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1MIT CSAIL 2Adobe Systems

Abstract. Computer vision has traditionally focused on extracting structure,
such as depth, from images acquired using thin-lens or pinhole optics. The de-
velopment of computational imaging is broadening this scope; a variety of un-
conventional cameras do not directly capture a traditionalimage anymore, but
instead require the joint reconstruction of structure and image information. For
example, recent coded aperture designs have been optimizedto facilitate the joint
reconstruction of depth and intensity. The breadth of imaging designs requires
new tools to understand the tradeoffs implied by different strategies.
This paper introduces a unified framework for analyzing computational imaging
approaches. Each sensor element is modeled as an inner product over the 4D light
field. The imaging task is then posed as Bayesian inference: given the observed
noisy light field projections and a prior on light field signals, estimate the origi-
nal light field. Under common imaging conditions, we comparethe performance
of various camera designs using 2D light field simulations. This framework al-
lows us to better understand the tradeoffs of each camera type and analyze their
limitations.

1 Introduction

The flexibility of computational imaging has led to a range ofunconventional cam-
era designs. Cameras with coded apertures [1,2], plenoptic cameras [3,4], phase
plates [5,6], and multi-view systems [7] record different combinations of light rays. Re-
construction algorithms then convert the data to viewable images, estimate depth and
other quantites. These cameras involves tradeoffs among various quantites–spatial and
depth resolution, depth of focus or noise. This paper describes a theoretical framework
that will help to compare computational camera designs and understand their tradeoffs.

Computation is changing imaging in three ways. First, the information recorded at
the sensor may not be the final image, and the need for a decoding algorithm must be
taken into account to assess camera quality. Second, beyond2D images, the new designs
enable the extraction of 4D light fields and depth information. Finally, newpriors
can capture regularities of natural scenes to complement the sensor measurements and
amplify decoding algorithms. The traditional evaluation tools based on the image point
spread function (PSF) [8,9] are not able to fully model these effects. We seek tools for
comparing camera designs, taking into account those three aspects. We want to evaluate
the ability to recover a 2D image as well as depth or other information and we want to
model the decoding step and use natural-scene priors.
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A useful common denominator, across camera designs and scene information, is the
lightfield [7], which encodes the atomic entities (lightrays) reaching the camera. Light
fields naturally capture some of the more common photographygoals such as high spa-
tial image resolution, and are tightly coupled with the targets of mid-level computer
vision: surface depth, texture, and illumination information. Therefore, we cast the re-
construction performed in computational imaging as light field inference. We then need
to extend prior models, traditionally studied for 2D images, to 4D light fields.

Camera sensors sum over sets of light rays, with the optics specifying the mapping
between rays and sensor elements. Thus, a camera provides a linear projection of the
4D light field where each projected coordinate corresponds to the measurement of one
pixel. The goal of decoding is to infer from such projectionsas much information as
possible about the 4D light field. Since the number of sensor elements is significantly
smaller than the dimensionality of the light field signal, prior knowledge about light
fields is essential. We analyze the limitations of traditional signal processing assump-
tions [10,11,12] and suggest a new prior on light field signals which explicitly accounts
for their structure. We then define a new metric of camera performance as follows:
Given a light field prior, how well can the light field be reconstructed from the data
measured by the camera? The number of sensor elements is of course a critical vari-
able, and we chose to standardize our comparisons by imposing a fixed budget ofN
sensor elements to all cameras.

We focus on the information captured by each camera, and wishto avoid the con-
founding effect of camera-specific inference algorithms orthe decoding complexity.
For clarity and computational efficiency we focus on the 2D version of the problem
(1D image/2D light field). We use simplified optical models and do not model lens
aberrations or diffraction (these effects would still follow a linear projection model and
can be accounted for with modifications to the light field projection function.)

Our framework captures the three major elements of the computational imaging
pipeline – optical setup, decoding algorithm, and priors – and enables a systematic
comparison on a common baseline.

1.1 Related Work

Approaches to lens characterization such as Fourier optics[8,9] analyze an optical ele-
ment in terms of signal bandwidth and the sharpness of the PSFover the depth of field,
but do not address depth information. The growing interest in 4D light field render-
ing has led to research on reconstruction filters and anti-aliasing in 4D [10,11,12], yet
this research relies mostly on classical signal processingassumptions of band limited
signals, and do not utilize the rich statistical correlations of light fields. Research on
generalized camera families [13,14] mostly concentrates on geometric properties and
3D configurations, but with an assumption that approximately one light ray is mapped
to each sensor element and thus decoding is not taken into account.

Reconstructing data from linear projections is a fundamental component in CT
and tomography [15]. Fusing multiple image measurements is also used for super-
resolution, and [16] studies uncertainties in this process.
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Fig. 1. (a) Flat-world scene with 3 objects. (b) The light field, and (c)-(i) cameras and the light
rays integrated by each sensor element (distinguished by color)

2 Light fields and camera configurations

Light fields are usually represented with a two-plane parameterization, where each ray
is encoded by its intersections with two parallel planes. Figure1(a,b) shows a 2D slice
through a diffuse scene and the corresponding 2D slice of the4D light field. The color
at position(a0, b0) of the light field in fig.1(b) is that of the reflected ray in fig.1(a)
which intersects thea andb lines at pointsa0, b0 respectively. Each row in this light
field corresponds to a 1D view when the viewpoint shifts alonga. Light fields typically
have many elongated lines of nearly uniform intensity. For example the green object in
fig. 1 is diffuse and the reflected color does not vary along thea dimension. The slope
of those lines corresponds to the object depth [10,11].

Each sensor element integrates light from some set of light rays. For example, with
a conventional lens, the sensor records an integral of rays over the lens aperture. We
review existing cameras and how they project light rays to sensor elements. We assume
that the camera aperture is positioned on thea line parameterizing the light field.

Pinhole Each sensor element collects light from a single ray, and thecamera pro-
jection just slices a row in the light field (fig1(c)). Since only a tiny fraction of light is
let in, noise is an issue.

Lensesgather more light by focusing all light rays from a point at distanceD
to a sensor point. In the light field,1/D is the slope of the integration (projection)
stripe (fig1(d,e)). An object is in focus when its slope matches this slope (e.g. green in
fig 1(d)) [10,11,12]. Objects in front or behind the focus distance will be blurred. Larger
apertures gather more light but can cause more defocus.

Stereo[17] facilitate depth inference by recording 2 views (fig1(g), to keep a con-
stant sensor budget, the resolution of each image is halved).
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Plenoptic camerascapture multiple viewpoints using a microlens array [3,4]. If
each microlens coversk sensor elements one achievesk different views of the scene,
but the spatial resolution is reduced by a factor ofk (k = 3 is shown in fig1(g)).

Coded aperture[1,2] place a binary mask in the lens aperture (fig1(h)). As with
conventional lenses, objects deviating from the focus depth are blurred, but according
to the aperture code. Since the blur scale is a function of depth, by searching for the
code scale which best explains the local image window, depthcan be inferred. The blur
can also be inverted, increasing the depth of field.

Wavefront coding introduces an optical element with an unconventional shapeso
that rays from any world point do not converge. Thus, integrating over a curve in light
field space (fig1(i)), instead of the straight integration of lenses. This isdesigned to
make defocus at different depths almost identical, enabling deconvolution without depth
information, thereby extending depth of field. To achieve this, a cubic lens shape (or
phase plate) is used. The light field integration curve, which is a function of the lens
normal, can be shown to be a parabola (fig1(i)), which is slope invariant (see [18] for
a derivation, also independently shown by M. Levoy and Z. Zhang, personal communi-
cation).

3 Bayesian estimation of light field

3.1 Problem statement

We model an imaging process as an integration of light rays bycamera sensors, or in
an abstract way, as a linear projection of the light field

y = Tx + n (1)

wherex is the light field,y is the captured image,n is an iid Gaussian noisen ∼
N(0, η2I) and T is the projection matrix, describing how light rays are mapped to
sensor elements. Referring to figure1, T includes one row for each sensor element, and
this row has non-zero elements for the light field entries marked by the corresponding
color (e.g. a pinholeT matrix has a single non-zero element per row).

The set of realizableT matrices is limited by physical constraints. In particular,
the entries ofT are all non-negative. To ensure equal noise conditions, we assume a
maximal integration time, and the maximal value for each entry of T is 1. The amount
of light reaching each sensor element is the sum of the entries in the correspondingT
row. It is usually better to collect more light to increase the SNR (a pinhole is noisier
because it has a single non-zero entry per row, while a lens has multiple ones).

To simplify notation, most of the following derivation willaddress a 2D slice in the
4D light field, but the 4D case is similar. While the light fieldis naturally continuous,
for simplicity we use a discrete representation.

Our goal is to understand how well we can recover the light field x from the noisy
projectiony, and whichT matrices (among the camera projections described in the
previous section) allow better reconstructions. That is, if one is allowed to takeN mea-
surements (T can haveN rows), which set of projections leads to better light field re-
construction? Our evaluation methodology can be adapted toa weightw which specifies
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how much we care about reconstructing different parts of thelight field. For example, if
the goal is an all-focused, high quality image from a single view point (as in wavefront
coding), we can assign zero weight to all but one light field row.

The number of measurements taken by most optical systems is significantly smaller
than the light field data, i.e.T contains many fewer rows than columns. As a result,
it is impossible to recover the light field without prior knowledge on light fields. We
therefore start by modeling a light field prior.

3.2 Classical priors

State of the art light field sampling and reconstruction approaches [10,11,12] apply
signal processing techniques, typically assuming band-limited signals. The number of
non-zero frequencies in the signal has to be equal to the number of samples, and there-
fore before samples are taken, one has to apply a low-pass filter to meet the Nyquist
limit. Light field reconstruction is then reduced to a convolution with a proper low-pass
filter. When the depth range in the scene is bounded, these strategies can further bound
the set of active frequencies within a sheared rectangle instead of a standard square of
low frequencies and tune the orientation of the low pass filter. However, they do not
address inference for a general projection such as the codedaperture.

One way to express the underlying band limited assumptions in a prior terminology
is to think of an isotropic Gaussian prior (where by isotropic we mean that no direction
in the light field is favored). In the frequency domain, the covariance of such a Gaussian
is diagonal (with one variance per Fourier coefficient), allowing zero (or very narrow)
variance at high frequencies above the Nyqusit limit, and a wider one at the lower
frequencies. Similar priors can also be expressed in the spatial domain by penalizing
the convolution with a set of high pass filters:

P (x) ∝ exp(−
1

2σ0

X

k,i

|fk,ix
T |2) = exp(−

1

2
x

T
Ψ
−1
0 x) (2)

wherefk,i denotes thekth high pass filter centered at theith light field entry. In sec5,
we will show that band limited assumptions and Gaussian priors indeed lead to equiva-
lent sampling conclusions.

More sophisticated prior choices replace the Gaussian prior of eq2 with a heavy-
tailed prior [19]. However, as will be illustrated in section3.4, such generic priors ignore
the very strong elongated structure of light fields, or the fact that the variance along the
disparity slope is significantly smaller than the spatial variance.

3.3 Mixture of Gaussians (MOG) Light field prior

To model the strong elongated structure of light fields, we propose using a mixture of
oriented Gaussians. If the scene depth (and hence light fieldslope) is known we can
define an anisotropic Gaussian prior that accounts for the oriented structure. For this,
we define a slope fieldS that represents the slope (one over the depth of the visible
point) at every light field entry (fig.2(b) illustrates a sparse sample from a slope field).
For a given slope field, our prior assumes that the light field is Gaussian, but has a
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variance in the disparity direction that is significantly smaller than the spatial variance.
The covarianceΨS corresponding to a slope fieldS is then:

x
T
Ψ
−1
S x =

X

i

1

σs

|gT
S(i),ix|

2 +
1

σ0
|gT

0,ix|
2 (3)

wheregs,i is a derivative filter in orientations centered at theith light field entry (g0,i

is the derivative in the horizontal/spatial direction), and σs << σ0, especially for non-
specular objects (in practice, we consider diffuse scenes and setσs = 0). Conditioning
on depth we haveP (x|S) ∼ N(0, ΨS).

We also need a priorP (S) on the slope fieldS. Given that depth is usually piecewise
smooth, our prior encourages piecewise smooth slope fields (like the regularization of
stereo algorithms). Note however that S and its prior are expressed in light-field space,
not image or object space. The resulting unconditional light field prior is an infinite
mixture of Gaussians (MOG) that sums over slope fields

P (x) =

Z

S

P (S)P (x|S) (4)

We note that while each mixture component is a Gaussian whichcan be evaluated in
closed form, marginalizing over the infinite set of slope fields S is intractable, and
approximation strategies are described below.

Now that we have modeled the probability of a light fieldx, we turn to the imaging
problem: Given a cameraT and a noisy projectiony we want to find a Baysian estimate
for the light fieldx. For this, we need to defineP (x|y; T ), the probability thatx is the
explanation of the measurementy. Using Bayes’ rule:

P (x|y;T ) =

Z

S

P (x, S|y; T ) =

Z

S

P (S|y;T )P (x|y, S; T ) (5)

To express the above equation, we note thaty should equalTx up to measurement
noise, that is,P (y|x; T ) ∝ exp(− 1

2η2 |Tx− y|2) . As a result, for a given slope fieldS,
P (x|y, S; T ) ∝ P (x|S)P (y|x; T ) is also Gaussian with covariance and mean:

Σ
−1
S = Ψ

−1
S +

1

η2
T

T
T µS =

1

η2
ΣST

T
y (6)

Similarly,P (y|S; T ) is also a Gaussian distribution measuring how well we can explain
y with the slope componentS, or, the volume of light fieldsx which can explain the
measurementy, if the slope field wasS. This can be computed by marginalizing over
light fieldsx: P (y|S; T ) =

∫
x

P (x|S)P (y|x; T ). Finally, P (S|y; T ) is obtained from
Bayes’ rule:P (S|y; T ) = P (S)(y|S; T )/

∫
S

P (S)(y|S; T )
To recap, the probabilityP (x|y; T ) that a light fieldx explains a measurementy is

also a mixture of Gaussians (MOG). To evaluate it, we measurehow wellx can explain
y, conditioning on a particular slope fieldS, and weight it by the probabilityP (S|y)
thatS is actually the slope field of the scene. This is integrated over all slope fieldsS.

Inference Given a cameraT and an observationy we seek to recover the light field
x. In this section we consider MAP estimation, while in section 4 we approximate the
variance as well in an attempt to compare cameras. Even MAP estimation forx is hard,
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Fig. 2.Light field reconstruction.

as the integral in eq5 is intractable. We approximate the MAP estimate for the slope
field S, and conditioning on this estimate, solve for the MAP light fieldx.

The slope field inference is essentially inferring the scenedepth. Our inference
generalizes MRF stereo algorithms [17] or the depth regularization of the coded aper-
ture [1]. Details regarding slope inference are provided in [18], but as a brief summary,
we model slope in local windows as constant or having one single discontinuity, and we
then regularize the estimate using an MRF.

Given the estimated slope fieldS, our light field prior is Gaussian, and thus the
MAP estimate for the light field is the mean of the conditionalGaussianµS in eq 6.
This mean minimizes the projection error up to noise, and regularize the estimate by
minimizing the oriented varianceΨS . Note that in traditional stereo formulations the
multiple views are used only for depth estimation. In contrast, we seek a light field
that satisfies the projection in all views. Thus, if each viewincludes aliasing, we obtain
“super resolution”.

3.4 Empirical illustration of light field inference

Figure2(a,b) presents an image and a light field slice, involving depth discontinuities.
Fig 2(c) presents the numerical SSD estimation errors. Figure3 presents the estimated
light fields and (sparse samples from) the corresponding slope fields. See [18] for more
results. Note that slope errors in the 2nd row often accompany ringing in the 1st row.
We compare the results of the MOG light field prior with simpler Gaussian priors (ex-
tending the conventional band limited signal assumptions [10,11,12]) and with modern
sparse (but isotropic) derivative priors [19]. For the plenoptic camera we also explic-
itly compare with signal processing reconstruction (last bar in fig2(c))- as explained in
sec3.2this approach do not apply directly to any of the other cameras.

The prior is critical, and resolution is significantly reduced in the absence of a slope
model. For example, if the plenoptic camera includes aliasing, figure3(left) demon-
strates that with our slope model we can super-resolve the measurements and the actual
information encoded by the recorded plenoptic data is higher than that of the direct
measurements.

The ranking of cameras also changes as a function of prior- while the plenoptic
camera produced best results for the isotropic priors, a stereo camera achieves a higher



8

Plenoptic camera Stereo Coded Aperture

Fig. 3.Reconstructing a light field from projections. Top row: reconstruction with our MOG light
field prior. Middle row: slope field (estimated with MOG prior), plotted over ground truth. Note
slope changes at depth discontinuities. Bottom row: reconstruction with isotropic Gaussian prior

resolution under an MOG prior. Thus, our goal in the next section is to analytically
evaluate the reconstruction accuracy of different cameras, and to understand how it is
affected by the choice of prior.

4 Camera Evaluation Metric

We want to assess how well a light fieldx0 can be recovered from a noisy projection
y = Tx0 + n, or, how much the projectiony nails down the set of possible light field
interpretations. The uncertainty can be measured by the expected reconstruction error:

E(|W (x− x
0)|2; T ) =

Z

x

P (x|y;T )|W (x − x
0)|2 (7)

whereW = diag(w) is a diagonal matrix specifying how much we care about different
light field entries, as discussed in sec3.1.
Uncertainty computation To simplify eq7, recall that the average distance between
x0 and the elements of a Gaussian is the distance from the center, plus the variance:

E(|W (x− x
0)|2|S; T ) = |W (µS − x

0)|2 +
X

diag(W 2
ΣS) (8)

In a mixture model, the contribution of each component is weighted by its volume:

E(|W (x− x
0)|2; T ) =

Z

S

P (S|y)E(|W (x− x
0)|2|S; T ) (9)

Since the integral in eq9 can not be computed explicitly, we evaluate cameras using
synthetic light fields whose ground truth slope field is known, and evaluate an approxi-
mate uncertainty in the vicinity of the true solution. We usea discrete set of slope field
samples{S1, ...,SK} obtained as perturbations around the ground truth slope field. We
approximate eq9 using a discrete average:

E(|W (x− x
0)|2; T ) ≈

1

K

X

k

P (Sk|y)E(|W (x− x
0)|2|Sk; T ) (10)

Finally, we use a set of typical light fieldsx0

t (generated using ray tracing) and
evaluate the quality of a cameraT as the expected squared error over these examples

E(T ) =
X

t

E(|W (x − x
0
t )|

2; T ) (11)
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Note that this solely measures information captured by the optics together with the
prior, and omits the confounding effect of specific inference algorithms (like in sec3.4).

5 Tradeoffs in projection design

Which designs minimize the reconstruction error?
Gaussian prior. We start by considering the isotropic Gaussian prior in eq2. If the
distribution of light fieldsx is Gaussian, we can integrate overx in eq11 analytically
to obtain:E(T ) = 2

∑
diag(1/η2T T T + Ψ−1

0
)−1. Thus, we reach the classical PCA

conclusion: to minimize the residual variance,T should measure the directions of max-
imal variance inΨ0. Since the prior is shift invariant,Ψ−1

0
is diagonal in the frequency

domain, and the principal components are the lowest frequencies. Thus, an isotropic
Gaussian prior agrees with the classical signal processingconclusion [10,11,12] - to
sample the light field one should convolve with a low pass filter to meet the Nyquist
limit and sample both the directional and spatial axis, as a plenoptic camera does. (if
the depth in the scene is bounded, fewer directional samplescan be used [10]). This
is also consistent with our empirical prediction, as for theGaussian prior, the plenop-
tic camera achieved the lowest error in fig2(c). However, this sampling conclusion is
conservative as the directional axis is clearly more redundant than the spatial one. The
second order statistics captured by a Gaussian distribution do not capture the high order
dependencies of light fields.
Mixture of Gaussian light field prior. We now turn to the MOG prior. While the
optimal projection under this prior cannot be predicted in closed-form, it can help us
understand the major components influencing the performance of existing cameras. The
score in eq9 reveals two aspects which affect a camera quality - first, minimizing the
varianceΣS of each of the mixture components (i.e., the ability to reliably recover the
light field given the true slope field), and second, the need toidentify depth and make
P (S|y) peaked at the true slope field. Below, we elaborate on these components.

5.1 Conditional light field estimation – known depth

Fig 4 shows light fields estimated by several cameras, assuming the true depth (and
therefore slope field), was successfully estimated. We alsodisplay the variance of the
estimated light field - the diagonal ofΣS (eq6).

In the right part of the light field, the lens reconstruction is sharp, since it averages
rays emerging from a single object point. On the left, uncertainty is high, since it av-
erages light rays from multiple points.In contrast, integrating over a parabolic curve
(wavefront coding) achieves low uncertainties for both slopes, since a parabola “cov-
ers” all slopes (see [18,20] for derivation). A pinhole also behaves identically at all
depths, but it collects only a small amount of light and the uncertainty is high due to the
small SNR. Finally, the uncertainty increases in stereo andplenoptic cameras due to the
smaller number of spatial samples.

The central region of the light field demonstrates the utility of multiple viewpoint in
the presence of occlusion boundaries. Occluded parts whichare not measured properly
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Fig. 4.Evaluating conditional uncertainty in light field estimate. Left: projection model. Middle:
estimated light field. Right: variance in estimate (equal intensity scale used for all cameras). Note
that while for visual clarity we plot perfect square samples, in our implementation samples were
convolved with low pass filters to simulate realistic opticsblur.

lead to higher variance. The variance in the occluded part isminimized by the plenoptic
camera, the only one that spends measurements in this regionof the light field.

Since we deal only with spatial resolution, our conclusionscorrespond to common
sense, which is a good sanity check. However, they cannot be derived from a naive
Gaussian model, which emphasizes the need for a prior such asas our new mixture
model.

5.2 Depth estimation

Light field reconstruction involves slope (depth) estimation. Indeed, the error in eq9
also depends on the uncertainty in the slope fieldS. We need to makeP (S|y) peaked
at the true slope fieldS0. Since the observationy is Tx + n, we want the distributions
of projectionsTx to be as distinguishable as possible for different slope fieldsS. One
way to achieve this is to make the projections correspondingto different slope fields
concentrated within different subspaces of the N-dimensional space. For example, a
stereo camera yields a linear constraint on the projection-the N/2 samples from the
first view should be a shifted version (according to slope) ofthe otherN/2. The coded
aperture camera also imposes linear constraints: certain frequencies of the defocused
signals are zero, and the location of these zeros shifts withdepth [1].

To test this, we measure the probability of the true slope field, P (S0|y), aver-
aged over a set of test light fields (created with ray tracing). The stereo score is
< P (S0|y) >= 0.95 (where< P (S0|y) >= 1 means perfect depth discrimination)
compared to< P (S0|y) >= 0.84 for coded aperture. This suggests that the disparity
constraint of stereo better distributes the projections corresponding to different slope
fields than the zero frequency subspace in coded aperture.
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We can also quantitatively compare stereo with depth from defocus (DFD) - two
lenses with the same center of projection, focused at two different depths. As predicted
by [21], with the same physical size (stereo baseline shift doesn’t exceed aperture width)
both designs perform similarly, with DFD achieving< P (S0|y) >= 0.92.

Our probabilistic treatment of depth estimation goes beyond linear subspace con-
straints. For example, the average slope estimation score of a lens was< P (S0|y) >=
0.74, indicating that, while weaker than stereo, a single monocular image captured with
a standard lens contains some depth-from-defocus information as well. This result can-
not be derived using a disjoint-subspace argument, but if the full probability is consid-
ered, the Occam’s razor principle applies and the simpler explanation is preferred.

Finally, a pinhole camera-projection just slices a row out of the light field, and this
slice is invariant to the light field slope. The parabola filter of a wavefront coding lens
is also designed to be invariant to depth. Indeed, for these two cameras, the evaluated
distributionP (S|y) in our model is uniform over slopes.

Again, these results are not surprising but they are obtained within a general frame-
work that can qualitatively and quantitatively compare a variety of camera designs.
While comparisons such as DFD vs. stereo have been conductedin the past [21], our
framework encompasses a much broader family of cameras.

5.3 Light field estimation

In the previous section we gained intuition about the various parts of the expected error
in eq 9. We now use the overall formula to evaluate existing cameras, using a set of
diffuse light field generated using ray tracing (described in [18]). Evaluated configura-
tions include a pinhole camera, lens, stereo pair, depth-from-defocus (2 lenses focused
at different depths), plenoptic camera, coded aperture cameras and a wavefront coding
lens. Another advantage of our framework is that we can search for optimal parameters
within each camera family, and our comparison is based on optimized parameters such
as baseline length, aperture size and focus distance of the individual lens in a stereo pair,
and various choices of codes for coded aperture cameras (details provided in [18]).

By changing the weights,W on light field entries in eq7, we evaluate cameras for
two different goals: (a) Capturing a light field. (b) Achieving an all-focused image from
a single view point (capturing a single row in the light field.)

We consider both a Gaussian and our new MOG prior. We considerdifferent depth
complexity as characterized by the amount of discontinuities. We use slopes between
−45o to 45o and noise with standard deviationη = 0.01. Additionally, [18] evaluates
changes in the depth range and noise. Fig.5(a-b) plot expected reconstruction error with
our MOG prior. Evaluation with a generic Gaussian prior is included in [18]. Source
code for these simulations is available on the authors’ webpage.
Full light field reconstruction Fig. 5(a) shows full light field reconstruction with our
MOG prior. In the presence of depth discontinues, lowest light field reconstruction error
is achieved with a stereo camera. While a plenoptic camera improves depth informa-
tion our comparison suggests it may not pay for the large spatial resolution loss. Yet, as
discussed in sec5.1a plenoptic camera offers an advantage in the presence of complex
occlusion boundaries. For planar scenes (in which estimating depth is easy) the coded
aperture surpasses stereo, since spatial resolution is doubled and the irregular sampling
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Fig. 5.Camera evaluation. See [18] for enlarged plots

of light rays can avoid high frequencies losses due to defocus blur. While the perfor-
mance of all cameras decreases when the depth complexity increases, a lens and coded
aperture are much more sensitive than others. While the depth discrimination of DFD
is similar to that of stereo (as discussed in sec5.2), its overall error is slightly higher
since the wide apertures blur high frequencies.

The ranking in figs5(a) agrees with the empirical prediction in fig2(c). However,
while fig 5(a) measures inherent optics information, fig2(c) folds-in inference errors as
well.

Single-image reconstructionFor single row reconstruction (fig5(b)) one still has to
account for issues like defocus, depth of field, signal to noise ratio and spatial resolution.
A pinhole camera (recording this single row alone) is not ideal, and there is an advantage
for wide apertures collecting more light (recording multiple light field rows) despite not
being invariant to depth.

The parabola (wavefront coding) does not capture depth information and thus per-
forms very poorly for light field estimation. However, fig5(b) suggests that for recov-
ering a single light field row, this filter outperforms all other cameras. The reason is
that since the filter is invariant to slope, a single central light field row can be recov-
ered without knowledge of depth. For this central row, it actually achieves high signal
to noise ratios for all depths, as demonstrated in figure4. To validate this observation,
we have searched over a large set of lens curvatures, or lightfield integration curves,
parameterized as splines fitted to 6 key points. This family includes both slope sensitive
curves (in the spirit of [6] or a coded aperture), which identify slope and use it in the
estimation, and slope invariant curves (like the parabola [5]), which estimate the cen-
tral row regardless of slope. Our results show that, for the goal of recovering a single
light field row, the wavefront-coding parabola outperformsall other configurations. This
extends the arguments in previous wavefront coding publications which were derived
using optics reasoning and focus on depth-invariant approaches. It also agrees with the
motion domain analysis of [20], predicting that a parabolic integration curve provides
an optimal signal to noise ratio.
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5.4 Number of views for plenoptic sampling

As another way to compare the conclusions derived by classical signal processing ap-
proaches with the ones derived from a proper light field prior, we follow [10] and ask:
suppose we use a camera with a fixedN pixels resolution, how many different views
(N pixels each) do we actually need for a good ‘virtual reality’?
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Fig. 6. Reconstruction error as a
function number of views.

Figure6 plots the expected reconstruction er-
ror as a function of the number of views for both
MOG and naive Gaussian priors. While a Gaus-
sian prior requires a dense sample, the MOG er-
ror is quite low after 2-3 views (such conclu-
sions depend on depth complexity and the range
of views we wish to capture). For comparison,
we also mark on the graph the significantly larger
views number imposed by an exact Nyquist limit
analysis, like [10]. Note that to simulate a re-
alistic camera, our directional axis samples are
aliased. This is slightly different from [10] which
blur the directional axis in order to properly elim-
inate frequencies above the Nyquist limit.

6 Discussion

The growing variety of computational camera designs calls for a unified way to ana-
lyze their tradeoffs. We show that all cameras can be analytically modeled by a linear
mapping of light rays to sensor elements. Thus, interpreting sensor measurements is
the Bayesian inference problem of inverting the ray mapping. We show that a proper
prior on light fields is critical for the successes of camera decoding. We analyze the
limitations of traditional band-pass assumptions and suggest that a prior which explic-
itly accounts for the elongated light field structure can significantly reduce sampling
requirements.

Our Bayesian framework estimates both depth and image information, accounting
for noise and decoding uncertainty. This provides a tool to compare computational cam-
eras on a common baseline and provides a foundation for computational imaging. We
conclude that for diffuse scenes, the wavefront coding cubic lens (and the parabola light
field curve) is the optimal way to capture a scene from a singleview point. For capturing
a full light field, a stereo camera outperformed other testedconfigurations.

We have focused on providing a common ground for all designs,at the cost of sim-
plifying optical and decoding aspects. This differs from traditional optics optimization
tools such as Zemax that provide fine-grain comparisons between subtly-different de-
signs (e.g. what if this spherical lens element is replaced by an aspherical one?). In
contrast, we are interested in the comparison between families of imaging designs (e.g.
stereo vs. plenoptic vs. coded aperture). We concentrate onmeasuring inherent informa-
tion captured by the optics, and do not evaluate camera-specific decoding algorithms.

The conclusions from our analysis are well connected to reality. For example, it
can predict the expected tradeoffs (which can not be derivedusing more naive light
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field models) between aperture size, noise and spatial resolution discussed in sec5.1. It
justifies the exact wavefront coding lens design derived using optics tools, and confirms
the prediction of [21] relating stereo to depth from defocus.

Analytic camera evaluation tools may also permit the study of unexplored camera
designs. One might develop new cameras by searching for linear projections that yield
optimal light field inference, subject to physical implementation constraints. While the
camera score is a very non-convex function of its physical characteristics, defining cam-
era evaluation functions opens up these research directions.
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