offers an advantage in the presence qfleam
occlusion boundaries. For planar scenes (in which estimatepth is easy) the coded
aperture surpasses stereo, since spatial resolution idetband the irregular sampling
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Fig. 5. Camera evaluation. Se&q] for enlarged plots

of light rays can avoid high frequencies losses due to deftur. While the perfor-
mance of all cameras decreases when the depth complexigases, a lens and coded
aperture are much more sensitive than others. While thénabgtrimination of DFD
is similar to that of stereo (as discussed in 5€&9), its overall error is slightly higher
since the wide apertures blur high frequencies.

The ranking in figss(a) agrees with the empirical prediction in fifc). However,
while fig 5(a) measures inherent optics information,&{g) folds-in inference errors as
well.

Single-image reconstructionFor single row reconstruction (fig(b)) one still has to
accountfor issues like defocus, depth of field, signal te@aatio and spatial resolution.
A pinhole camera (recording this single row alone) is noalgand there is an advantage
for wide apertures collecting more light (recording mukipght field rows) despite not
being invariant to depth.

The parabola (wavefront coding) does not capture depthrimdtion and thus per-
forms very poorly for light field estimation. However, figlb) suggests that for recov-
ering a single light field row, this filter outperforms all ethcameras. The reason is
that since the filter is invariant to slope, a single ceniitl field row can be recov-
ered without knowledge of depth. For this central row, iadly achieves high signal
to noise ratios for all depths, as demonstrated in figureo validate this observation,
we have searched over a large set of lens curvatures, offigthtintegration curves,
parameterized as splines fitted to 6 key points. This famitjtides both slope sensitive
curves (in the spirit of ] or a coded aperture), which identify slope and use it in the
estimation, and slope invariant curves (like the parab@lg fvhich estimate the cen-
tral row regardless of slope. Our results show that, for tha&l gf recovering a single
light field row, the wavefront-coding parabola outperfoati®ther configurations. This
extends the arguments in previous wavefront coding puidics which were derived
using optics reasoning and focus on depth-invariant agbes It also agrees with the
motion domain analysis 0[], predicting that a parabolic integration curve provides
an optimal signal to noise ratio.
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5.4 Number of views for plenoptic sampling

As another way to compare the conclusions derived by clalssignal processing ap-
proaches with the ones derived from a proper light field pria follow [10] and ask:
suppose we use a camera with a fix€dixels resolution, how many different views
(V pixels each) do we actually need for a good ‘virtual reafty’

Figure6 plots the expected reconstructioner- .
ror as a function of the number of views for botf ! [—Gaussian prior
MOG and naive Gaussian priors. While a Gaus ——MOG prior
sian prior requires a dense sample, the MOG gf :
ror is quite low after 2-3 views (such conclu;1 mﬁist
sions depend on depth complexity and the rang :
of views we wish to capture). For comparisort
we also mark on the graph the significantly larger
views number imposed by an exact Nyquist limit
analysis, like 10]. Note that to simulate a re-, :
alistic camera, our directional axis samples are 10 0 30 40
aliased. This is slightly different from.[] which Fig.6. Reconstruction error as a
blur the directional axis in order to properly elimfunction number of views.
inate frequencies above the Nyquist limit.

6 Discussion

The growing variety of computational camera designs caltsafunified way to ana-
lyze their tradeoffs. We show that all cameras can be aalftimodeled by a linear
mapping of light rays to sensor elements. Thus, interpgesensor measurements is
the Bayesian inference problem of inverting the ray mappillg show that a proper
prior on light fields is critical for the successes of camegaatling. We analyze the
limitations of traditional band-pass assumptions and ssghat a prior which explic-
itly accounts for the elongated light field structure camgigantly reduce sampling
requirements.

Our Bayesian framework estimates both depth and imagen#ton, accounting
for noise and decoding uncertainty. This provides a toobtogare computational cam-
eras on a common baseline and provides a foundation for catigral imaging. We
conclude that for diffuse scenes, the wavefront codingelgis (and the parabola light
field curve) is the optimal way to capture a scene from a sivigle point. For capturing
a full light field, a stereo camera outperformed other testedigurations.

We have focused on providing a common ground for all desigfritie cost of sim-
plifying optical and decoding aspects. This differs froauditional optics optimization
tools such as Zemax that provide fine-grain comparisonsdmtwubtly-different de-
signs (e.g. what if this spherical lens element is replagedrbaspherical one?). In
contrast, we are interested in the comparison betweeniénof imaging designs (e.g.
stereo vs. plenoptic vs. coded aperture). We concentrateasuring inherentinforma-
tion captured by the optics, and do not evaluate camerafgpaecoding algorithms.

The conclusions from our analysis are well connected tatye&or example, it
can predict the expected tradeoffs (which can not be denistaly more naive light
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field models) between aperture size, noise and spatialutisodiscussed in see 1. It
justifies the exact wavefront coding lens design derivedgigptics tools, and confirms
the prediction of 21] relating stereo to depth from defocus.

Analytic camera evaluation tools may also permit the studynexplored camera
designs. One might develop new cameras by searching farlprejections that yield
optimal light field inference, subject to physical implerteion constraints. While the
camera score is a very non-convex function of its physicatatteristics, defining cam-
era evaluation functions opens up these research dirsction
AcknowledgmentsWe thank Royal Dutch/Shell Group, NGA NEGI-1582-04-0004,
MURI Grant N00014-06-1-0734, NSF CAREER award 0447561d&rBurand ac-
knowledges a Microsoft Research New Faculty Fellowshipa8tban Fellowship.
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