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Abstract 13,19], they handle restricted motion types. Most recent
blind deconvolution techniques [8, 19] rely on a strong as-

Object movement during exposure generates blur. Remov . A ’ - i
sumption that the blur is spatially uniform over image. More

ing blur is challenging because one has to estimate the mo- : S : . .
tion blur, which can spatially vary over the image. Even robust motion estimation algorithms often involve mukipl

if the motion is successfully identified, blur removal can be NPUt images [5, 6, 18, 21], additional hardware [4, 14, 20],
unstable because the blur kernel attenuates high frequencyP" USer assistance [10].

image contents. We address the problem of removing blur
from objects moving at constant velocities in arbitrary 2D
directions. Our solution captures two images of the scene
with a parabolic motion in two orthogonal directions. We
show that our strategy near-optimally preserves image con-
tent, and allows for stable blur inversion. Taking two im-

A second challenge in deblurring is inverting the blur given
the motion kernel. Typical motion blur kernels correspond
to box filters in the motion direction. They attenuate high
spatial frequencies and make the blur inversion ill-posed.
One technique addressing this issue is the flutter-shutter

ages of a scene helps us estimate spatially varying objectc"jlrm:"ra1 [17]. By opening and closing the shutter during ex-

motions. We present a prototype camera and demonstrateg1 OZL;L?(’)?;ZJ;?ligsmf:f:\zgi' ;fd[LljZ? trrf rc])lsg: ;re(;l:zggl)i/clm-
successful motion deblurring on real motions. 9 ' ' prop P

motion camera to minimize the information loss for 1D con-

. stant velocity motions, but the solution is invalid if 2D mo-

1. Introduction tion is present. Agrawal and Raskar [2] analyze the perfor-
Motion blur can severely limit image quality, and while blur Mance of the flutter-shutter camera and the parabolic camera

can be reduced using a shorter shutter speed, this comes witRnd concludes that a flutter shutter camera performs better
an unavoidable tradeoff of increased noise. One source ofthan @ parabolic camera for a 2D constant velocity motion.
motion blur is camera shake. We can mitigate the camera/*grawal et al. [3] take multiple shots of a moving object,
shake blur by using a mechanical motion stabilization sys- €ach with different exposures, and deconvolves the moving
tem or by placing the camera on a tripod. A second sourceObl?Ct usmg.all the shots. This strategy is beneﬁ(_:lal bseau
of blur is an object movement in the scene. This type of the information lost in one of the _shots is acquired by an-
blur is harder to control, and it is often desirable to remove Other. However, we show that their strategy does not offer
it computationally using deconvolution, guarantees on the worst-case performance.

Motion deblurring is challenging in two aspects. First, one We present an imaging technique that near optimally cap-
needs to estimate the blur kernel, which depends on motiontures image information of objects moving at a constant
Since objects in the scene can move independently, the bluvelocity in 2D directions. We derive the optimal spectral
kernel can vary over the image. While single-image basedbound for 2D constant velocity motions and introduce a new
blur estimation techniques have been proposed [7,8, 11-camera that captures two images using successive parabolic
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motions in orthogonal directions. The joint spectrum of Rays hitting the detector are shifted, and the recordedémag
the two image captures approaches the 2D optimal spectrals
bound up to a constant multiplicative factor of'®, and itis

the first known imaging technique to guarantee this bound.

We recover a sharp image from the captured images using a . . : . .
L . . wheren is an imaging noise. We can represent the integra-
multi-image deconvolution algorithm.

tion curvef as a 3D integration kernél
2. Sensor motion design and analysis K Y.t) = S(x— Fe(t))-S(y— Fy (1)) 7

B(x.y) = /i L(x+ fx(t),y+ fy(t),t)dt+n  (6)
Y2

Consider an object moving at a constant velocity and let ] ] ) ]
Sy = [S.,S,] be its 2D velocity vector. Suppose we capture whered is a delta function. We show the integration kernel

JimagesB!,..B? of this object usingl translating cameras. k for several camera motions in the first row of Figadre

Locally, the blur process is a convolution: If the object motion is locally constant, we can express the
Bl — (psj)( @1 +nl (1) iptegrated imagg as a c.onvolution of a _sharp image at one

Y _ time instance with a point spread functigg,,. The PSF

wherel is an ideal sharp image! imaging noise, anqy,, @, of a constant velocity motios,y = [s, S| is a sheared

the blur kernel (point spread function, PS@*y depends projection of the 3D integration kernle[14]:

on the motion between the sensor and the scene. The con-

volution is a multiplication in the frequency domain: By (XY) = /tk(x— sd.y—st.t)dt (8)

B! (axy) = q’ij‘y((‘%Y)I (axy) + A (axy) (2) Some PSFs of different integration kernels are shown in the
wherewyy = [, wy] is a 2D spatial frequency, and the"de- second row of Figuré.
notes the Fourier transform. Exshows that whem(wxy)  The Fourier transforng,, of the PSFg,, is a slice from

is small, the signal-to-noise ratio drops. One can show thaty, o £ourier transforri of the integration kerned [14, 15]:
the success in deblurring depends on the spectral power of

the blur kerneld (ngiy(aky) |? by examining the expected re- @xy(@(’ w) = k(o W), Scx + S, 9)
construction error, which can be computed in a closed form ’

given a Gaussian prior on gradients [9]. The reconstructionThe Fourier transforngs,, for different integration kernels

quality is inversely related to the summed spectra: k are shown in the bottom row of Figute 2D Fourier slices
x 2 ~ 2 corresponding to all motion directiolfis,y || < Sopjlie in the
H(psx‘y(Q&’Y)” - z H%xy(aky)" (3) complementary volume of an inverted double cone. There-
fore, k occupies this volume. We refer to this volumetias
The goal of the camera motion design is as follows: wedge of revolutiondefined as the set:
Find a set of J camera motions that maximizes the summed C={(w, wy,w)|amr < Sopjl|wwyll (10)

power spectrunﬂ(bsx‘y(aky)||2 for every spatial frequency

@y and every motion vectdisy || < Soo;. This relationship holds since the Fourier transform of a PSF

is a slice fromk at w = sy + sywy, and if |[scy|| < Sopj,
2.1. Background on motion blur in the space-time S+ Sy < Sopjl[ iy

volume
The optimal spectral bound We extend the spectral

We represent light received by the sensor as ax3pt bound for 1D linear motions in [14] to 2D linear motions,
space-time volumé(x,y,t). Thatis,L(x,y,t) denotes the  and show that spectral powerkrcannot become arbitrarily

color of the light ray hitting thex,y coordinate of a static high. Suppose we captudémages and |er¢§H2 be the joint
detector at time instande A static camera forms an image . = 5 Li 5
motion spectrum|k(awy, @y, @)|2 = 3; [k (@, @y, @)

pyllntegratmg thg I|ght rays in the space-time volume over a We can derive an upper bound on the worst-case joint spec-
finite exposure timg': z

trum ||k||*. The amount of energy collected by the camera
within a fixed exposure tim& is bounded. Leviret al. [14]
use the Parseval theorem to show that the collected energy is
preserved in the frequency domain and as a result, the norm

Assume the camera is translating during exposure orythe  of everyay, y, slice ofk (i.e. k(ay,, ay,, a)) is bounded:
plane, and let be its displacement path: '

{f: xyt] = [fx(t), fy(t),t]} (5) /IIE(%a%,m)Ilzdm <T (11)

Bixy) = [ Lixy.t)dt )
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Figure 1. The integration curves k (a-e), the point spread functi@gs (f-j) and their log-power spectra (k-o) for a few
cameras. In (f-0), the outer axes correspond to x,y direetiepeed. In (f-j), the inner axes correspond tg,xand in the
spectra plots (k-0), the inner axes corresponddjowy,. All spectra plots are normalized to the same scale.

Every wy, y,-slice intersects the wedge of revolution for a 2.2.1 Camera motion

segment of lengthQypj|| wy,.y, |- An optimal camera should

spread the captured energy equally in this intersection toLet k;, k, be the 3D integration kernels of x and y parabolic

maximize the worst-case spectral value. Therefore: camera motions. The kernels are defined by the integration
curvesfy, f,:

(12) f1(t) = [ax(t+T/4),0,t], t=[-T/2..0]
fa(t) = [0,ay(t —T/4)%t], t=10...T/2]

At time t, the derivative of the x-parabolic camera’s move-
mentis 24(t — T/4), and the camera is essentially tracking

i k(w, @y, )| <

2S0bjl| Wxo,y0ll (14)

Since the PSFs spect@éw are slices througﬁj, this bound

also applies for the PSFs’ spectral power: an object with velocity 8,(t — T /4) along thex axis. For a
reason to be clarified below, we set
Min| Gy, (00 )P < 5. (13) 203
Sey o0 = G0 kg yo ay=ay = Ts’bl (15)
The maximal sensor velocity becom&gns—= \/QS)bj. Fig-
2.2. Orthogonal parabolic motions ure 1(i-j) show PSFs of different motions captured by the

orthogonal parabolic camera. The PSFs are truncated and
We seek a motion path whose spectrum covers the wedge osheared parabolas that depend on the object speed.
revolution and approaches the bound inZ2x Our solution
captures two images with two orthogonal parabolic motions. 2.2.2  Optimality
We show that the orthogonal parabolic camera captures the
desired spectrum with the worst-case spectral power of atThe spectrum of an x-parabolic motion is approximately a
least a factor 21-° of the upper bound. double wedge in the 2y, cx frequency space [14]. Since



| wt‘ Proof: The joint motion spectrum of the orthogonal
ok R \ parabolic camera is non-zero in the $éto, wy, w)|w <

1. - 2 Ssengmax([| x| [[ayl))}. If (ax, @y, @) lies in the wedge
Wy 4, Y of revolution, thenw < Sppjllwyl|.  Since [[wyy|? <
o 2ma|xl 2, [lay12),
(a) (b) (c) w < S)bj”(’-ky”
Figure 2: (a) The spectfunﬁl captured by a x-parabolic < \/Esjbjmax(Ha&H, [lewy]])
camera. (b) The spectruka captured by a y-parabolic cam- < Ssengmax(||ax], |wyl) (17)

era. (¢) The sum ok; and k, approximates the wedge of

revolution. In other words, the joint motion spectrum of the orthogonal
parabolic cameras subsumes the wedge of revolution.

an x-parabolic motiotk; is Dirac delta along thg axis, the

3D spectrun1|R1|\.2 is constant along they axis and]|iy||2 _ _ T : :

spreads energy in a 3D double wedge (Fig(@). They- (W@, @) is at least m”’(@engmu + 4%6,”4\@\\)- Since

parabolic motion spreads energy on the orthogonal 3D dou-||wxy|| > max(||ax]|, [|wl|),

ble wedge (Figur@(b)). Mathematically speaking,

In the joint motion spectrum, the spectral content at

. T T T
min ( + >
L 2 - ASsend|ax||  4Ssend| wy || ) ASsend| Wyl
oo . ) 2~ g H (S — ) 425y
(16) The minimum spectral content of the orthogonal parabolic

camera is at least 2 of the optimum.[]

whereH () is a Heaviside step function. . .
) P 2.3. Discussion of other cameras

The 2D PSF spectra are slices from the 3D double wedge

spectra oﬂ|kJ |%. Figurel (n-o) show the log-spectrum of A static camera: The integration curve of a static camera
PSFsq! for parabolic exposures as we sweep the object ve-(Figurel first column) iskS(t) = [0,0,t], t € [-T/2..T/2].
locity. For x-directional motionss = 0), the x-parabolic ~ The power spectrum is constant alomganday:

camera covers all spatial frequencies without zeros. On N ) ).

the other hand, as y-directional motion increases, the x- [[k(ax, ay, a)||* = T?siné (@ T) (19)
parabolic camera fails to capture frequencies nearatpe
axis. The y-parabolic camera, however, covers the frequen-
cies missed by the x-parabolic camera, thusstivaof these
two spectra eliminates zeros in all the spatial frequencies
Therefore, by taking two images of a scene using orthogo-
nal parabolic cameras, we can stably invert the blur for all
2D object motions.

The Fourier transform of the PSF is a slice of the motion
spectrunk and is a sinc whose width depends on the object
velocity|| @[> = T2sinc((scax+Ssyay)T). For fast object
motions, th|s sinc attenuates high frequencies. Similasly
linearly moving the camera during exposure (Figlfe)),

we can track the object that moves at the camera’s speed, but
objects whose velocity is different from the camera’s veloc
Figure2(c) visualizes the joint spectrum covered by the or- ity still suffer from the sinc fall-off.

thogonal parabolic motions, suggesting that the sum of or- A flutter shutter camera:
thogonal 3D wedges is an approximation to the wedge of
revolution that we aim to capture. We can show that if the
maximal sensor spe&ensis set to\/ﬁsobj, the sum of dou-

ble wedges subsumes the wedge of revolution.

In a flutter shutter cam-
era [17] (Figurel second column), the motion spectrum
kf is constant alongw, wy and is modulated alongu:

[[k" (o, oy, ar)[|2 = [|M(ca ) ||2, wherendis the Fourier trans-
form of the shutter code. We can design the code to be
Claim 1 Let Sensbe the maximum sensor speed of the more broadband than that of a static camera. Yet, the spec-

parabolic camera, and g; the maximum object speed in trum is constant alongy, oy, thus m|rg||qos (o, wy)]|? <

image space. If §ns> V2%, the joint motion spec-  T/(2%bjQ) for all (ax, ay) [14], whereQ is the spatial
x bandwidth of the camera. As a result, at low-to-mid fre-

trum ||k of an orthogonal parabolic camera subsumes the _
guencies the spectral power does not reach the upper bound.

wedge of revolution. When&s= \/Esobj, the worst-case
spectral power of an orthogonal parabolic camera, at any Two shots: Taking two images with a static camera, a lin-
frequency, is at Ieas%l—ﬁ of the optimal bound. early moving camera, or a flutter shutter camera can im-



prove the kernel estimation accuracy, but it does not sub-3. Image reconstruction

stantially change the spectral coverage. Optimizing the ex

posure |ength5 of each shot [3], and in the case of a ﬂuttersubject motions cause Spatlally variant blur that should be

shutter camera also optimizing the random codes in eachestimated and removed locally. We adapt the Bayesian

shot, do not eliminate their fundamental limitations: thei framework for image deconvolution and kernel estimation

power Spectra are constant a|omy and hence Spend the to |Oca||y estimate the motion blur W|th|n a Sma” W|nd0W.

energy budget outside the Wedge'of revolution. We employ a multi-scale technique to reduce the computa-
tional cost.

Synthetic simulation: We compare the deblurring per-

formance of a pair of static cameras, a pair of flutter shut-

ter cameras, a single parabolic camera and an orthogonal = -~ -~ . o —

parabolic camera through synthetic experiments. The Or?]_rzteBi’r(g;eeBb_ [iésirl;gin_ [(fh’eqoz]('):tveerigicorgl;;gﬁﬁblur'

thogonal parabolic camera is designed to deblur 2D constan{ ge by . 9 P P ¥=
argmaxp(l|B, @). Using Bayes rule,

velocity motions with speed less th&,;. The deblurring
performance is compared for motions within the velocity o L 2 o

range of interest. To be more in favor of previous solutions,  P(I|B,@) O p(I,B[@) = p(1) rIID(BJVPJJ) (20)
we have optimized their parameters for each motion inde- I=

pendently. For a pair of static camera, we use the optimalogp(B!|¢),1) = |Bl—¢@' @1?/n?+C, (21)
split of the exposure tim& into two shots, optimized for _ _ _ _

eachobject motion independently. For a pair of flutter shut- logp(l) P IZp(|gx’.(I)|)+p(|gy’.(l)|)+C2 22)
ter camera, we use the optimal split of the exposure ime
and the optimal combination of codes, optimized éach
object motion independently. In a realistic scenario we can
not optimize the split of the exposure tinfeor the codes
because the object motion is not known a priori.

3.1. Non-blind deconvolution

whereCy,C; are constantsyyj, gy, arex,y gradient opera-
tors at pixeli, B = 0.002 determines the variance of the gra-
dient profile, angp(z) = z* is a robust norm. Wheo = 2,

we impose a Gaussian prior on image gradients, and when
a < 1, we impose a sparse prior. Whan= 2, we can effi-

We render images of a moving object seen by these cam-Ciently decopvolve the image inthefrequen_cy doi“”a‘” using
iy g ol y the Wiener filter (e.g. [9]). We use a Gaussian prior for ker-

eras. We add zero-mean Gaussian noise with standard de- S . :
viation n = 0.01 to the images. We deblur the images with nel estimation, and a sparse prior for deconvolution.
the known blur kernels using Wiener deconvolution. In all Eq20is a joint deconvolution model, stating that we seek
experiments, we fix the total exposure tiffie an imaggd fitting the convolution constraints of botH Bnd

B2. The deconvolved imageshould be able to regenerate
Figure3 shows the deconvolution results and its peak signal- the input image®® andB? using the kernel pair that gen-
to-noise ratio (PSNR) for different object velocities. Bac eratedi. Rav-Acha and Peleg [18] essentially deblurs two
row corresponds to a different object velocity. When the ob- input images by maximizing the likelihood term (B4),
ject is static, a pair of static camera generates visually th and Cheret al. [5] and Agrawalet al. [3] augment it with
most pleasing image. For moving objects, however, a pairthe prior term (EcR2).
of orthogonal parabolic camera generates visually the most
pleasing image. This visual result agrees with the theoreti 3.2 Kernel estimation
cal prediction: the deconvolution quality is better wheath

spectral power of the PSF is higher. A critical step in motion deblurring is estimating the catre

. . . kernel pairg. For that we seek:
We put the synthetic experimentresults in the context of pre pairg

vious qu_r removal _techniques_. The pe_rformance of previ- @ = argmaxp(¢|B) = argmaxp(B|@)p(p)  (23)
ous two-image motion deblurring techniques, such as [5, 6, _

18,21], can be approximated by the deconvolution result of Where p(¢) is a prior on motion kernels (uniform in this
the static camera pair in Figu® Even if these solutions ~ Work) andp(B|¢) is obtained by marginalizing over all la-
correctly estimate the motion kernels, inverting the keisie  tent imaged, p(B|¢) = [ p(B,I[@)dl, wherep(B,1|¢) is
still hard since high frequencies are attenuated. Blind mo- given by Eq21,22. If the prior p(1) is Gaussianp(B|¢) is
tion deblurring solutions, such as [8, 19], attempt to salve ~ Gaussian as well and we can derive it in a closed form.

even harder problem, since they try to estimate the blur ker'AIternativer, we can solve for the latent imagesing the

nel from a single image. Yet they only address the problemyjiener filter (EqR0) and express(B_|(p) as follows:
of kernel estimation and do not optimize the deconvolution

quality given the correct kernel. logp(B|g) = logp(i’,B|@) + P +Cy4 (24)
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Figure 3: Synthetic visualizations of the reconstruction qualitye ®ytimized the exposure lengths of each camera. First
column: The object motion during the exposure. The greenddinotes the velocity range covered by the orthogonal pdiab
camera, and the red arrow denotes the object velocity. Otb&rmns show the Wiener deconvolution results using the tru
PSFs. The orthogonal parabolic camera outperforms othéintiped solutions in deblurring moving objects.

where C, is a constant, ¥ = zwlogww, and Y, = detect the motion boundary by also considering kernel can-
3 @12 + 0,2 is the variance op(Bw|@). This ex-  didates with a single image observation (B8.= 0,¢? = 0
pression is more useful because it allows us to computell the log-likelihood (EG21)). We add a fixed penalty (set

p(B|@) in local image windows. to 0.15 for all experiments) to using a single image solution
o Otherwise, the log-likelihood (EZ5) always favors a single
We estimatep by evaluating the log likelihood EG4 on  image solution. Note that the high frequency content may

a set of PSF pairs that correspond to discretized 2D linearpot pe well maintained in such regions.

motions, and choosing the pair with the highest value.

Multi-scale PSF estimation : The blur-free image quality
depends on how finely we sample the 2D linear motions.
We resort to a coarse-to-fine strategy to search over linear
motions. We discretize 2D linear motions into 4500 sam-
ples at the finest resolution. We down-sample input images
B by a factor of 4 to reduce the number of pixels and the

Local kernel estimation: If there are multiple motions in
the scene, we need to locally estimate the blur. il dte
images generated by deconvolviBgwith motion kernels
@, and letBs = @ @[5 be the reconvolved image. Using
Eq24, we can approximate the scqneB|qos) locally:

1 i 50112 motion search space: blur kernels from adjacent velocity
logp(B(i)|gx) ~ e B (k) = Bs(k)| samples look identical in a down-sampled image. At the
JkeN® (25) coarsest scale, we search 2500/(4%) velocity samples
— p(0x, (i) — P(gyj(rs)) qu (siqgle—image explanations incur_the factor 2) _for the bern_
N estimate. We propagate the estimates to a finer resolution
whereN = 15x 15 is the window size andl(i) is the win- to refine the estimates. At each spatial scale, we regularize
dow around the pixel the estimate using a Markov random field. Each node corre-

_ . _ . sponds to a pixel, and the states at each node are the kernel
Handling motion boundaries : There are regions next to  pairs, with the local evidence Ezp. The potential between
motion boundaries that are visible in one image but not in nodes is designed to favor the same states in the neighboring

the other. The observation model (Ed) is inconsistentin  node, and favor the state transition where the image gradien
such regions and the joint deconvolution leads to artifacts petween the deblurred images is small [1, 13].

We use the image deblurred using only one of the two in-
put images to fill in the motion boundary. We automatically We use the regularized kernel map to reconstruct the sharp



Static lens

vertical actuator

Image from a static camera

horizontal actuator

(@) (b)

Figure 4: (a) A diagram of our prototype. (b) A photograph
of the actuators and the sensor.

Deblurred image

imagei. We deconvolve input image® with all possible
kernels@,y and generate a set of deconvolved ima@gs

We reconstruct from s, by selecting the pixel value from
image deblurred with the estimated kernel at each pixel. We
blend different layers using the Poisson blending method Figure 6: Images taken with a synchronized static camera

[16] to reduce artifacts at abutting motion layers. and deblurred images from the orthogonal parabolic cam-
era. Images from a static camera with 500ms exposure are
4. Experiments shown for reference. Arrows on reference images show the

direction and magnitude of motion.
4.1. Prototype camera _ . . .
ence image reveals the object motion during the orthogonal

We built a prototype camera, different from Levét al. parabolic camera’s image capture.

[14], consisting of a sensor, two motion stages and thelrWe present more deblurring results on natural motions in

fontrollgrs. YVe mouEted a Ilghht-we|ght c?;nera sensor on Figure6, using parabolic exposure to capture the motions in
W0 motion stages, where €ach can move h€ camera Sens(Heneric, non-horizontal directions. Images from the stati

along orthogonal axes (See Figu@)). In each Imageé cap-  camera (500ms exposure) reveal the motions, shown by red
wre, one of the _motlon stages undergoes parabol.|c MOUON 4 rows. Some artifacts can be seen at motion boundaries but
approximated W'th 19 segments of constant velocity due_ ©jn general the reconstructions are visually plausible.hin t
control constraints. In practice, we could replace theamti .04 «jumn of Figur& we show a deblurring result for a

| ‘s affixed 1o th lid. and d quri 6bers;pective motion blur. While the perspective motion does
ens is affixed to the camera lid, and does not move during o conform to the constant object velocity motion model,

exposure. The total exposure time for taking two images is our svstem still recovers a reasonablv sharp imadge
500ms: 200ms for each image, with a delay of 100ms be- y y P ge.

tween exposures. We incur a 100ms delay for switching the5 Discussions and conclusions
control from one motion stage to another, which can be re-

duced by using an improved hardware. We present a two-exposure solution to removing spatially
variant 2D constant velocity motion blur. We show that the
4.2. Results union of PSFs corresponding to 2D linear motions occupy a

wedge of revolution in Fourier domain, and that the orthog-
onal parabolic motion paths approach the optimal bound up
to a multiplicative constant.

Figure5 illustrates the deblurring pipeline. First, we cap-
ture two images with the detector undergoing a parabolic
motion in orthogonal directions. From the two images, we
estimate a motion map, shown colored using the velocity We assume that objects move at a constant velocity within
coding scheme of the inset. We use the motion map to re-the exposure time, which is a limitation shared by most pre-
construct the image. For reference we show an image takervious work that deals with object motion. Camera shake,
with a static camera with 500ms exposure, synchronized towhich typically exhibits complex kernels, needs to be han-
the first shot of the orthogonal parabolic camera. The refer-dled separately. Our camera captures image information al-
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!! B! .

Input images Estimated motion Deblurred image From a static camera

Figure 5: The deblurring process pipeline: two images taken with titeagonal parabolic cameras are used to locally
estimate the motion. The motion estimate is presented kéthdlor coding scheme in the inset, and pixels taken frorgésa
deblurred with a single input image are within black bourgllvoxes. The image pair is deconvolved using the estimated
motion map. The image taken with a synchronized static camigh 500ms exposure is shown for reference.
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