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The Design and Use of Steerable Filters

William T. Freeman and Edward H. Adelson

Abstract— Oriented filters are useful in many early vision
and image processing tasks. One often needs to apply the same
filter, rotated to different angles under adaptive control, or
wishes to calculate the filter response at various orientations. We
present an efficient architecture to synthesize filters of arbitrary
orientations from linear combinations of basis filters, allowing one
to adaptively “steer” a filter to any orientation, and to determine
analytically the filter output as a function of orientation. Steerable
filters may be designed in quadrature pairs to allow adaptive
control over phase as well as orientation. We show how to design
and steer the filters and present examples of their use in several
tasks: the analysis of orientation and phase, angularly adaptive
filtering, edge detection, and shape from shading. One can also
build a self-similar steerable pyramid representation. The same
concepts can be generalized to the design of 3-D steerable filters,
which should be useful in the analysis of image sequences and
volumetric data.

Index Terms—Early vision, edge detection, filter design, image
analysis, orientation analysis, oriented filters, shape from shading,
texture analysis, wavelets.

1. INTRODUCTION

RIENTED filters are used in many vision and image

processing tasks, such as texture analysis, edge detection,
image data compression, motion analysis, and image enhance-
ment. In many of these tasks, it is useful to apply filters of
arbitrary orientation under adaptive control and to examine
the filter output as a function of both orientation and phase.
We will discuss techniques that allow synthesis of a filter at
arbitrary orientation and phase and develop methods to analyze
the filter outputs. We will also describe efficient architectures
for such processing, develop flexible design methods for the
filters in two and three dimensions, and apply the filters to
several tasks in image analysis. Preliminary reports of this
work appear in [12] and [13].

One approach to finding the response of a ﬁlter at many
orientations is to apply many versions of the same filter,
each of which is different from the others by some small
rotation in angle. A more efficient approach is to apply a
few filters corresponding to a few angles and interpolate
between the responses. One then needs to know how many
filters are required and how to properly interpolate between
the responses. With the correct filter set and the correct
interpolation rule, it is possible to determine the response of
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a filter of arbitrary orientation without explicitly applying that
filter.

We use the term “steerable filter” to describe a class of
filters in which a filter of arbitrary orientation is synthesized
as a linear combination of a set of “basis filters.” We will show
that both two- and three-dimensional functions are steerable as
well as how many basis filters are needed to steer a given filter.
We first discuss the two-dimensional case.

II. AN EXAMPLE

As an introductory example, consider the two-dimensional,
circularly symmetric Gaussian function G written in Cartesian
coordinates x and y: '

Gz, y) = e @) )

where scaling and normalization constants have been set
to 1 for convenience. The directional derivative operator is
steerable as is well-known [8], [12], [16], [18], [21}-[24],
[27], [34]. Let us write the nth derivative of a Gaussian in the
z direction as G,. Let (...)? represent the rotation operator
such that for any function f(z,y), f®(z,y) is f(z,y) rotated
through an angle 6 about the origin. The first z derivative of
a Gaussian G~ is

0

Gl = %e_(ﬁh’z) = —2ge~ (77, )]
That same function, rotated 90°, is
o lo}
G = a_ye‘(fﬂ/’) = _2y6—(w2+y2). 3)

These functions are shown in Fig. 1(a) and (b). It is straight-
forward to show that a G filter at an arbitrary orientation 6
can be synthesized by taking a linear combination of GY" and
G9°°:

G¢ = cos(8)GY +sin(8)GY”" . @

Since G?° and G°° span the set of G{ filters, we call them
basis filters for GY. The cos(f) and sin(f) terms are the
corresponding interpolation functions for those basis filters.

Because convolution is a linear operation, we can synthesize
an image filtered at an arbitrary orientation by takmg linear
combinations of the images filtered with GJ° and G3°° . Letting
* tepresent convolution, if

RY =G9x1 ®

RY = GY*«1 ©)
then

RS = cos(9)RY’ + sin(0) RY"". @)
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Fig. 2. Three sets of steerable basis functions, plotted as a function of
azimuthal angle ¢ at a constant radius. An arbitrary angular offset of
each function (linear shift, as plotied here) can be obtained by a linear
combination of the basis functions shown: (a) G steerable basis set; (b)
four basis functions for 0.25 cos(3¢) + 0.75 cos(#); (c) four basis functions
for 0.25 cos(3¢) — 1.25 cos(¢). The same interpolation functions apply for
(b) as for ().

graph (rotation of the filter corresponds to translation on
these graphs). Fig. 2(a) shows the sinusoidal variation of
1-D slices of GY" and G9°° plotted at a constant radius. In
this case, the steering property is a restatement of the fact
that a linear combination of two sinusoids can synthesize a
sinusoid of arbitrary phase. Fig. 2(b) and (c) are 1-D cross
sections of steerable basis sets for functions with the azimuthal
distribution 0.25 cos(3¢) + 0.75cos(¢) and 0.25cos(34) —~
1.25 cos(¢), respectively. Since each function has nonzero
Fourier coefficients for two frequencies, by Theorem 1, four
basis functions suffice for steering. Because both functions
contain sinusoids of the same frequencies (even though of
different amplitudes), they use the same k;(6) interpolation
coefficients.

It is convenient to have a version of Theorem 1 for
functions expressed as polynomials in Cartesian coordinates £
and y [12]. In Appendix C, we prove the following theorem:

Theorem 3: Let f(x,y) = W(r)Pn(z,y), where W(r)
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Fig. 3. Steerable filter system block diagram. A bank of dedicated filters
process the image. Their outputs are multiplied by a set of gain maps that
adaptively control the orientation of the synthesized filter.

is an arbitrary windowing function, and Pn(z,y) is an Nth
order polynomial in z and y, whose coefficients may depend
on r. Linear combinations of 2N + 1 basis functions are
sufficient to synthesize f(z,y) = W(r)Py(z,y) rotated to
any angle. Equation (10) gives the interpolation functions
k;(9). If Pn(z,y) contains only even [odd] order terms (terms
z™y™ for n + m even [odd]), then NV + 1 basis functions are
sufficient, and (10) can be modified to contain only the even
[odd] numbered rows (counting from zero) of the left-hand
side column vector and the right-hand side matrix.

Theorem 3 allows steerable filters to be designed by fitting
the desired filters with polynomials times rotationally sym-
metric window functions, which can be simpler than using a
Fourier series in polar coordinates. However, Theorem 3 is
not guaranteed to find the minimum number of basis functions
that can steer a filter. Representing the function in a Fourier
series in angle makes explicit the minimum number of basis
filters required to steer it. In a polynomial representation, the
polynomial order only indicates a number of basis functions
sufficient for steering. For example, consider the angularly
symmetric function x2 + y? written in a polar representation
as 729, Theorem 2 would say that only one basis function
is required to steer it; Theorem 3, which uses only the
polynomial order, merely says that a number of basis functions
sufficient for steering is 2 + 1 = 3.

The above theorems show that steerability is a property of
a wide variety of functions, namely, all functions that can
be expressed as a Fourier series in angle or in a polynomial
expansion in z and y times a radially symmetric window
function. Derivatives of Gaussians of all orders are steerable
because each one is a polynomial (the Hermite polynomials
[32]) times a radially symmetric window function.

Fig. 3 shows a general architecture for using steerable filters
(cf. Koenderink and van Doorn [22]-[24], who used such
an architecture with derivatives of Gaussians, and Knutsson
et al. {21], who used it with related filters). The front end
consists of a bank of permanent, dedicated basis filters, which
always convolve the image as it comes in; their outputs are
multiplied by a set of gain masks, which apply the appropriate
interpolation functions at each position and time. The final
summation produces the adaptively filtered image.

An alternative approach to the steerable filters presented
here would be to project all rotations of a function onto a
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complete set of orthogonal basis functions, such as the Hermite
functions, or the polynomials used in the facet model [16].
One could then steer the filter by changing the expansion
coefficients. Such expansions allow flexible control over the
filter, but for purposes of steering, they generally require more
basis functions than the minimum number given by Theorem
2. For example, 2N + 1 basis functions are sufficient to steer
any Nth order polynomial, whereas a complete set of 2-D
polynomial basis functions would require (N + 1)(N +2)/2
basis functions (n + 1 basis functions for every order 0 <
n < N). Furthermore, a general decomposition may require
extra basis functions in order to fit a rotationally symmetric
component of the function, which requires no extra basis
functions for steering when using rotated versions of the
function itself as basis functions.

IV. DESIGNING STEERABLE FILTERS

All functions that are bandlimited in angular frequency are
steerable, given enough basis filters. In practice, however, the
most useful functions are those that require a small number
of basis filters.

As an example, we will design a steerable quadrature pair
based on the frequency response of the second derivative of
a Gaussian G,. A pair of filters is said to be in quadrature if
they have the same frequency response but differ in phase by
90° (i.e., are Hilbert transforms of each other [4]). Such pairs
allow for analyzing spectral strength independent of phase and
allow for synthesizing filters of a given frequency response
with arbitrary phase. They have application in motion, texture,
and orientation analysis [1], [3], [11], [17], [19], [31], [38].
Gaussian derivatives are useful functions for image analysis
[22]-[24], [45], and a steerable quadrature pair of them would
be useful for many vision tasks,

First, we design a steerable basi§ set for the second deriva-
tive of a Gaussian f(z,y) = GJ = (42% — 2)e=@+v")
This is the product of a second order, even parity polynomial
and a radially symmetric Gaussian window; therefore, by
Theorem 3, three basis functions suffice, Equation (10), for
the interpolation functions k,(6) becomes

k2 (6)

1 1 1 1
0i20 | T\ gi261 26, £i283
k3(8)

Requiring that both the real and imaginary parts of (14) agree
gives a system of three equations. Solving the system, using
b1 = 0° 6, = 60°, and 03 = 120°, yields

k1 (6)
(14

ki(6) = %[1 +2c0s(2(0 — 6,))] (15)

and we have

GS = ki(6)GY + ka(0)GS” + ks()GR2°.  (16)

We can form an approximation to the Hilbert transform
of G by finding the least squares fit to a polynomial times
a Gaussian. We found a satisfactory level of approximation
(total error power was 1% of total signal power) using a third-
order, odd parity polynomial, which is steerable by four basis
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Fig. 4. (a) G2, second derivative of G (in one di ion); (b) Ho,
fit of third order polynomial (times Gaussian) to the Hilbert transform of (a);
(c) energy measure: (Gy)? + (H2)?; (d) magnitudes of Fourier transforms
of (a) and (b).

functions. We refer to this approximation as Hj. Its steering
formula is given with that for several other polynomial orders
in Appendix F.

Figs. 4(a) and (b) show 1-D slices of G2 and H,. The
quality of the fit of H, to the Hilbert transform of G is fairly
good, as shown by the smooth, Gaussian-like energy function
(G2)?+(H,)? in Fig. 4(c), and the closeness of the magnitudes
of the Fourier spectra for each function, as shown in Fig. 4(d).

The seven basis functions of Go and H, are sufficient to
shift G2 arbitrarily in both phase and orientation. Those seven
basis functions, and the magnitudes of their Fourier transforms,
are shown in Fig. 5. Tables I and II list other quadrature pairs
based on several orders of derivatives of Gaussians and fits to
their Hilbert transforms.

A. Designing Separable Steerable Filters

For most steerable filters, the basis filters are not all -y
separable, which can present high computational costs. For
machine vision applications, we would like to have only z-y
separable basis functions.

We first note that for all functions f that can be written
as a polynomial in x and y, there is an z-y separable basis,
although it may have many basis functions. Applying the
rotation formula to each z and y term of the polynomial
will result in a sum of products of powers of z and y, with
coefficients that are functions of the rotation angle:

Flay) =33 kiy(0)a'y.
TG

Each x and y product in the rotated polynomial can be thought
of as an x-y separable basis function with its coefficient ki;(0)
being the interpolation function.

In many cases, however, there exists an -y separable basis
set that contains only the minimum number of basis filters,
yet spans the space of all rotations for the function of interest,
Such a separable basis allows steerable filters to be applied
with high computational efficiency. Rows (c) and (f) of Fig. 5
show z-y separable basis sets for the G5 and H, filters. Tables

(17
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Fig. 5. Go and H» quadrature pair basis filters (rows (a) and (d)). The filters
in rows (a) and (d) span the space of all rotations of their respective filters. G2
and H., have thc same amplitude spectra (rows (b) and (e)) but 90° shifted
phase. Steerable GG and H; filters can measure local orientation direction and
strength and the phase at any orientation. Rows (c) and (f) show equivalent
x-y separable basis functions that can also synthesize all rotations of G and
H,, respectively.

111, V, VII, and IX give the functional forms and digital filter
values for z-y separable versions of the G, Hy, G4 and Hy
basis filters. In Appendix D, we derive the steering formulas
for these x-y separable functions and show how to find the
separable basis functions.

B. Discrete Space Filters

The steering theorems have been derived for continuous
functions, and one might be concerned that new difficulties
would arise when one worked with discretely sampled func-
tions. If a continuous function is steerable, however, then
a sampled version of it is steerable in exactly the same
fashion because the order of spatial sampling and steering
are interchangable. The weighted sum of a set of spatially
sampled basis functions is equivalent to the spatial sampling
of the weighted sum of continuous basis functions. Therefore,
one can obtain digital steerable filters by simply sampling a
continuous filter. Spatially sampled versions are given for Ga,
H,, G4 and Hy in Tables 111, V, VII, and IX.

Filters can also be designed in the frequency domain, where
one may separate the radial and angular parts of the design
[19]. Conventional filter design techniques [25], [33] allow

895

0.800
0.600
0.400

0.200

uu
i um
w0 WO

-.200
0.00 33.0

®

Fig. 6. Frequency domain filter response plots illustrating design procedure for
steerable digital filter: (a) shows the particular desired radial frequency distri-
bution, and (b) shows the corresponding angularly symmetric two-dimensional
frequency response obtained through frequency transformation. (b) was mul-
tiplied by the desired cos? (v — #;) angular frequency responses and inverse
transformed to yield the steerable basis set. The frequency responses of the
resulting four steerable digital filters are shown in (c)—(f).

the design of a circularly symmetric 2-D filter with a desired
radial response. Then, one can impose on that filter the angular
variation needed to make a steerable basis set by frequency
sampling [25] (if the angular response is relatively smooth).
Inverse transforming the frequency sampled response gives
the filter kernel.

Fig. 6 shows an example of this. The filter was designed
to be part of a steerable, self-inverting pyramid image decom-
position [41], which will be described below. The constraints
on the multiscale decomposition lead to the radial frequency
response shown in Fig. 6(a). We used the frequency trans-
formation method [25] to convert the 1-D filter to a nearly
angularly symmetric 2-D filter (see Fig. 6(b)).

Having selected a radial frequency band, we next divided
the band into four oriented subbands by imposing an angular
variation of cos®(v/), where v is azimuthal angle in frequency.
This function has four angular frequencies (£3 and £1), and
therefore, by Theorem 1, requires four basis functions to steer.
We Fourier transformed the radially symmetric kernel, multi-
plied by the four desired cos®( — ;) angular responses, and
inverse transformed to obtain the basis filter impulse responses.
Fig. 6(c)~(f) shows the frequency amplitude responses of the
resulting digital steerable filters.

C. Steerable Pyramid for Multi-Scale Decomposition

We have used the steerable filters to form a multiscale, self-
inverting pyramid decomposition [41]. Applying each filter of
the decomposition to the signal one time gives the transform
coefficients; applying each filter a second time (with filter
tap values reflected about the origin) and adding the results
reconstructs a low-passed version of the image. Because all
of the filters of the pyramid are bandpass, a high-pass residue
image must be added back in to reconstruct the original image
(as with [43]). To implement this decomposition, we designed
the angular and radial components of the polar separable
design so that the squares of the responses of each filter added
to unity in the frequency plane.
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Fig. 7 shows the steerable pyramid representation. The four
bandpass filters at each level of the pyramid form a steerable
basis set. The pyramid basis filters were oriented at 0°, 45°,
90°, 135°, but the coefficients for any filter orientation can
be found from a linear combination of the four basis filter
outputs. When the basis filters are applied again at each level,
the pyramid collapses back to a filtered version of the original
image with near-perfect agreement. The steerable pyramid
image transform allows control over orientation analysis over
all scales.

The steerable pyramid is an image transform for which all
of the basis functions are derived by dilation, translation, and
rotation of a single function; it shares some properties with
other decompositions such as wavelet transforms [15], [26]
and the cortex transform [43]. Most work on self-similar image
decomposition has involved discrete orthogonal functions such
as quadrature mirror filters (QMF’s) and wavelets [10], [26],
[40], [42]. Such pyramids can be extremely efficient for image
coding applications [2], [26], [44]. The representations are
usually built with z-y separable filters on a rectangular lattice,
which significantly limits the quality of orientation tuning
that can be achieved. Simoncelli and his colleagues [2], [39]
have devised QMF pyramids based on filters placed on a
hexagonal lattice; in addition to being orthogonal and self-
similar, these pyramids have good orientation tuning in all
bands. However, the basis functions are not steerable, and
therefore, the representation is not optimal for orientation
analysis. Nonorthogonal pyramids with orientation tuning have
been described by [9], [14], [28), [43].

Unlike the pyramids based on QMFs, the steerable pyramid
described here is significantly overcomplete; not counting the
residual image, there are 5% times as many coefficients in the
representation as in the original image (1% times overcomplete,
as with the Laplacian pyramid [5], but for each of four
orientations). The overcompleteness limits its efficiency but
increases its convenience for many image processing tasks.
Although it is nonorthogonal, it is still self-inverting, meaning
that the filters used to build the pyramid representation are the
same as those used for reconstruction.

V. APPLICATIONS

Steerable filters are useful for many tasks in early vision.
We present four applications below—orientation and phase
analysis, angularly adaptive filtering, edge detection, and shape
from shading.

A. Analyzing Local Orientation

Orientation analysis is an important task in early vision
[18], [19], [21], [46]. Knutsson and Granlund [19] devised
an elegant method for combining the outputs of quadrature
pairs to extract a measure of orientation. We describe a
related method that makes optimal use of the filters designed
in Section IV. We measure the orientation strength along a
particular direction # by the squared output of a quadrature
pair of bandpass filters steered to the angle §. We call this
spectral power the “oriented energy,” E(f).

Bo

Fig. 7. Steerable image transform: (a) Low-pass filtered original image; (b)
odd-phase analyzing filters, oriented at 0°, 45°, 90°, and 135°. These four
filters form a stecrable basis set; any orientation of this filter can be written as
a linear combination of the basis filters; (c)—(e) steerable, bandpass coefficients
in a multiscale pyramid representation of (a). A linear combination of these
transform coefficients will synthesize the transform coefficient for analyzing
filters oriented at any angle; (f) low-pass image; (g) image reconstructed from
the pyramid representation, showing near-perfect agreement with (a).

Using the nth derivative of a Gaussian and its Hilbert
transform as our bandpass filters, we have
En(6) = [G3]* + [H,

n

2. (18)

Writing G% and HY as a sum of basis filter outputs times
interpolation functions, (18) simplifies to a Fourier series in
angle, where only even frequencies are present because of the
squaring operation:

E.(0) = C1 + C; cos(20) + Cs sin(26)

+ [higher order terms .. .]. 19)

We use the lowest frequency term to approximate the
direction ¢, and strength S of the dominant orientation (the
orientation that maximizes E,,(6))

0 = 2800 0
S=4/C2+C3. (21)

This approximation is exact if there is only one orientation
present locally.

Fig. 8 (b) shows an orientation map derived using this
method, using G and Hj to measure E5(6). The line lengths
are proportional to S, which is the contrast along that ori-
entation. The measured orientations and strengths accurately
reflect the oriented structures of the input image. This mea-
surement of orientation angle was made directly from the basis
filter outputs without having to actually perform the steering
operation. Table XI lists Cy and C3 as functions of the basis
filter outputs for -y separable (> and H, basis filter outputs.
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