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(a) Input sequence (b) Motion magnified sequence

Figure 1: Frames from input and motion magnified output sequence. The algorithm groups the input (a) into motion layers and amplifies the
motions of a layer selected by the user. Deformations of the swing support elements are revealed in the motion magnified output sequence
(b), magnifying the original motions by a factor of 40.

Abstract

We present motion magnification, a technique that acts like a
microscope for visual motion. It can amplify subtle motions in a
video sequence, allowing for visualization of deformations that
would otherwise be invisible. To achieve motion magnification,
we need to accurately measure visual motions, and group the
pixels to be modified. After an initial image registration step, we
measure motion by a robust analysis of feature point trajectories,
and segment pixels based on similarity of position, color, and
motion. A novel measure of motion similarity groups even very
small motions according to correlation over time, which often
relates to physical cause. An outlier mask marks observations not
explained by our layered motion model, and those pixels are simply
reproduced on the output from the original registered observations.

The motion of any selected layer may be magnified by a user-
specified amount; texture synthesis fills-in unseen “holes” revealed
by the amplified motions. The resulting motion-magnified images
can reveal or emphasize small motions in the original sequence, as
we demonstrate with deformations in load-bearing structures, sub-
tle motions or balancing corrections of people, and “rigid” struc-
tures bending under hand pressure.

Keywords: video-based rendering, computer vision, video pro-
cessing, motion processing

1 Introduction

Visual motion can occur at different amplitudes, and over different
temporal and spatial frequency scales. Small motions are difficult
to observe, yet may reveal important information about the
world: small deformations of structures, minute adjustments in

∗Email: {celiu, torralba, billf, fredo, adelson}@csail.mit.edu

an equilibrium process, or the small movements of a system in
response to some forcing function. We want a machine which will
reveal and clarify those motions, much as a microscope can reveal
small and invisible structures.

We have developed a technique, called Motion Magnification,
which acts like a microscope for motion in video sequences.
The algorithm analyzes the motions of an input video sequence,
allowing a user to specify a cluster of pixels to be affected, and how
much their motions are to be magnified. Typically, small motions
are amplified and large motions are left unchanged. The final stage
of motion magnification is to render the sequence with the desired
motions magnified by the specified amount.

While motion magnification is conceptually simple, performing
it without objectionable artifacts requires considerable attention
to detail. We introduce techniques to analyze motion robustly,
verifying estimated motions as well as their regions of support. The
selection of motions to be amplified is made simple and intuitive
by an automatic grouping process, where a prespecified number
of pixel clusters are found, based on their similarity in position,
intensity, and motion characteristics. For this, we introduce a
measure of affinity that groups points based on their trajectories
over time, not just the similarities of their instantaneous velocities.
The user specifies which cluster’s motions should be amplified and
by how much. Holes revealed by amplified motions are filled using
texture synthesis methods.

We demonstrate motion magnification with several proof-of-
concept examples, magnifying small-amplitude motions in videos
of structures or people. We envision potential applications ranging
from engineering diagnosis or instruction to comedic amplification
of ordinary expressions.

2 Related Work

Motion magnification analyzes and redisplays a motion signal, and
thus relates to research on manipulating and redisplaying motion
capture data, such as modifications to create new actions from
others [Arikan and Forsyth 2002; Lee et al. 2002; Pullen and
Bregler 2002; Li et al. 2002], and methods to alter style [Brand and
Hertzmann 2000; Gleicher 1998; Unuma et al. 1995]. Of course,
our problem is in a different domain; we manipulate video data,
not marker positions, and thus have a more difficult analysis task,



(a) Registered input frame (b) Clustered trajectories of tracked features (c) Layers of related motion and appearance

(d) Motion magnified, showing holes (e) After texture in-painting to fill holes (f) After user’s modifications to segmentation map in (c)

Figure 2: Summary of motion magnification processing steps; see overview in Section 3.

but also have the richer synthesis possibilities of video.
Several other projects have used video motion analysis in or-

der to synthesize an output. Brostow and Essa [Brostow and Essa
2001] tracked frame-to-frame motion of objects, then integrated the
scene’s appearance as it changed over a synthetic shutter time to
simulate motion blur. Video textures [Schodl et al. 2000] analyzes
the overall similarity of all frames to identify candidate temporal
jumps in a modified playback of the video. Several researchers
have used a layered motion analysis to synthesize a modified video
[Wang and Adelson 1994; Jojic and Frey 2001], where the mod-
ification typically involves removing individual layers. However,
many of the techniques used to group pixels of similar motions into
layers would not work for our difficult case of analyzing very small
motions. While the above projects relate at the general level of
motion analysis followed by synthesis, we are not aware of any
previous work addressing motion magnification.

3 Overview

We want to find small motions in a video and magnify them. We
model the appearance of the input video as trajectories (trans-
lations) of the pixel intensities observed in a reference frame.
Naı̈vely, this sounds like one simply needs to (a) compute the trans-
lation from one pixel to the next in each frame, and (b) re-render the
video with small motions amplified. Unfortunately, such a naı̈ve ap-
proach would lead to artifactual transitions between amplified and
unamplified pixels within a single structure. Most of the steps of
motion magnification relate to reliably estimating motions, and to
clustering pixels whose motions should be magnified as a group.
While we ultimately estimate a motion at every pixel, we begin by
analyzing and grouping the motions of feature points, local inten-
sity configurations that are promising candidates for finding reliable
motion trajectories. Below we motivate and summarize each step
of the motion magnification processing. The processing steps are
illustrated with the swing set images in Fig. 2.

3.1 Register input images

When we magnify small motions, it is essential to begin by regis-
tering the frames, to prevent amplifying the inevitable small mo-

tions due to camera shake. For this step, we assume that the in-
put image sequence depicts a predominantly static scene. We per-
form an initial tracking of detected feature points and find the affine
warp which best removes the motions of the set of tracked feature
points, ignoring outliers. After intensity normalization for any ex-
posure variations, the resulting registered images are ready for mo-
tion analysis.

3.2 Cluster feature point trajectories

In order that the motion magnification not break apart coherent ob-
jects, we seek to group objects that move with correlated (not neces-
sarily identical) motions. To achieve this, we robustly track feature
points throughout the sequence, then cluster their trajectories into
K sets of correlated motions. One special cluster of feature points
with no translation over frames is the background cluster. An im-
portant contribution of this work is the computation of trajectory
correlation in a manner invariant to the overall scale of the motions,
thereby allowing very small motions to be grouped with larger mo-
tions to which they are correlated. For example, the left extremity
of the beam in Fig. 2 has larger motion magnitude than the points
attached to the vertical beam, and some points along the beam move
in opposite phase, yet, they should all be assigned to the same mo-
tion layer because they belong to a “common cause”. The motions
are all specified as translations from the feature point position in a
reference frame.

3.3 Segmentation: layer assignment

From the clustered feature point trajectories, we want to derive
motion trajectories for each pixel of the reference frame. We
interpolate a dense motion field for each motion cluster, giving us
K possible motion vectors at each pixel. We need to assign each
pixel of every frame to one of the clusters or motion layers.

It is possible, in principle, to perform segmentation using
motion alone [Wang and Adelson 1994; Jojic and Frey 2001],
but reliable segmentation requires the use of additional features.
We use pixel color, position, as well as motion to estimate the
cluster assignment for each pixel, defining a Markov random field
which we solve using graph cuts [Boykov et al. 2001]. To impose



temporal consistency, we then assign each pixel trajectory to its
most commonly assigned cluster over all time frames.

This gives us a layered motion representation such as that pro-
posed by Wang and Adelson [1994], but generalizing layer mem-
bership to include correlated motions, and not just similar ones.
Our model of the video is a set of temporally constant pixel intensi-
ties, clustered into layers, which translate over the video sequence
according to interpolated trajectories that are unique to each pixel.
The layer ordering can be specified by the user, or computed using
the methods of Brostow and Essa [1999]. In practice, it is suffi-
cient to randomly assign the ordering of non-background layers if
the magnified layer has minimal occlusions with other layers, as is
often the case. At each stage, pixels which do not fit the model
are relegated to a special “outlier layer”. The other layer that is
treated specially is the background layer. Regions of the back-
ground layer which were never seen in the original video sequence
may be made visible by amplified motions of motion layers above
the background. We thus fill-in all holes in the background layer by
the texture synthesis method of Efros and Leung [1999].

3.4 Magnify motions of selected cluster

After the layers are determined, the user specifies a layer for motion
magnification. Presently, the magnification consists of amplifying
all translations from the reference position by a constant factor,
typically between 4 and 40, but more general motion modification
functions are possible.

3.5 Render video

Following motion magnification, we render the modified video se-
quence. The background layer is constant for all frames and we ren-
der its pixels first. Then the pixels assigned to the outlier layer are
copied as they appeared in the registered input frames. Finally, the
pixels of the remaining layers are written into the output sequence.
The intensities are those of the reference frame; the displacements
are those of the measured or magnified motions, as appropriate to
the layer. In the following sections, we describe each processing
step of motion magnification in detail.

4 Robust Video Registration

Since we magnify small motions, we need to be very careful
that stationary pixels are not classified as moving. Because of
inevitable small camera motions, even with a tripod, almost all
pixels are moving in the input sequences. To address this prob-
lem, we devised a fully automatic system to align the input images.

The main idea comes from recent work [Sand and Teller 2004].
Instead of registering images frame to frame, our algorithm finds
a reliable set of feature points that are classified as “still”. Then
an affine motion is estimated from the matched feature points. All
frames are registered to a reference frame, typically the first frame
in our system.

We detect corners at different scales in the reference frame
using a hierarchical version of Harris corner detector [Harris and
Stephens 1988], with a modification from page 45 of Nobel’s
thesis [Nobel 1989]. Then we compute a flow vector for each
feature point from the reference frame to each of the other frames
based on the minimum sum of squared differences (SSD) over a
small patch. The precision of the flow vector is further refined to
sub-pixel level based on a local Lucas-Kanade algorithm [Lucas
and Kanade 1981; Shi and Tomasi 1994].

Before describing the affine motion estimation, we introduce
some notation conventions of the paper. We measure N feature
points over K frames. The nth (n = 1 · · ·N) feature point in frame
k (k = 1 · · ·K) is denoted as (n,k). The coordinate of feature point
(n,k) is (xnk,ynk). Likewise, the flow vector from the reference

frame is denoted as (vx
nk,v

y
nk). For similarity measurements, we

consider a window or patch Bnk of size 2w × 2w around each
feature point (n,k). Bnk(p,q) is the pixel at relative coordinates
(p,q) from the centroid of patch Bnk. Note that when we use
sub-pixel coordinate (xnk,ynk), we interpolate the patch using
bicubic reconstruction.

A global affine motion Ak ∈R
2×3 is estimated from the reference

frame to frame k with a weight depending on the quality of the
local appearance match. The probability that a feature point (n,k)
participates in this affine motion is estimated as

Prnk = exp{−‖Ak[xnk ynk 1]T − [vx
nk vy

nk]
T ‖2/(2σ2

k )} (1)

where variance σk is estimated as the mean reconstruction error
σk = 1

n ∑n ‖Ak[xnk ynk 1]T − [vx
nk vy

nk]
T ‖2. We treat the ego motion

of the camera as random noise, and therefore the probability
for feature point n contributing to the global affine motion over
all frames is the product of the probability for each frame:
Prn = ∏k Prnk.

Finally, the stable feature points are selected by their probability
relative to that of the most probable feature point:

Prn > αK ·max
i

Pri. (2)

We find α = 0.3 works well for all the sequences we have tested.
By this procedure, unstable feature points, such as those on oc-
cluding boundaries, in disoccluded regions and at rapidly moving
objects, are discarded. Only the feature points that consistently
contribute to a global affine motion across all the frames are
selected for registration.

When the stable feature points are selected, we redo the SSD
matching and local Lucas-Kanade refinement from the reference
frame to each of the rest of the frames. The rest of the frames are
all registered to the reference frame from a global affine warp Ãk
estimated from the matching upon this stable feature point set. In
this step we also perform histogram equalization for each frame to
the reference frame to remove illumination or exposure changes.

5 Robust Computation and Clustering of

Feature Point Trajectories

In the previous section, we computed feature trajectories for the
static background in order to stabilize the sequence. We now turn
to the computation of trajectories for feature points over the whole
image and to their clustering into motions that are correlated.

5.1 Variable region feature point tracking

Once the images have been registered, we find and track feature
points for a second time. The goal of this feature tracking is to find
the trajectories of a reliable set of feature points to represent the
motions in the video. As before, the steps consist of feature point
detection, SSD matching and local Lucas-Kanade refinement.
For simplicity, we use only those features detected in the first frame.

To achieve reliable feature point matching near occlusion
boundaries, [Sawhney et al. 2001] displaced the rectangular region
of support away from the boundary edge. Here we introduce a
method to find regions of support of general shape, tailored to each
feature point. We compute a weight or support map for each feature
patch that characterizes how pixels should be weighted in the SSD
similarity measures. For features near occlusion boundaries, this
increases reliability by only comparing pixel intensities with others
on the same side of the boundary. This map, shown in Fig. 3,
also lets us assess the validity of each feature trajectory, useful in
both the SSD matching and Lucas-Kanade refinement. We call this
method variable region feature point tracking.
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Figure 3: Learned regions of support allow features (a) and (b) to
reliably track the leaf and background, respectively, despite partial
occlusions. For feature (b) on the stationary background, the plots
show the x (left) and y (right) coordinates of the track both with
(red) and without (blue) a learned region of support for appearance
comparisons. The track using a learned region of support is con-
stant, as desired for feature point on the stationary background.

We use an Expectation Maximization (EM) algorithm [Dempster
et al. 1977] to learn the weight map associated with each feature
point. The EM algorithm alternates between an “E-step”, when the
weight map (region of support) is estimated for an assumed fea-
ture translation, and an “M-step”, when the feature translation is
updated, using the weight map just estimated.

E-step

We first estimate the probability that each feature point trajectory
is reliable. We call reliable trajectories inliers and unreliable ones
outliers. Two conditions must be met for the inliers: (1) the SSD
matching error at each position of the feature point (compared with
the appearance in the reference frame) must be small, and (2) there
must be nearby feature point positions from other times along the
trajectory. To compute the second term, we evaluate the mean dis-
tance to the N nearest feature points in the same trajectory. The
tracking inlier probability of feature n at frame k (k > 1) is com-
puted as

Prnk = exp{− SSDnk

2 min
1<i6K

SSDni
− dnk

2 min
16i6K

dni)
}, (3)

where SSDnk is the SSD of feature n at frame k, and dnk is the
mean distance of feature n at frame k to the N-nearest feature
points in the same trajectory.

The weight map is estimated from the average reconstruction er-
ror for the pixel (p,q) (−w 6 p,q 6 w) relative to the feature point.
We use a patch size w = 7 for all the examples. The weight is there-
fore computed as

Φn(p,q)=exp{−p2+q2

2s2 −∑K
k=2‖Bnk(p,q)−Bn,1(p,q)‖2Prnk

2σ2
n ∑K

k=2 Prnk
} (4)

where s = w/2 and σ 2
n is the mean variance over frames k’s and

positions (p,q). Intuitively, the neighboring pixels that are close to
the feature point and have less variation in matching should have
high weight.
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Figure 4: Top images show a feature point on the stationary back-
ground layer becoming occluded during frames 6 and 7. Below are
the x- and y- coordinates of the tracked feature, showing outlier po-
sitions. These can be identified from the inlier probabilities shown
as a bar plot (repeated for comparison with each plot) and replaced
with smoothed values.

M-step
The M-step is the same as the previous SSD matching and local
Lucas-Kanade refinement except that the weight map Φn is used.
The use of this map, indicating the region of support for each
feature, results in more reliable feature point tracking, illustrated in
Fig. 3.

Experimentally, we found that after 10 iterations of EM most of
the feature points converge to a reliable estimate of the weight map
as well as the local flow vector. However, some feature points do
not yield valid trajectories and must be pruned. We use a number
of criteria to prune feature points:

• Minimum matching error Some feature points may appear
in the reference frame but not in others. For such cases,
the minimum matching error remains high. We remove
these spurious trajectories by setting an upper bound on the
minimum matching error; this threshold is set so that feature
points which appear only in the first frame are removed.

• Inlier probability Some feature points reappear, but sel-
dom, indicating an unreliable trajectory. We use the average
inlier probability 1

K ∑k Prnk as a metric for trajectory n. A
trajectory is removed if the average inlier probability is below
a threshold, set to be 30% of the mean inlier probability for
the trajectory.

• Matching outlier detection, removal and filling Finally,
we must smooth some of the remaining inlier feature point
trajectories because of occlusions at some frames, which gen-
erates impulsive noise in the trajectory and a corresponding
increase in the matching error, as shown in Fig. 4. These
events are detected from the inlier probability at each time
frame and removed. We fill in the missing feature point
positions by minimizing the second derivative energy of the
trajectory over time, by summing the squared responses from
filtering with [−1 2 −1]. The resulting least squares problem
is solved by a standard conjugate gradient method, [Strang
1986].

The first two criteria are used both before and after the EM algo-
rithm, and the third criterion is applied only after EM. The output of
the feature point tracking is a set of feature points, their regions of
support, reliabilities, and trajectories over time. These trajectories
are output to the next module for clustering.



5.2 Clustering by coherent motion

We seek to group related feature point trajectories into clusters,
which will form the basis for our assignment of pixels to motion
layers. Using motion, we can group regions of varying appearance
or without spatial continuity (due to occlusions). Our goal in
the clustering is that motions with a common cause be grouped
together, even though the motions may be in different directions.

To do this, we use the entire motion trajectory of each feature
point, not just instantaneous motions. Motions caused by the same
physical source tend to covary and have common modes of reso-
nance [Zelnik-Manor and Irani 2003]. We introduce the use of nor-
malized correlation between the trajectories as a measure of their
similarity. Composing the x and y components of the velocities into
a complex motion vector, the correlation index ρn,m between the
trajectories of two feature points n and m is:

ρn,m =

∣
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(5)

with j =
√
−1.

The normalized correlation between complex velocities is
invariant to both the direction of the motion trajectories, and their
magnitudes. In the swingset example, the motions of the beam and
of the chain attached to the beam show a high correlation index
even though they have very different magnitudes and are moving
in different directions (because of the normalization and absolute
value operations in Eq. (5)). The normalized correlation is close
to zero for feature points that belong to objects with independent
motions. For instance, the trajectories of points belonging to the
swing structure and the blowing leaves have very small correlation
when evaluated over 25 frames.

Using the normalized correlation, we construct a similarity ma-
trix between all feature tracks, then use spectral clustering [Shi and
Malik 1998] to group them into K clusters, a number selected by
the user to give physically reasonable groupings. Before clustering,
feature points having fewer than 5 neighbors with ρ > 0.9 are re-
moved and considered as outliers. Fig. 2(c) shows the clustering
result for the swing sequence using 6 clusters.

5.3 Dense optic flow field interpolation

From each group of feature tracks, we seek to interpolate a dense
optic flow field over all pixels; we will then assign each pixel to
one motion group to form a layered motion representation.

Because the tracked objects can be non-rigid, we interpolated
using locally weighted linear regression to estimate an affine mo-
tion for the query pixel, following the approach of [Sand and Teller
2004]. To speed the computation, we apply this interpolation on a
sparse lattice of every fourth pixel. Then a bicubic interpolation is
applied to obtain the dense flow field for all pixels. This two-step
approach reduced the complexity by one order of magnitude with
little cost in precision. We denote M(l)

ik the dense flow field from
frame i to frame k for layer l.

6 Segmentation: Assignment of Each Pixel

to a Motion Cluster

We seek to assign every pixel to one of the motion clusters (layers).
We do so using three cues: motion likelihood, color likelihood, and
spatial connectivity. In the subsections that follow, we construct
grouping probabilities for each cue to form a probability for a given
layer assignment that we optimize by graph cuts. Finally, we im-
pose a temporal coherence constraint to add poorly fitting pixels to
the outlier layer.

6.1 Motion likelihood

The likelihood for pixel Ik(x,y) at frame k to be generated by layer
l is computed from reconstruction error

PrM(Ik(x,y)|l) = exp{−
k+u

∑
i=k−u

‖Ik(x,y)− Ii(M
(l)
ik (x,y))‖2

2σ2
M

}. (6)

Where u is the number of neighboring frames and σ 2
M is the vari-

ance. Often, motion segmentations are based on two sequential
frames, but we find that a large u, such as 10, makes motion likeli-
hood very reliable. We can compute this since we keep the trajec-
tories of each feature point. We assign pixels of low likelihood to
the outlier layer.

6.2 Color likelihood

Color information has been widely used in interactive image edit-
ing, such as [Rother et al. 2004; Ruzon and Tomasi 2000]. We also
use color to help propagate the motion cue to ambiguous (flat) re-
gions. Similar to [Rother et al. 2004], we use a Gaussian mixture
model to compute the likelihood for each pixel generated by layer l

PrC(Ik(x,y)|l) =
NC

∑
i=1

α(l)
i G(Ik(x,y); µ(l)

i ,σ (l)
i ) (7)

where {α(l)
i ,µ(l)

i ,σ (l)
i } are estimated from a previous layer assign-

ment, and NC is the number of mixtures (this term is only used after
a first iteration of segmentation).

6.3 Spatial connectivity

We use a compatibility function to encourage layer assignment
changes at spatial discontinuities of pixel intensity. We choose the
following compatibility function, which is widely used [Boykov
et al. 2001; Rother et al. 2004; Wills et al. 2003]

V (Ik(x,y), Ik(x+ p,y+q), l1, l2) = (p2 +q2)−
1
2 δ [l1 6= l2] ·

exp{−β‖Ik(x,y)− Ik(x+ p,y+q)‖2} (8)

where −1 6 p,q 6 1, or Ik(x,y) and Ik(x + p,y + q) are neighbor-
ing pixels. l1 and l2 are the label assignment to the two pixels,
respectively. Parameter β is estimated as described in Rother et al.
[2004].

6.4 Segmentation by energy minimization

Once we have set up and learned the parameters for each of the
models, we use graph cuts [Boykov et al. 2001] to minimize the
total energy defined on the label assignment:

L∗ = argmin
L

− ∑
(x,y)

logPrM(Ik(x,y)|L(x,y))

−ξ ∑
(x,y)

logPrC(Ik(x,y)|L(x,y))

+γ ∑
(x,y)

∑
(p,q)∈N(x,y)

V (Ik(x,y),Ik(x+p,y+q),L(x,y),L(x+p,y+q)) (9)

We follow Rother et al. [2004] to set γ = 50 and ξ = 2, which
works well for our test examples.

In each iteration of the graph cut algorithm the color distribution
for each layer is re-estimated. The energy function drops fastest in
the first three iterations, so we applied graph cuts three times to find
the layer assignment for each frame.



(a) Locations assigned to each layer

(b) Pixels occluded (shown in black) during the whole sequence for each layer

(c) Appearance of each layer before texture filling-in

(e) Appearance after user intervention

Background Layer 1 Layer 2

(d) Appearance after texture filling-in 

Figure 5: Layered representation for the swing sequence. Only the
background and two layers (out of six) are shown.

(a) (b) (c)

Figure 6: (a) Outlier locations, not well described by our model.
Pixel intensities from these locations are passed through from the
registered video into the rendered model (b) to yield the final com-
posite output sequence, (c). The user specifies at which depth layer
the outliers belong, in this case, above the background and below
the other layers.

6.5 Final layered representation of the sequence

The energy minimization segmentation is carried out for every
frame independently, which inevitably introduces changes in layer
assignment from frame to frame. To build our final representation
of the sequence, we project each pixel back to a reference frame
using the estimated motions. Each reference frame location
which projects to a motion trajectory with 80% consistent layer
assignments over all frames is assigned to that layer, Fig. 5(a).
(Note that reference frame pixels may be assigned to more than one
motion layer). The pixel intensity for a layer at each position is set
to the median of the pixel intensities assigned to that layer along
the trajectory, Fig. 5(c). Since motion magnification will reveal
occluded regions, we mark with occlusion masks regions where
texture in-painting [Efros and Leung 1999] needs to be applied,

Fig. 5(d).
Finally, we need to account for the outliers. In some sequences,

outliers might correspond to important elements for which the
algorithm failed to build a model. In the case of the swing
sequence, the person on the swing is not tracked, due to the fast
motion, and is considered as an outlier. Fig. 6(b) shows one frame
of the sequence rendered without including outliers. Fig. 6(c)
shows the final result when the registered input pixels from the
outlier locations, Fig. 6(a), are composited into the rendered frame
(above the background and below the other layers). The outlier
region is the union of the outliers computed for all the frames, as
described in section 6.1.

In summary, the final representation of the sequence consists in
a set of Nl layers plus one outlier layer (not always required). Each
layer is defined by a segmentation mask (Fig. 5(a)), and its appear-
ance (Fig. 5(d)).

6.6 User interaction

While the automatic segmentation results are very good, the
bottom-up analysis inevitably makes small errors that can lead to
artifacts in the synthesized video. To address this, we allow the
user to modify the layer segmentation on the reference frame, as
shown in Fig. 5(d). In this example, user modifications to the seg-
mentation and appearance maps for layer 1 removed some pixels
attached to that layer in the canvas awning, completed holes in the
beam, and marked the swing back leg, Fig. 5(e). Only maps in the
reference frame need to be edited.

7 Magnification and Rendering

The user selects the motion layer for which the motion is to be
magnified, and the displacements of each pixel in the cluster
are multiplied by the selected factor. In our experiments the
magnification factor was in the range between 4 and 40.

The depth ordering for each layer and the outliers can be assigned
manually, or, for the non-outliers, computed through occlusion rea-
soning [Brostow and Essa 1999]. We render the pixels of each mo-
tion layer from back to front.

8 Experimental Results

The accompanying video shows motion magnification results for
three video sequences, handstand, bookshelf, and swingset. The
first two sequences were taken with a JVC digital HD video camera
JY-HD10, which can capture images at 1086×720 resolution, 30
Hz, progressive scan. The last sequence was acquired at 8 frames
per second with a Canon EOS 1D Mark II, which records images
at 3500×2200 resolution. We downsample the input images for
processing to 866×574 for the JVC and 1750×1100 for Canon.
The precise motion computations and grouping operations of
the motion magnification algorithm take 10 hours, end-to-end
processing, for the swingset sequence, in a combination of C++
and Matlab code.

Handstand shows a single figure with visually perceptible
balancing motions to maintain vertical posture. The magnified
sequence amplifies the left-to-right corrective motion of the torso.
In order to reveal small body motions without too much distortion
of the human figure, we applied a saturating non-linear amplifi-
cation to the motions of the magnified layer . The magnification
was close to linear for amplified displacements below 40 pixels,
with a compressive saturation for amplified displacements above
that. Fig. 7 shows a frame from the original and motion magnified
sequences. In this sequence we used a model with two layers and
no outlier layer, and made no manual edits.

Bookshelf magnifies the response of a thick plywood bookshelf
on aluminium supports to pressure from a hand. The original



Figure 7: The magnification result (right) for a handstand (left).
The motion magnified sequence exaggerates the small postural cor-
rections needed to maintain balance.
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Figure 8: Under hand pressure, the bookshelf (on aluminium sup-
ports) undergoes motions that are made visible when magnified by
a factor of 40 using motion magnification. User editing of refer-
ence frame masks refined the upper boundary between the books
and the shelf. Also, the background layer required manual texture
completion as little background is visible during the sequence.

response is barely perceptible in the original sequence, and was
motion-amplified 40 times to be clearly visible in the motion
magnified sequence. Fig. 8 show frames from the original and
motion magnified sequences. Notice the droop of the bookshelf
close to the point at which force is applied. In this sequence we
used a model with two layers and no outlier layer, and made user
edits as described in the figure caption.

Swingset is the most challenging sequence of the three. In this
sequence we used a model with six layers and one outlier layer.
The sequence has periodic motion (the swingset structure), very
fast motion (the person), random motion (the leaves) all within a
complicated, textured scene. The motion magnified video (stills
in Fig. 1) reveals the imperceptible deformations of the swingset
supports in response to the person swinging. Note that the beams
and swings of the swingset are grouped into a single motion
layer, based on the correlations of their motions, not based on
the uniformity of the motions. This allows pixels with a common
motion cause to be motion magnified together as a group.

Our model of the translations of each pixel over time allows us to
perform post-processing steps unrelated to motion magnification,
as well. To compensate for the low frame rate of the digital still
camera images, we used our motion layer model of the sequence to
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Figure 9: Section of the x,y, t volume from the original sequence
(left) and the sequence after motion magnification. The detail
shows a vertical section of the beam. The volume illustrates the
amplification of the oscillation and also the filling of the texture
behind the beam. Notice that after magnification, the motion is al-
most periodic despite the noise. So, the real motion of the beam is
not just one single harmonic but a mixture. The original motion is
amplified by a factor of 40.
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Figure 10: Details from frames of original and motion magnified
swingset sequence, showing (a) beam curvature, (b) proper han-
dling of occlusions, and (c) an artifact from imperfect automatic
segmentation (before correction by the user).

interpolate missing frames, synthetically achieving a higher frame
rate. For pixels of the outlier layer, we have no motion model, so
we sample-and-hold replicated those pixels within the interpolated
frames. This can be seen from single-stepping through the output
motion magnified video, which also shows which pixels were
assigned to the outlier layer.

Fig. 9 shows an x-y-t slice through part of the video volume of
the swingset example, before and after motion magnification. The
amplified beam motions are visible, as well as the textural filling-in
of the background holes behind the displaced beam.

Fig. 10 shows details of the original and output swingset se-
quence, without user intervention, for motion magnifications of 40
and 80 times. Row (a) shows the bending of the support beam re-
vealed by the magnified motion. Row (b) shows the leaf occlu-
sions handled correctly in the synthesized output sequence. Row
(c) shows a break artifact that occurred (before user editing) be-
cause the dark, occluded far leg of the swingset was not put in the
same motion layer as the rest of the swingset.

9 Conclusion

We have presented a new technique, motion magnification, that re-
veals motions that would otherwise be invisible or very difficult to



see. The input is a sequence of images from a stationary camera.
The system automatically segments a reference frame into regions
of “common fate”, grouped by proximity, similar color, and corre-
lated motions. Analogous to focussing a microscope, the user iden-
tifies the segment to modify, and specifies the motion magnification
factor. The video sequence is then re-rendered with the motions of
the selected layer magnified as desired. The output sequence allows
the user to see the form and characteristics of the magnified motions
in an intuitive display, as if the physical movements themselves had
been magnified, then recorded.
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