
Motion Denoising with Application to Time-lapse Photography

Michael Rubinstein1 Ce Liu2 Peter Sand Frédo Durand1 William T. Freeman1

1MIT CSAIL 2Microsoft Research New England
{mrub,sand,fredo,billf}@mit.edu celiu@microsoft.com

Abstract

Motions can occur over both short and long time scales.
We introduce motion denoising, which treats short-term
changes as noise, long-term changes as signal, and re-
renders a video to reveal the underlying long-term events.
We demonstrate motion denoising for time-lapse videos.
One of the characteristics of traditional time-lapse imagery
is stylized jerkiness, where short-term changes in the scene
appear as small and annoying jitters in the video, often ob-
fuscating the underlying temporal events of interest. We ap-
ply motion denoising for resynthesizing time-lapse videos
showing the long-term evolution of a scene with jerky short-
term changes removed. We show that existing filtering ap-
proaches are often incapable of achieving this task, and
present a novel computational approach to denoise motion
without explicit motion analysis. We demonstrate promis-
ing experimental results on a set of challenging time-lapse
sequences.

1. Introduction
Short-term, random motions can distract from the

longer-term changes recorded in a video. This is espe-

cially true for time-lapse sequences where dynamic scenes

are captured over long periods of time. When day- or even

year-long events are condensed into minutes or seconds, the

pixels can be temporally inconsistent due to the significant

time aliasing. Such aliasing effects take the form of ob-

jects suddenly appearing and disappearing, or illumination

changing rapidly between consecutive frames.

It is therefore important to remove random, temporally

inconsistent motion. We want to design a video processing

system that removes temporal jitters and inconsistencies in

an input video, and generates a temporally smooth video as

if randomness never appeared. We call this technique mo-
tion denoising in analogy to image denoising. Since visual

events are decomposed into slow-varying and fast-changing

components in motion denoising, such technique can be

useful for time-lapse photography, which is widely used in

the movie industry especially for documentary movies, but

x

t (Time)

t

Input

x

t

Motion-denoised

Input ResultDisplacement

x

y

Figure 1. A time-lapse video of plants growing (sprouts). XT
slices of the video volumes are shown for the input sequence and

for the result of our motion denoising algorithm (top right). The

motion-denoised sequence is generated by spatiotemporal rear-

rangement of the pixels in the input sequence (bottom center; spa-

tial and temporal displacement on top and bottom respectively, fol-

lowing the color coding in Figure 5). Our algorithm solves for a

displacement field that maintains the long-term events in the video,

while removing the short-term noisy motions. The full sequence

and results are available in the accompanying material.

has also become prevalent among personal users. It can also

assist long-period medical and scientific analysis. For the

rest of the paper we will refer to motion denoising, and its

induced motion decomposition, interchangeably.

Motion denoising is by no means a trivial problem. Pre-

vious work on motion editing has been focusing on accu-

rately measuring the underlying motion and carefully con-

structing coherent motion layers in the scene. These kind of

motion-based techniques are often not suitable for analyz-

ing time-lapse videos. The jerky nature of these sequences

violates the core assumptions of motion analysis and optical

flow, and prevent even the most sophisticated motion esti-

mation algorithm from obtaining accurate enough motion

for further analysis.

1

IEEE Computer Vision and Pattern Recognition (CVPR), June 2011

t

x
Original
signal

Mean Median Motion-
compensated

Motion
denoised

Figure 2. The responses of different filters on a canonical signal

with a temporal dimension and a single spatial dimension. In this

example, the temporal filters are of size 3, centered at the pixel,

and the denoising algorithm uses a 3 × 3 support. For the motion

compensated filter, we assume the temporal trajectory is accurate

until t = 6. That is, the motion of the pixel from (x, t) = (2, 6)
to (4, 7) was not detected correctly.

We propose a novel computational approach to motion

denoising in videos that does not require explicit motion

estimation and modeling. We formulate the problem in a

Bayesian framework, where the goal is to recover a “smooth

version” of the input video by reshuffling its pixels spa-

tiotemporally. This translates to a well-defined inference

problem over a 3D Markov Random Field (MRF), which

we solve using a time-space optimized Loopy Belief Prop-

agation (LBP) algorithm. We show how motion denoising

can be used to eliminate short-term motion jitters in time-

lapse videos, and present results for time-lapse sequences

of different nature and varying scenes.

2. Background and Related Work
The input to our system is an M×N×T video sequence

I(x, y, t), with RGB intensities given in range [0, 255]. Our

goal is to produce an M×N×T output sequence J(x, y, t)
in which short term jittery motions are removed, whereas

long term scene changes are maintained. A number of at-

tempts have been made to tackle similar problems from a

variety of perspectives.

Temporal filtering. A straightforward approach is to pass

the sequence through a temporal low-pass filter

J(x, y, t) = f(I(x, y, {k}t+δt
t−δt

) (1)

where f denotes the filtering opreator, and δt defines the

temporal window size. For a video sequence with static

viewpoint, f is often taken as the median operator, which

is useful for tasks such as background-foreground segmen-

tation and noise reduction. This approach, albeit simple

and fast, has an obvious limitation – the filtering is per-

formed independently at each pixel. In a dynamic scene

with rapid motion, pixels belonging to different objects are

averaged, resulting in a blurred or discontinuous result. Fig-

ure 2 demonstrates this on a canonical signal. Figure 3 fur-

ther illustrates these effects on a natural time-lapse video.

To address this issue, motion-compensated filtering was

introduced, filtering the sequence along motion trajectories

t

x

y

Input Mean Median Denoised
x

Figure 3. Comparison with temporal filtering of the plants se-

quence of Figure 1. Zoom-in on the left part of the XT slice

from Figure 1 are shown for the original sequence, the (tempo-

rally) mean-filtered sequence, the median-filtered sequence, and

the motion-denoised sequence. At the bottom, a representative

spatial patch from each sequence is shown, taken from a region

roughly marked by the yellow bar on the input video slice.

(e.g. [13]). Such techniques are commonly employed for

video compression, predictive coding and noise removal.

Although this approach is able to deal with some of the

blur and discontinuity artifacts as pixels are only integrated

along the estimated motion path, it does not filter the ac-

tual motion (i.e. making the motion trajectory smoother),

but rather takes the motion into account for filtering the se-

quence. In addition, errors in motion estimation (e.g. optical

flow) may result in unwanted artifacts at object boundaries.

Motion editing. One work that took a direct approach to

motion editing in videos is “Motion Magnification” [8]. A

layer segmentation system was proposed for exaggerating

motions that might otherwise be difficult or even impossi-

ble to notice. Similar to our work, they also manipulate

video data to resynthesize a sequence with modified mo-

tions. However, our work modifies the motion without ex-

plicit motion analysis or layer modeling that are required

by their method. In fact, layer estimation can be challeng-

ing for the sequences we are interested in; these sequences

may contain too many layers (e.g. leaves) for which even

state-of-the-art layer segmentation algorithms would have

difficulties producing reliable estimates.

Motion denoising has been addressed before in a global
manner, known as video stabilization (e.g. [11, 10]). Cam-

era jitter (mostly from hand-held devices) is modeled using

image-level transforms between consecutive frames, which

are used to synthesize a sequence with smoother camera

motion. Image and video inpainting techniques are often

utilized to fill-in missing content in the stabilized sequence.

In contrast, we focus on stabilization at the object level, sup-

2

porting pixel-wise displacement within a single frame. In-

painting is built-in naturally into our formulation.

Time-lapse videos. Previous work on time-lapse videos

use time-lapse sequences as an efficient representation for

video summarization. Work such as [3, 15] take a video-

rate footage as input, and output a sequence of frames that

succinctly depict temporal events in the video. Work such

as [15, 16] can take an input time-lapse video, and produce

a single-frame representation of that sequence, utilizing in-

formation from throughout the time span. Time-lapse se-

quences have also been used for other applications. For ex-

ample, Weiss [22] uses a sequence of images of a scene un-

der varying illumination to estimate intrinsic images. These

techniques and applications are significantly different from

ours. Both input and output of our system are time-lapse

videos, and our goal is to improve the input sequence qual-

ity by suppressing short-term distracting events.

Direct editing of time-lapse imagery has been proposed

in [18] by factorizing each pixel in an input time-lapse

video into shadow, illumination and reflectance compo-

nents, which can be used for relighting or editing the se-

quence, and for recovering the scene geometry. In this pa-

per, we are interested in a different type of decomposition:

separating a time-lapse sequence into shorter- and longer-

term events. These two types of decompositions can be

complimentary to each other.

Geometric rearrangement. In the core of our method

is a statistical (data-driven) algorithm for inferring smooth

motion from noisy motion by rearranging the input video.

Content rearrangement in images and video has been used

in the past for various editing applications. Image reshuf-

fling is discussed in [5]. They work in patch space, and

the patch moves are constrained to an underlying coarse

grid which does not allow handling relatively small motions

common to time-lapse videos. We, on the other hand, work

in pixel resolution, supporting both small and irregular dis-

placements. [14] perform geometric image rearrangement

for various image editing tasks using a MRF formulation.

Our work concentrates on a different problem and requires

different formulation. Inference in videos is much more

challenging than in images, and we use different inference

tools from the ones used in their work.

For videos, [17] consider the sequence appearance and

dynamics for shifting entire frames to create a modified

playback. [15] generate short summaries for browsing and

indexing surveillance data by shifting individual pixels tem-

porally while keeping their spatial locations intact. [21]

align two videos using affine spatial and temporal warps.

Our problem is again very different from all these work.

Temporal shifts alone are insufficient to denoise noisy mo-

tion, and spatial offsets must be defined in higher granular-

ity than the global frame or video. This makes the problem

much more challenging to solve.

3. Formulation
We model the world as evolving slowly through time.

That is, within any relatively small time span, objects in

the scene attain some stable configuration, and changes to

these configurations occur in low time rates. Moreover, we

wish to make use of the large redundancy in images and

videos to infer those stable configurations. This leads to the

following formulation. Given an input video I , we seek an

output video J that minimizes the energy E(J), defined as

E(J) =
∑
x,y,t

∣∣J(x, y, t)− I(x, y, t)
∣∣+

α
∑
x,y,t

∣∣J(x, y, t)− J(x, y, t+ 1)
∣∣ (2)

subject to

J(x, y, t) = I(x+wx(x, y, t), y+wy(x, y, t), t+wt(x, y, t))
(3)

for spatiotemporal displacement field

w(x, y, t) ∈ {(δx, δy, δt) : |δx| ≤ Δs, |δy| ≤ Δs, |δt| ≤ Δt}
(4)

where (Δs,Δt) are parameters defining the support

(search) region.

In this objective function, the first term is a fidelity term,

enforcing the output sequence to resemble the input se-

quence at each location and time. The second term is a tem-
poral coherence term, which requires the solution to be tem-

porally smooth. The tension between those two terms cre-

ates a solution which maintains the general appearance of

the input sequence, and is temporally smooth. This tradeoff

between appearance and temporal coherence is controlled

via the parameter α.

As J is uniquely defined by the spatiotemporal displace-

ments, we can equivalently rewrite Equation 2 as an opti-

mization on the displacement field w. Further parameteriz-

ing p = (x, y, t), and plugging constraint 3 into Equation 2,

we get

E(w) =
∑
p

∣∣I(p+ w(p))− I(p)
∣∣+

α
∑

p,r∈Nt(p)

∣∣∣∣I(p+ w(p))− I(r + w(r))
∣∣∣∣2+

γ
∑

p,q∈N (p)

λpq

∣∣w(p)− w(q)
∣∣ (5)

where we also added an additional term for regularizing the

displacement field w, with weight λpq = exp{−β||I(p) −
I(q)||2}. β is learnt as described in [19]. λpq assigns vary-

ing weight to discontinuities in the displacement map, as

function of the similarity between neighboring pixels in the

original video. N (p) denotes the spatiotemporal neighbor-

hood of pixel p, and Nt(p) ⊆ N (p) denotes the temporal

3

t

t+1

t-1

x x+1x-1

y-1

y

y+1

t+1

x x+1x-11

y-1

y

y+1

11

t

t-1

1

p(w(p))
t
pq (w(p),w(q))

s
pq(w(p),w(q))

Temporal
neighbor
Spatial

neighbor

p = (x,y,t)

Figure 4. An illustration of the graphical model corresponding to

Equation 5. Note that each node contains the three (unknown)

components of the spatiotemporal displacement at that location.

neighborhood of p. We use the six spatiotemporal pixels

directly connected to p as the neighborhood system.

α and γ weight the temporal coherence and regulariza-

tion terms respectively. The L2 norm is used for temporal

coherence to discourage motion discontinuities, while L1 is

used in the fidelity and regularization terms to remove noise

from the input sequence, and to account for discontinuities

in the displacement field, respectively.

3.1. Optimization

We optimize Equation 5 discretely on a 3D MRF cor-

responding to the three-dimensional video volume, where

each node p corresponds to a pixel in the video sequence,

and represents the latent variables w(p). The state space in

our model is the set of possible three-dimensional displace-

ments within a predefined search region (Equation 4). The

potential functions are given by

ψp(w(p)) =
∣∣I(p+ w(p))− I(p)

∣∣ (6)

ψt
pr(w(p), w(r)) = α

∣∣∣∣I(p+ w(p))− I(r + w(r))
∣∣∣∣2+

γλpr

∣∣w(p)− w(r)
∣∣ (7)

ψs
pq(w(p), w(q)) = γλpq

∣∣w(p)− w(q)
∣∣ (8)

where ψp is the unary potential at each node, and ψt
pr, ψ

s
pq

denote the temporal and spatial pairwise potentials respec-

tively. Figure 4 depicts the structure of this graphical model.

We have experimented with several optimization tech-

niques for solving Equation 5, namely Iterated Conditional

Modes (ICM), α-expansion (GCUT) [4] and loopy belief

propagation (LBP) [23]. Our temporal pairwise potentials

(Equation 7) are neither a metric nor a semi-metric, which

makes the graph-cut based algorithms theoretically inappli-

cable to this optimization. Although previous work employ

those algorithms ignoring the metric constraints and still re-

port good results (e.g. [14]), our experiments consistently

showed that LBP manages to produce more visually appeal-

ing sequences, and in most cases also achieves lower energy

solutions comparing to the other solvers. We choose LBP

as our inference engine.

Figure 5 compares the results of the three optimizations.

The complete sequences are available in the supplementary

material. The ICM results suffer, as expected, from notice-

able discontinuities. There are also noticeable artifacts in

the graph-cut solution. As part of our pairwise potentials

are highly non metric, it is probable that α-expansion will

make incorrect moves, which adversely affect the results.

All three methods tend to converge quickly within 3 − 5
iterations, which agrees with the related literature [19]. Al-

though the solution energies tend to be within the same ball-

park, we noticed they usually correspond to different local

minima.

3.2. Implementation Details

Our underlying graphical model is a massive 3D grid,

which imposes computational difficulties in both time and

space. For tractable runtime, we trivially extend the mes-

sage update schedule by Tappen and Freeman [20] to 3D,

by first sending messages (forth and back) along rows in all

frames, then along columns, and finally along time. This se-

quential schedule allows information to propagate quickly

through the grid, and helps the algorithm converge faster.

To search larger ranges, we apply LBP to a spatiotempo-

ral video pyramid. Since time-lapse sequences are tem-

porally aliased, we apply smoothing to the spatial domain

only, and sample in the temporal domain. At the coarser

level, the same search volume effectively covers twice the

volume used in the finer level, allowing the algorithm to

consider larger spatial and temporal ranges. To propagate

the displacements to the finer level, we bilinear-interpolate

and scale (multiply by 2) the shifts, and use them as centers

of the search volume at each pixel in the finer level.

The complexity of LBP is linear in the graph size, but

quadratic in the state space. In our model, we have a K3

search volume (for Δs = Δt = K), which requires K6

computations per message update and may quickly become

intractable even for relatively small search volumes. Nev-

ertheless, we can get significant speedup in the computa-

tion of the spatial messages using distance transform, as the

3D displacement components are decoupled in the L1-norm

distance. Felzenszwalb and Huttenlocher have shown that

computing a distance transform on such 3D label grids can

be reduced to consecutive efficient computations of 1D dis-

tance transforms [6]. The overall complexity of this com-

putation is O(3K3), which is linear in the search range. For

our multiscale computation, Liu et al. [9] already showed

how the distance transform can be extended to handle off-

sets. Following the reduction in [6] therefore shows that we

can trivially handle offsets in the 3D case as well. We note

that the distance transform computation is not an approxi-

mation, and results in the exact message updates.

4

0 2 4 6 8 10
0

2

4

6

8

10

12 x 107

Iteration

En
er

gy

ICM
GCUT
LBP

Spatial Temporalp p

(a) ICM (b) GCUT (c) LBP (d) Convergence (e) Color coding
Figure 5. Comparison between different optimization techniques for solving Equation 5, demonstrated on the plant sequence (Figure 8).

(a-c) Representative frame from each result. The spatial components of the displacement fields (overlayed) illustrate that different local

minima are attained (the full sequences are available in the accompanying material). (d) The energy convergence pattern over 10 iterations

of the algorithms. (e) The color coding used for visualizing the displacement fields, borrowed from [2]. To avoid introducing an additional

color coding for the temporal displacements, the colors along the y-axis are used to represent backward (−y) to forward (+y) temporal

displacement.

This yields significant improvement in running time as

2/3 of the messages propagating through the graph can be

computed in linear time. Unfortunately, we cannot follow a

similar approach for the temporal messages, as the temporal

pairwise potential function (Equation 7) is non-convex.

This massive inference problem imposes computational

difficulties in terms of space as well. For example, a 5003

video sequence with a 103 search region requires memory,

for the messages only, of size at least 5003×103×6×4 � 3
terabytes (!). Far beyond current available RAM, and prob-

ably beyond the average available disk space. We therefore

restrict our attention to smaller sequences and search vol-

umes. As the messages structure cannot fit entirely in mem-

ory, we store it on disk, and read and write the necessary

message chunks on need. For our message update sched-

ule, it suffices to maintain in memory the complete mes-

sage structure for one frame for passing messages spatially,

and two frames for passing messages temporally. This im-

poses no memory difficulty even for larger sequences, but

comes at the cost of lower performance as disk I/O is far

more expensive than memory access. Section 4 details the

algorithm’s space and time requirements for the videos and

parameters we used.

Finally, once LBP converges or message passing is com-

plete, the MAP label assignment is traditionally computed

independently at each node [7]

ŵp = argmin
wp

(
ψp(wp) +

∑
q∈N (p)

mq→p(wp)
)

(9)

For our problem, we observe that the local conditional den-

sities are often multi-modal (Figure 6), indicating multiple

possible solutions that are equivalent, or close to equivalent,

with respect to the objective function. The label (displace-

ment) assigned to each pixel therefore depends on the order

of traversing the labels, which is somewhat arbitrary. As

a result, the selected displacements at neighboring pixels

need not be coherent with respect to the pairwise potentials.

We propose a different procedure for assigning the MAP

label at each node. Following our message update schedule,

we start with the pixel at position (0, 0, 0) and assign it the

label satisfying Equation 9. Then, traversing the grid from

back to front, top to bottom and left to right, we assign each

node the label according to

ŵ∗
p = argmin

wp

(
ψp(wp)

+
∑

q∈P(p)

ψpq(wp, ŵ
∗
q) +

∑
q∈N (p)\P(p)

mq→p(wp)
)

(10)

where P(p) denotes the left, top, and backward neighbors

of node p. Notice that these nodes were already assigned

labels by the time node p is reached in this scan pattern,

and so their assignments are used while determining the as-

signment for p. Overall, this process produces a MAP as-

signment that is locally more coherent with respect to the

objective function. In practice, we found that the solutions

produced with this approach have energies 2−3% lower on

average comparing to independent assignment of states to

pixels, and the decrease in energy is obviously larger when

heavier regularization is sought.

4. Results
Our main application of interest is time-lapse process-

ing, and so we ran the motion denoising algorithm on sev-

eral time-lapse sequences of different nature. We fixed the

parameters in all the experiments to α = 2, γ = 10, search

volume of size 7×7×5, and a 2-level video pyramid. We ran

LBP for 5− 10 iterations, during which the algorithm con-

verged to a stable minima. Representative frames for each

experiment are shown in Figure 8, and the full sequences

and results are available in the accompanying material.

Recall that our basic assumption is that the input se-

quence contains events of different time scales. We first

produced sequences which demonstrate this effect in a con-

trolled environment. First, we set up a Canon PowerShot

series camera shooting a plant indoors. We used a fan for

simulating wind, and a slow-moving light source for emu-

lating a low-variation change in the scene. We then sampled

5

t+1t

x

y

t-1

x

Beliefs

Support(t)

t-1 t t+1

eliefsli f
High energy

Low energy

Figure 6. A visualization of the beliefs computed by LBP for a

single pixel in the plant sequence, using a 31× 31× 3 support.

The support frame containing the pixel is zoomed-in on the upper

left. The beliefs over the support are shown on the upper right,

colored from blue (low energy) to red (high energy). We seek the

displacement that has the minimal energy within the support. At

the bottom, the belief surface is shown for the middle frame of

the support region, clearly showing multiple equivalent (or nearly

equivalent) solutions.

the captured video at a low frame rate to introduce aliasing

in time. A sampling rate of 2 frames/sec allowed sufficient

time for the leaves to move and create the typical motion

jitter effect. As can be seen in the result (plant), our algo-

rithm manages to find a stable and faithful configuration for

the plant, while perfectly maintaining the lighting change in

the scene.

sprouts illustrates the process of plants growing in

a similar indoor setup. In this experiment, we set the

camera to capture a still image every 15 minutes, and the

sprouts were placed in an enclosure so that motions are cre-

ated solely by the plants. The motion-denoised result ap-

pears smoother than the original sequence, and captures the

growth process of the plants with the short-term noisy mo-

tions removed. It can be seen that for some parts of the

plants the motions are stabilized (as also shown in the tem-

poral slices of the video (Figures 1,8 right column), while

other parts, namely the sprouts’ tops, are partly removed in

the result. The motion at the top of the stems is the largest,

and the algorithm is sometimes unable to infer the under-

lying stationary configuration using the search volumes we

used. In such cases, the algorithm gracefully removes these

objects and fills-in their place with the background or other

objects they occlude, so as to generate a smooth looking

sequence. Enlarging the support region will allow the algo-

rithm to denoise larger motions (Figure 7), but has a large

impact on its performance as will be discussed shortly.

Time-lapse videos span a large variety of scenes and

styles. To test our technique on a different type of time-

lapse sequences, we experimented with a sequence from the

Extreme Ice Survey (EIS) [1]. EIS documents the changes

to the Earth’s glacial ice via time-lapse photography. We

received their raw time-lapse capture of the Sólheimajökull

glacier in Iceland, taken between April 2007 and May 2010

at a rate of 1 frame per hour (video available in the sup-

plemental material). The characteristics of this sequence,

and motions within it, are quite different than the ones we

addressed before. Their end result, produced manually by

a video editor, is quite cluttered due to changes in lighting

and weather conditions in this extreme environment, which

are difficult to handle manually.

To reduce the sequence size, and prevent the large scene

variations from contaminating the inference, we first sam-

pled this sequence using a non-uniform sampling technique

similar to [3]. We found the gist descriptor [12] useful as

a frame distance measure for computing the sampling, pro-

ducing a more fluent sampling than working in color space

directly using L1 or L2 distance. Our result on this se-

quence resembles the response of a temporal filter. Without

apparent motions jitters, the best solution is to smooth the

sequence temporally. Indeed, the computed displacements

are dominated by the temporal component (Figure 8, bot-

tom row), meaning that the algorithm reduces to temporal

rearrangement. This, however, happens naturally without

user intervention or parameter tuning.

More results are shown in Figure 8. pool and pond
nicely illustrate how the algorithm manages to maintain

temporal events in the scene while eliminating short term

distracting motions. Notice how, in the pool sequence, the

shadows are maintained on the porch and near the swing

chair, and how the rapid motions of the tree in the back and

flowers in the front are stabilized. Worthy of note is that the

input sequences were downloaded from the web in moder-

ate resolution, showing robustness of the algorithm to video

quality and compression artifacts.

In pond, the algorithm manages to denoise the jittery

motions in the water and vegetation, while maintaining the

motion of the sun and its reflection on the water. Some

artifacts are apparent, however, in the sky region. This is

because the clouds’ dynamics does not fully fit our motion

decomposition model – they neither exhibit jittery motion

per se, nor evolve slowly as other objects (e.g. the sun) in the

scene. Adding more careful treatment of such intermediate

motion scales, or allowing the user to specify her desired

motion scale of interest, are interesting directions for future

work.

Despite our optimizations, the running time of the algo-

rithm is still substantial. Solving for a sequence of size 3003

with a 73 search volume takes approximately 50 hours for

our CPU-based C++ implementation of LBP using sequen-

tial message passing, on a quad-core Intel Xeon 2.66GHZ

desktop with 28GB RAM. For such dimensions, the algo-

rithm makes use of 1GB of RAM, and up to 50GB scratch

6

t
In

pu
t

pp
or

t
La

rg
e

su
p

pp
or

t
Sm

al
l s

up

time

Figure 7. Zoom-in on the rightmost plant in the sprouts se-

quence in four consecutive frames shows that enlarging the search

volume used by the algorithm can greatly improve the results.

“Large support” corresponds to a 31 × 31 × 5 search volume,

while “small support” is the 7 × 7 × 5 volume we used in our

experiments.

space on disk. We used an Intel X-25M solid state drive,

which gave an approximate x2 speedup in disk I/O, but the

running time was dominated by the computation of the tem-

poral messages. As this computation is quadratic in the

size of the search volume, using larger volumes means even

larger increase in the run time. We therefore resorted to us-

ing relatively small search volumes in our experiments.

Even with multi-scale processing, some objects might

exhibit motions larger than the range scanned by the algo-

rithm. In such cases they will be gracefully removed from

the sequence, which might not necessarily be the desired

result. Figure 7 demonstrates that this limitation is compu-

tational, rather than theoretical.

5. Conclusion

We have introduced motion denoising – the process of

decomposing videos into long- and short-term motions, al-

lowing motion resynthesis in a way that maintains one and

removes the other. We showed how motion denoising can

be cast as an inference problem within a well-defined data-

driven formulation that does not require explicit motion es-

timation. This allows the algorithm to operate on videos

containing highly involved dynamics. We also showed that

Loopy Belief Propagation is a suitable machinery for per-

forming this inference. Time-lapse videos fit particularly

well within this decomposition model, and we presented a

novel application whose goal is, given an input time-lapse

sequence, to synthesize a new one in which the typical short

term jittery motions are removed whilst the underlying long

term evolution in the sequence is maintained. We presented

results on a set of challenging time-lapse videos. Our tech-

nique successfully generates filtered timelapse sequences

that are visually faithful to the long-term trends and allow a

better grasp of the underlying long-term temporal events in

the scene.

Acknowledgments
We thank Extreme Ice Survey for their glacier time-lapse

video. This research is partially funded by NGA NEGI-1582-

04-0004, Shell Research, ONR-MURI Grant N00014-06-1-0734,

NSF 0964004, Quanta, and by gift from Microsoft, Adobe, and

Google.

References
[1] Extreme Ice Survey. http://www.extremeicesurvey.org/. 6

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and

R. Szeliski. A database and evaluation methodology for op-

tical flow. In ICCV, pages 1–8, 2007. 5

[3] E. Bennett and L. McMillan. Computational time-lapse

video. In ACM SIGGRAPH, volume 26, 2007. 3, 6

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. TPAMI, 23(11):1222–

1239, 2002. 4

[5] T. S. Cho, M. Butman, S. Avidan, and W. T. Freeman. The

patch transform and its applications to image editing. In

CVPR, 2008. 3

[6] P. Felzenszwalb and D. Huttenlocher. Distance transforms

of sampled functions. Cornell Computing and Information
Science Technical Report TR2004-1963, 2004. 4

[7] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-

gation for early vision. IJCV, 70(1):41–54, 2006. 5

[8] C. Liu, A. Torralba, W. Freeman, F. Durand, and E. Adelson.

Motion magnification. In ACM SIGGRAPH, pages 519–526.

ACM, 2005. 2

[9] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-

ing: Label transfer via dense scene alignment. In CVPR,

pages 1972–1979, 2009. 4

[10] F. Liu, M. Gleicher, H. Jin, and A. Agarwala. Content-

preserving warps for 3D video stabilization. In ACM SIG-
GRAPH, pages 1–9, 2009. 2

[11] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y.

Shum. Full-frame video stabilization with motion inpaint-

ing. TPAMI, 28:1150–1163, 2006. 2

[12] A. Oliva and A. Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. IJCV,

42(3):145–175, 2001. 6

[13] M. Ozkan, M. Sezan, and A. Tekalp. Adaptive motion-

compensated filtering of noisy image sequences. volume 3,

pages 277–290. IEEE, 2002. 2

[14] Y. Pritch, E. Kav-Venaki, and S. Peleg. Shift-map image

editing. In ICCV, pages 151–158, 2009. 3, 4

[15] Y. Pritch, A. Rav-Acha, and S. Peleg. Nonchronological

video synopsis and indexing. TPAMI, 30(11):1971–1984,

2008. 3

[16] R. Raskar, A. Ilie, and J. Yu. Image fusion for context en-

hancement and video surrealism. In ACM SIGGRAPH 2005
Courses, page 4. 3

[17] A. Schödl, R. Szeliski, D. Salesin, and I. Essa. Video tex-

tures. In ACM SIGGRAPH, pages 489–498, 2000. 3

[18] K. Sunkavalli, W. Matusik, H. Pfister, and S. Rusinkiewicz.

Factored Time-Lapse Video. In ACM SIGGRAPH, vol-

ume 26, 2007. 3

7

1 2 3 4 5

plant

sprouts

street

pool

pond

glacier Displacement Result frame Diff frame x

t
XT slice

Figure 8. Motion denoising results on time-lapse videos. For each sequence, we show a representative source frame (column 1), result frame

(column 3), and the computed displacement field (column 2; spatial displacement on top, temporal at the bottom). Column 4 illustrates the

delta between the source and result by thresholding the color difference between the frames and copying pixels from the source. Column

5 shows a part of an XT slice of the video volumes for the input (left) and motion-denoised sequence (right).

[19] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-

mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-

parative study of energy minimization methods for markov

random fields with smoothness-based priors. TPAMI, pages

1068–1080, 2007. 3, 4

[20] M. Tappen and W. Freeman. Comparison of graph cuts with

belief propagation for stereo, using identical MRF parame-

ters. In ICCV, pages 900–907, 2003. 4

[21] Y. Ukrainitz and M. Irani. Aligning sequences and actions by

maximizing space-time correlations. In ECCV, pages 538–

550, 2006. 3

[22] Y. Weiss. Deriving intrinsic images from image sequences.

ICCV, 2:68–75, 2001. 3

[23] J. Yedidia, W. Freeman, and Y. Weiss. Understanding be-

lief propagation and its generalizations. Exploring artificial
intelligence in the new millennium, 8:236–239, 2003. 4

8

