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Abstract

Current object recognition systems can only recognize adadmumber of object
categories; scaling up to many categories is the next cigaleWe seek to build
a system to recognize and localize many different obje@gmates in complex
scenes. We achieve this through a simple approach: by matthé input im-
age, in an appropriate representation, to images in a leagertg set of labeled
images. Due to regularities in object identities acrosslaimcenes, the retrieved
matches provide hypotheses for object identities and imtsit We build a prob-
abilistic model to transfer the labels from the retrievdltsghe input image. We
demonstrate the effectiveness of this approach and stgdyiddm component
contributions using held-out test sets from the LabelMaldase.

1 Introduction

The recognition of objects in a scene often consists of nragclepresentations of image regions
to an object model while rejecting background regions. Reegamples of this approach include
aligning pictorial cues [4], shape correspondence [1], mwdeling the constellation of parts [5].
Other models, exploiting knowledge of the scene contexthitivthe objects reside, have proven
successful in boosting object recognition performance 20315, 7, 13]. These methods model the
relationship between scenes and objects and allow infawmatansfer across the two.

Here, we exploit scene context using a different approaehformulate the object detection prob-
lem as one of aligning elements of the entire scene to a laagebdse of labeled images. The
background, instead of being treated as a set of outlieused to guide the detection process. Our
approach relies on the observation that when we have a lameb database of labeled images, we
can find with high probability some images in the databasedtevery close to the query image
in appearance, scene contents, and spatial arrangemett] [6Since the images in the database
are partially labeled, we can transfer the knowledge of #teling to the query image. Figure 1
illustrates this idea. With these assumptions, the proldéobject detection in scenes becomes a
problem of aligning scenes. The main issues are: (1) Can weflrig enough dataset to span the
required large number of scene configurations? (2) Givemjautimage, how do we find a set of
images that aligns well with the query image? (3) How do wesdfar the knowledge about objects
contained in the labels?

The LabelMe dataset [14] is well-suited for this task, hgvinlarge number of images and labels
spanning hundreds of object categories. Recent studieg nsen-parametric methods for computer
vision and graphics [19, 6] show that when a large number afjies are available, simple indexing
techniques can be used to retrieve images with object aeraegts similar to those of a query image.

The core part of our system is the transfer of labels fromriegies that best match the query image.
We assume that there are commonalities amongst the labglect®in the retrieved images and we
cluster them to form candidate scenes. These scene clgatetsints as to what objects are depicted
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Figure 1: Overview of our system. Given an input image, we search for imagemd a similar scene
configuration in a large labeled database. The knowledge contained ibjdw abels for the best matching
images is then transfered onto the input image to detect objects. Additiémahation, such as depth-ordering
relationships between the objects, can also be transferred.
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Figure 2:Retrieval set images. Each of the two rows depicts an input image (onftharld 30 images from
the LabelMe dataset [14] that best match the input image using the distdg¢42] and L1 distance (the images
are sorted by their distances in raster order). Notice that the retrievegigenerally belong to similar scene
categories. Also the images contain mostly the same object categories, avidlngér objects often matching
in spatial location within the image. Many of the retrieved images share singitangtric perspective.

in the query image and their likely location. We describelatieely simple generative model for
determining which scene cluster best matches the queryemad use this to detect objects.

The remaining sections are organized as follows: In Se@jome describe our representation for
scenes and objects. We formulate a model that integrataaftirenation in the object labels with
object detectors in Section 3. In Section 4, we extend thidehim allow clustering of the retrieved
images based on the object labels. We show experimentdisesour system output in Section 5,
and conclude in Section 6.

2 Matching Scenes and Objectswith the Gist Feature

We describe the gist feature [12], which is a low dimensiaegresentation of an image region
and has been shown to achieve good performance for the ssegmnition task when applied to an
entire image. To construct the gist feature, an image regi@gassed through a Gabor filter bank
comprising 4 scales and 8 orientations. The image regionigead! into a 4x4 non-overlapping grid
and the output energy of each filter is averaged within eaithagdl. The resulting representation
isa4 x 8 x 16 = 512 dimensional vector. Note that the gist feature preservaastructure
information and is similar to applying the SIFT descript®} fo the image region.

We consider the task of retrieving a set of images (which ver te as theaetrieval se} that closely
matches the scene contents and geometrical layout of ahimpge. Figure 2 shows retrieval sets
for two typical input images using the gist feature. We shbestiop 30 closest matching images
from the LabelMe database based on the L1-norm distancehvidhrobust to outliers. Notice that
the gist feature retrieves images that match the scene fyihe ainput image. Furthermore, many
of the objects depicted in the input image appear in theengttiset, with the larger objects residing
in approximately the same spatial location relative to thage. Also, the retrieval set has many



images that share a similar geometric perspective.

well and we account for outliers in Section 4.
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each point corresponding to a tested ob-
ject category. As a guide, a diagondtigure 3: Evaluation of the goodness of the retrieval set by
line is displayed; those points that rebow well it predicts which objects are present in the input im-
side above the diagonal indicate bettél9€: WF build a Sim.g'e dcéasﬂﬁ?r based on dofjtke)ct"&ountt)s in tlhe
: retrieval set as provided by their associated LabelMe object la-
S.VM performanc_e (and vice ver_sa). No els. We compare this to detection based on local appearance
tice thfat the remeva! set p.red'CtS_ wel lone using an SVM applied to bounding boxes in the input im-
the objects present in the input imaggge (the maximal score is used). The area under the ROC curve
and outperforms the detectors based @computed for many object categories for the two classifiers.
local appearance information (the SVMJperformance is shown as a scatter plot where each point repre-
for most object classes. sents an object category. Notice that the retrieval set predicts
well object presence and in a majority cases outperforms the
SVM output, which is based only on local appearance.

3 Utilizing Retrieval Set
Images for Object Detec-
tion

In Section 2, we observed that the set of labels correspgridiimages that best match an input
image predict well the contents of the input image. In thigtisa, we will describe a model that
integrates local appearance with object presence andakpldlihood information given by the
object labels belonging to the retrieval set.

We wish to model the relationship between object categorigkeir spatial locatiorr within an
image, and their appearange For a set ofN images, each having/; object proposals ovek
object categories, we assume a joint model that factorizésllaws:
N M; 1
p(o,z,gl0,6,n) = H H Z p(0i jlhi 3, 0) p(xijloi s, hij, @) P(gijl0i 4, hig,m)
i=1j=1h; ;=0
We assume that the joint model factorizes as a product oé tierens: (i)p(o; j|hi ; = m,6,,), the
likelihood of which object categories will appear in the gea (i) p(x; jo;; = 1, hij = m, dm 1),
the likely spatial locations of observing object categdrythe image, and (iiip(g; ;|0i,; =1, hi; =
m,nm,1), the appearance likelihood of object categbryVe leth; ; = 1 indicate whether object
categoryo; ; is actually present in location; ; (h; ; = 0 indicates absence). Figure 4 depicts the
above as a graphical model. We use plate notation, wheredtigble nodes inside a plate are
duplicated based on the counts depicted in the top-leftszarfithe plate.

1)

We instantiate the model as follows. The spatial locationhjécts are parameterized as bounding

— Y h Y H : . .
boxesz; ; = (cf ;. ¢} ;. ¢y, city) where(cf ;, ¢f ;) is the centroid andcf’; c}*;) is the width and

3



height (bounding boxes are extracted from object labelsdhtly cropping the polygonal annota-
tion). Each component af; ; is normalized with respect to the image to ligin1]. We assumé,,,

are multinomial parameters agg, ; = (tm.i, Am ;) are Gaussian means and covariances over the
bounding box parameters. Finally, we assumeis the output of a trained SVM applied to a gist
featureg; ;. We letn,, , parameterize the logistic functidit + exp(—n.,,; [1 g:.;]7)) "

The parameters,, ; are learned offline by first
training SVMs for each object class on the set
of all labeled examples of object clasand a
set of distractors. We then fit logistic functions
to the positive and negative examples of each
class. We learn the parametets and ¢,, ;
online using the object labels corresponding to
the retrieval set. These are learned by sim- ,) ]
ply counting the object class occurrences and Y
fitting Gaussians to the bounding boxes corr&igure 4: Graphical model that integrates informa-
sponding to the object labels. tion about which objects are likely to be present in the

. . . . imageo, their appearance, and their likely spatial lo-
For the input image, we wish to infer the laterdationz. The parameters for object appearancare
variablesh; ; corresponding to a dense samearned offline using positive and negative examples for
pling of all possible bounding box locationsach object class. The parameters for object presence
z; ; and object classes; ; using the learned likelihood 6 and spatial locatior are learned online
parameterd,,,, ¢, ;, andn,, ;. For this, we from the retrieval set. For all possible bounding boxes
compute the postierior distributiop(hiyj — inthe input image, we wish to infét, which indicates
mloi; = 1,231 Gi.j> Oms Gt Nt )» WhiCh is whether an object is present or absent.

proportional to the product of the three learned distritmsi form = {0, 1}.

The procedure outlined here allows for significant comporal savings over naive application of
an object detector. Without finding similar images that rhatee input scene configuration, we
would need to apply an object detector densely across tlire émiage for all object categories. In
contrast, our model can constrain which object categoddsdak for and where. More precisely,
we only need to consider object categories with relativédy iprobability in the scene model and
bounding boxes within the range of the likely search locetio These can be decided based on
thresholds. Also note that the conditional independenogdied by the graphical model allows us
to fit the parameters from the retrieval set and train theathjetectors separately.

Note that for tractability, we assume Dirichlet and Norriralerse-Wishart conjugate prior distrib-
utions overd,, andg,, ; with hyperparemterg andv = (x, 9, v, A) (expected meat, x pseudo-
counts on the scale of the spatial observationdegrees of freedom, and sample covariaje
Furthermore, we assume a Bernoulli prior distribution okgj parameterized by = 0.5. We
hand-tuned the remaining parameters in the model. AEgr= 0, we assume the noninformative
distributionso; ; ~ Uniform(1/L) and each component of ; ~ Uniform(1).

4 Clustering Retrieval Set Images for Robustness to Mis
matches

While many images in the retrieval set match the input imagmeconfiguration and contents,

there are also outliers. Typically, most of the labeled cisjén the outlier images are not present
in the input image or in the set of correctly matched retli@veages. In this section, we describe

a process to organize the retrieval set images into consigligsters based on the co-occurrence of
the object labels within the images. The clusters will tafliccorrespond to different scene types

and/or viewpoints. The task is to then automatically chdbsecluster of retrieval set images that

will best assist us in detecting objects in the input image.

We augment the model of Section 3 by assigning each imageatemat Iclustes;. The cluster as-
signments are distributed according to the mixing weight&\e depict the model in Figure 5(a).
Intuitively, the model finds clusters using the object lalegl; and their spatial location; ; within
the retrieved set of images. To automatically infer the neindf clusters, we use a Dirichlet Process
prior on the mixing weightsr ~ Stick(«), whereStick(«) is the stick-breaking process of Grif-
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Figure 5: (a) Graphical model for clustering retrieval set images using theircotgeels. We extend the
model of Figure 4 to allow each image to be assigned to a latent clystehich is drawn from mixing weights
7. We use a Dirichlet process prior to automatically infer the number of ¢chisWe illustrate the clustering
process for the retrieval set corresponding to the input image in ¢pHigtogram of the number of images
assigned to the five clusters with highest likelihood. (d) Montages of ratrimt images assigned to each
cluster, along with their object labels (colors show spatial extent), shoe).irff) The likelihood of an object
category being present in a given cluster (the top nine most likely objectsted). (g) Spatial likelihoods for
the objects listed in (f). Note that the montage cells are sorted in raster order

fiths, Engen, and McCloskey [8, 11, 16] with concentratiorapzetera. In the Chinese restaurant
analogy, the different clusters correspond to tables aacgérameters for object presertgeand
spatial locationp,, are the dishes served at a given table. An image (along veithhifect labels)
corresponds to a single customer that is seated at a table.

We illustrate the clustering process for a retrieval sebhging to the input image in Figure 5(b).
The five clusters with highest likelihood are visualizedia tolumns of Figure 5(d)-(g). Figure 5(d)
shows montages of retrieval images with highest likelihtiad were assigned to each cluster. The
total number of retrieval images that were assigned to eadter are shown as a histogram in
Figure 5(c). The number of images assigned to each clustgportional to the cluster mixing
weights, 7. Figure 5(e) depicts the object labels that were providedHfe images in Figure 5(d),
with the colors showing the spatial extent of the object leb&lotice that the images and labels
belonging to each cluster share approximately the sametotgtegories and geometrical config-
uration. Also, the cluster that best matches the input imagéds to have the highest number of
retrieval images assigned to it. Figure 5(f) shows theiliikeld of objects that appear in the cluster



(the nine objects with highest likelihood are shown). Thigesponds té in the model. Figure 5(g)
depicts the spatial distribution of the object centroidhivitthe cluster. The montage of nine cells
correspond to the nine objects listed in Figure 5(f), soitester order. The spatial distributions
illustrate®. Notice that typically at least one cluster predicts wedl tibjects contained in the input
image, in addition to their location, via the object likedids and spatial distributions.

To learnd;, and¢,, we use a Rao-Blackwellized Gibbs sampler to draw sampdes fhe posterior
distribution overs; given the object labels belonging to the set of retrievedgiesa We ran the
Gibbs sampler for 100 iterations. Empirically, we obserueldtively fast convergence to a stable
solution. Note that improved performance may be achievél variational inference for Dirichlet
Processes [10, 17]. We manually tuned all hyperparamesgéng @ validation set of images, with
concentration parameter = 100 and spatial location parametets= 0.1, ¥ = 0.5, v = 3, and

A = 0.01 across all bounding box parameters (with the exceptioa et 0.1 for the horizontal
centroid location, which reflects less certainty a prioatthe horizontal location of objects). We
used a symmetric Dirichlet hyperparameter with= 0.1 across all object categoriés

For final object detection, we use the learned parametgtsand¢ to infer h; ;. Sinces; andh; ;
are latent random variables for the input image, we perfcand IlEM by marginalizing ovek; ; to
infer the best clustes;. We then in turn fixs; and inferh; ;, as outlined in Section 3.

5 Experimental Results

In this section we show qualitative and quantitative ressfdt our model. We use a subset of the
LabelMe dataset for our experiments, discarding spurrangsnonlabeled images. The dataset is
split into training and test sets. The training set has 156%ges and 105034 annotations. The
test set has 560 images and 3571 annotations. The test sptisesnimages of street scenes and
indoor office scenes. To avoid overfitting, we used streetes@émages that were photographed in
a different city from the images in the training set. To oeene the diverse object labels provided
by users of LabelMe, we used WordNet [3] to resolve synonyos object detection, we extracted

3809 bounding boxes per image. For the final detection esumét used non-maximal suppression.

Example object detections from our system are shown in Eig(),(d),(e). Notice that our system
can find many different objects embedded in different scgpe tonfigurations. When mistakes
are made, the proposed object location typically makeseseithin the scene. In Figure 6(c), we
compare against a baseline object detector using only egpeainformation and trained with a
linear kernel SVM. Thresholds for both detectors were sgidlnl a 0.5 false positive rate per image
for each object category~(1.3e-4 false positives per window). Notice that our systeodpces
more detections and rejects objects that do not belong teciee. In Figure 6(e), we show typical
failures of the system, which usually occurs when the rediiset is not correct or an input image is
outside of the training set.

In Figure 7, we show quantitative results for object detatfior a number of object categories.

We show ROC curves (plotted on log-log axes) for the locakapgnce detector, the detector from
Section 3 (without clustering), and the full system withstering. We scored detections using the
PASCAL VOC 2006 criteria [2], where the outputs are sortexifrmost confident to least and the
ratio of intersection area to union area is computed betva@eoutput bounding box and ground-

truth bounding box. If the ratio exceeds 0.5, then the oupdeemed correct and the ground-truth
label is removed. While this scoring criteria is good for sooibgects, other objects are not well

represented by bounding boxes (e.g. buildings and sky).

Notice that the detectors that take into account context&jly outperforms the detector using local
appearance only. Also, clustering does as well and in sosesaautperforms no clustering. Finally,
the overall system sometimes performs worse for indooresceihis is due to poor retrieval set
matching, which causes a poor context model to be learned.

6 Conclusion

We presented a framework for object detection in scenesdbasdransferring knowledge about
objects from a large labeled image database. We have shawm ttelatively simple parametric
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Figure 6: (a) Input images. (b) Object detections from our system combiningesaignment with local
detection. (c) Object detections using appearance information only witBVdh. Notice that our system
detects more objects and rejects out-of-context objects. (d) Moretsutpm our system. Notice that many
different object categories are detected across different scégleBailure cases for our system. These often
occur when the retrieval set is incorrect.

model, trained on images loosely matching the spatial cordign of the input image, is capable
of accurately inferring which objects are depicted in thauinimage along with their location. We
showed that we can successfully detect a wide range of slyjleglicted in a variety of scene types.
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