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Computer Graphics /0 Devices

Computer Vision
for Interactive
Computer Graphics

ision can be a powerful interface device

for computers because of its potential for

sensing body position, head orientation, direction of
gaze, pointing commands, and gestures. Such unen-
cumbered interaction can make computers easier to use.
Applications could include computer-controlled
games or machines, or a more natural interface to the
computer itself. Rather than pressing buttons, players
could in a computer game pantomime actions or ges-

We describe vision
algorithms for interactive
graphics and present vision-
controlled graphics
applications using these
algorithms. Some
applications employ an
artificial retina chip for
image detection or

preprocessing.

tures, which the computer would
recognize. CAD designers might use
their hands to manipulate objects in
the computer. People might use
hand gestures to give commands to
machines or appliances—a potential
benefit to surgeons, soldiers, or dis-
abled patients. The vision-based
interactions could make the machine
interaction more enjoyable or engag-
ing, or perhaps safer.

Interactive applications pose par-
ticular challenges. The response
time should be very fast. Users
should sense no appreciable delay
between when they make a gesture
or motion and when the computer
responds. Computer vision algo-
rithms should be reliable, work for
different people, and work against
unpredictable backgrounds.

Also, economic constraints exist:

vision-based interfaces will replace existing ones, which
often cost very little. A hand-held video game controller
and a television remote control each cost a few tens of
dollars. Even for added functionality, consumers may
not want to spend more.

Academic and industrial researchers have recently
focused on analyzing images of people.! While
researchers have made progress, the problem is diffi-
cult, and many present-day algorithms are complex,
slow, or unreliable. The algorithms that do run near real
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time do so on very expensive computers compared to
the hand-held interface devices.

Fortunately, interactive graphics applications offer
particular advantages that make low-cost, real-time
vision control possible. First, the application context
restricts possible visual interpretations. For example, if
a game context requires that the player run (in place),
the vision system may only need to ascertain how fast
the player runs. This vision problem proves easier to solve
than a 3D reconstruction of a player’s unknown motion.
Second, a human is in the loop. Users can exploit the
immediate visual feedback of the graphical display to
change their gesture, if necessary, to achieve the desired
effect. If a player leans to make a turn in a game and sees
that he hasn’t turned enough, he can lean some more.

Fortunately, a niche exists for fast, unsophisticated
computer vision algorithms that capitalize on the advan-
tages of interactive graphics applications.

We developed or applied various vision algorithms
suitable for interactive graphics applications. Here we
describe various fundamental visual measurements, in
order of increasing complexity: large object tracking,
shape recognition, motion analysis, and small object
tracking. We used these measurements to make vision-
based interfaces for several computer games, plus
hand gesture controllers for a toy robot, crane, and tele-
vision set. We also developed a special image detector/
processor that further reduces costs.

Some researchers have undertaken related projects,
including the Alive work at the Massachussets Institute
of Technology Media Lab,” and the pioneering work of
Krueger.® Our work is similar in spirit to a thrust of com-
puter vision research known as “active vision,” which
emphasizes real-time response to vision problems.”

Large object tracking

In some interactive applications the computer needs
to track the position or orientation of a body or hand
that is prominent in the camera’s visual field. Relevant
applications might include computer games or interac-
tive machine control where the camera’s viewing con-
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Image Moments

Image moments provide useful summaries of
global image information. The moments involve
sums over all pixels and so are robust against small
pixel value changes.

If I(x, y) is the image intensity at position x, y,
then the image moments, up to second order, are
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We can find the position, x., v, orientation 8,
and dimensions Ly and L of an equivalent
rectangle that has the same moments as those
measured in the image. Those values give a
measure of an object’s position, orientation, and
aspect ratio. We have
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The image moments can be calculated from
three projections of the image, as described by
Horn.® Let the vertical, horizontal, and diagonal
projections be

ditions are constrained. In such cases, describing the
image’s overall properties might suffice.

Image moments, which are fast to compute, provide
avery coarse summary of global averages of orientation
and position (see the sidebar “Image Moments”). If the
camera views a hand on a uniform background, this
method can distinguish hand positions and simple
pointing gestures, as shown in Figure 1a. We imple-
mented this to control the motion of the toy robot in Fig-
ure 1b. The robot followed the direction in which the
hand was pointing; tilting the hand perpendicular to the
camera caused the robot to stop.
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Then the image moments can be written as
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These equations replace the double sums of
Equation 1 with single sums, which speeds up the
processing or accommodates processing by fast,
special hardware (see the sidebar “Artificial Retina
Chip”).

(b)

IEEE Computer Graphics and Applications

1 (a) Hand images (from a low-
resolution detector) and equivalent
rectangles, having the same first-
and second-order moments. We
measured x-y position, orientation,
and projected width from the rec-
tangle. (b) Using image moments,
we controlled a toy robot’s motion.
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2 System block
diagram of an
interactive
game machine.

We can calculate moments particularly quickly using
a low-cost detector/processor that we developed, called
the artificial retina chip (see the sidebar “Artificial Reti-
na Chip”). This chip combines image detection with
some low-level image processing (named artificial reti-
na because the human retina combines those same abil-
ities). The chip computes various functions that prove

| useful in the fast algorithms for interactive graphics

applications.

We applied several different vision algorithms in
interactive computer games. As shown in Figure 2, we
replaced the hand-held game keypad with a detector, a
processor, and interface hardware. The interface hard-
ware, controlled by the processor interpreting detector
images, issues commands that look like keypad com-
mands to the Sega Saturn game machine.

Ideally, it's best to design a vision-based interactive
game from scratch, building a game on the advantages
of the vision interface (good analog adjustments, com-
plex pose configurations). As an easier preliminary step,
we selected existing games that we felt were particularly
well suited to a vision interface and designed a vision
interface that was plug-compatible with the existing
keypad interface. Unfortunately for this approach, the
game is already tuned for play on the keypad. Not all
keypad commands can be issued from vision input, so
we omitted some. We developed interfaces for three
Sega Saturn games: Nights, Magic Carpet (both dis-
cussed in this section), and Decathlete (discussed in the
section “Motion analysis”).

Part of Nights involves steering a sprite flying through
a magical world. We wanted users to control the sprite
by simple motions or pointing gestures. We had a user

| position his hand close to the camera so that his hand

became a large object in the camera’s field of view. To
avoid the effects of stationary background clutter, we
used a motion-based quantity as input to the moments
calculation. To control the sprite’s movement, we first
calculated a motion energy image using the absolute
value of the difference between successive video frames
(see Figure 3). The line from the image center to the
motion energy image’s center of mass indicated the
pointing direction. The response to pointing gestures
was robust and immediate, allowing the user to control
the game character with easy, natural gestures.

Display
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Image
detector

Image
processor

Interface
logic

o
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"\ Game machine
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Artificial Retina Chip

We developed an image detector that allows
programmable on-chip processing. By analogy
with the fast, low-level processing that occurs in
the eye, we call the detector the artificial retina
(AR) chip.® Figure A shows the elements of the AR
chip: a 2D array of variable sensitivity
photodetection cells (VSPC), a random-access
scanner for sensitivity control, and an output
multiplexer. On-chip image processing can be
realized by analog operation (addition or
subtraction) of each VSPC's output current. The
VSPC consists of a pn photo-diode and a
differential amplifier that allows for high-detection
sensitivity. This structure also realizes a
nondestructive readout of the image, essential for
image processing. We built detector arrays
ranging in resolution from 32 x 32 to 256 x 256
pixels. The former was adequate for the game
applications presented here. That chip size is
6.5 x 6.5 square millimeters, with 150 x 150
micron-sized pixels, using a T micron fabrication
process. On-chip image processing is obtained
from an input image at every time step.

The image processing of the artificial retina can
be expressed as a matrix equation. In Figure A, the
input image projected onto the chip is the weight
matrix W. All VSPCs have three electrodes. A
direction sensitivity electrode, connected along
rows, yields the sensitivity control vector, S. The
VSPC sensitivities can be set to one of (+1, 0, -1) at

We applied the moments analysis hierarchically, over
the image and its four quadrants, to analyze body posi-
tions for controlling the game Magic Carpet (see Figure
4). Players steer a magic carpet in any direction by lean-
ing or walking in different directions—they can fire a
magic spell by holding out an arm. Because players’

3 (a) and (b): Two frames of camera input.

(c) Absolute value of the temporal difference image
(Figure 3a minus Figure 3b) and its center of mass
(arrow). (d) Figure 3c’'s center of mass controls the
sprite’s direction of flight.



each row. An output electrode is connected along
columns, yielding an output photocurrent, which is
the vector product, /= WS. The third electrode
resets the accumulated photo-carriers.

By setting the sensitivity control vector, §,
appropriately, this hardware can read out the raw
image or execute simple linear operations such as
local derivatives and image projections. Data
acquisition is not limited to video frame rates and
can range from 1 to 1,000 Hz. This detector can be
manufactured on the same equipment used to
process dynamic RAMs (DRAMSs) and thus may cost
less to manufacture than conventional charge-
coupled devices (CCDs).

We integrated this detector/processor chip into
an inexpensive AR module, which contains a low-
resolution (32 x 32) AR detector chip, support and
interface electronics, and a 16-bit 10-MHz
microprocessor. Combined, the microprocessor
and AR chip can perform general image processing
operations quickly. The module is 8 x 4 x 3 cm, and
the chip can be fabricated at a considerably lower
cost than CCDs because fabrication is based on
complementary metal-oxide semiconductor
(CMOS) technology.

The artificial retina detector can perform the
horizontal and vertical image projections needed for
the image moment calculations, saving processor
time. The savings depend on the image resolution
and microprocessor speed. For the 10-MHz
microprocessor of the AR module and 32 x 32
resolution, the projections would take 10 ms per

motions match the flying carpet
response, the game control is intu-
itive and simple to learn. Both of the
above systems require some control
over the background. The motion-
based method requires a stationary
background, while the shape-based
method requires a uniform back-
ground.

Shape recognition

Most applications, such as recog-
nizing a particular static hand sig-
nal, require a richer description of
the input object’s shape than image
moments provide.

If the hand signals fall in a prede-
termined set, and the camera views
a close-up of the hand, then we can
use an example-based approach
combined with orientation his-
tograms—a simple method to ana-
lyze hand signals. These histograms
summarize how much of each shape
is oriented in each possible direc-
tion, independent of the hand’s posi-
tion inside the camera frame. The

image on the microprocessor alone, but only 0.3 ms
per image using the microprocessor and artificial
retina chip.
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4 We used a
hierarchy of
computed
image moments
to analyze the
shape and
orientation of
the player for
Magic Carpet.
The player
controls the
magic carpet
flight by leaning
or walking (top
and middle). To
fire a magic
spell, the player
simply raises his
arm (bottom).
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A (1) Sche-
matic structure
of the artificial
retina chip. An
array of variable
sensitivity
photo-detector
cells allows
image detec-
tion, linear
filtering, and
projection.

(2) Photo-
micrograph of
the chip.
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B (1)and (2) A
hand under two
different light-
ing conditions
(the pixel inten-
sities vary great-
ly). (3) and (4)
Orientation
maps of those
images are
generally more
robust to light-
ing changes
than are the
pixel intensities.

Orientation Histograms

The desire for lighting and position invariance
motivates the orientation histogram
representation. Figure B shows a comparison of a
pixel representation and an orientation
representation for a picture of a hand under two
different lighting conditions. The hand’s pixel
values vary considerably with lighting, while the

(1) Image

C simple illustration of an orienta-

tion histogram. (1) An image of a
horizontal edge has only one orien-
tation at a sufficiently high con-
trast. (2) Thus the raw orientation
histogram has counts at only one

Frequency
of occurence

Orientation angle
(2) Raw histogram

orientation value. (3) To allow

neighboring orientations to sense
each other, we blurred the raw
histogram. (4) The same informa-
tion, plotted in polar coordinates.
We define the orientation to be the
direction of the intensity gradient,

plus 90 degrees.
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Frequency |f\
of occurence |

Orientation angle
(3) Blurred

(4) Polar plot

computation involves taking spatial derivatives, fol-
lowed by a nonlinearity, and can be implemented quick-
ly using either conventional or special hardware.
These example-based applications involved two phas-
es: training and running. In the training phase, the user
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orientation values remain fairly constant. You can
calculate the local orientation most simply from
the direction of the image gradient. Then the local
orientation angle, 6, as a function of position x and
y, and image intensities I(x, y), is:

0 (x,y) = arctan [I(x, y) = I(x =1, ),
106, y) = I(x, y=1)]

We want gestures to be the same regardless of
where they occur within the camera’s field of view.
We chose to achieve this translation invariance by
the drastic step of ignoring position altogether,
simply tabulating a histogram of how often each
orientation direction occurred in the image.
Clearly, this throws out information, and some
distinct images will be confused by their
orientation histograms. In practice, however, you
can easily choose a set of training gestures with
substantially different orientation histograms from
each other (such as Figure 5).

We form a vector, @, of N elements, with the ith
element showing the number of orientation
elements 6(x, y) between the angles

Be0R e d360"(f+l)‘
N ) S T N

360°

S

J1 if ‘8(){, 360

0 otherwise

(i) = Z
X, ¥

To reduce noise and allow interactions between
neighboring orientations, we averaged together
adjacent histogram bins. We used N = 36 bins for
the applications shown here. Simple Euclidean
distance,

3 (@0 - @0)f

!

provides a distance measure between the two
images with orientation histograms @; and @,.
Figure C shows the orientation histogram
calculation for a simple image.

The resulting orientation histogram is very fast
to compute, and can be used as a feature vector to
compare with previously analyzed training shapes.
McConnell® proposed these as a method to
analyze the shapes of binary images; we apply
them to applications using grayscale images.”

shows the system one or more examples of a hand shape.
The computer forms and stores the corresponding ori-
entation histograms. In the run phase, the computer
compares the current image’s orientation histogram
with each of the stored templates and either selects the



Down
Left
Right

Stop

category of the closest match or interpolates between
templates, as appropriate. This method, while insensi-
tive to small changes in the size of the hand, is sensitive
to changes in hand orientation. For greater robustness,
the user may show several training examples, and the
computer can use the closest matching example.

We implemented several interactive graphics appli-
cations that rely on orientation histograms for hand-
gesture recognition.” (For more information, see the
sidebar “Orientation Histograms.”) Figure 5 shows a
computer graphic crane that we can control by hand
signals. We first trained the system on hand signals for
the commands up, down, left, right, and stop, by hav-
ing the user show an example of each gesture. After
training the computer, the user can use those com-
mands to move around a crane under hand-gesture con-
trol. A graphical display of the closeness of each hand
signal to the five trained categories gives the user feed-
back for implementing consistent gestures and helps to
debug any miscategorizations.

We used the same recognition engine in an interac-
tive game of rock, scissors, paper (Figure 6). A com-
puter graphic “robot hand” plays the game against the
user. The robot hand indicates when the user should

IEEE Computer Graphics and Applications

5 Orientation
histograms in
an example-
based hand
gesture recogni-
tion system.
Training images
with orientation
maps and orien-
tation histo-
grams (top). In
the run phase,
the computer
compares the
orientation
histogram of
the current
image with
those of the
training images.
A graph show-
ing inverse
distances gives
user feedback
on performance
(middle). Hand
signals control a
toy crane (bot-
tom).

6 Rock,
scissors, paper
game, based on
orientation
histograms.
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7 Problem
images for the
orientation
histogram-
based gesture
classifier.

8 Visual display
of analysis of
Decathlete.

Artificial
retina
image

Decathlon event
[Decathlon event
Decathlon event]

Optical

[Decathlon event]

flow [Vertical
field flow

history
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Decathlon event
[Decathlon event
[Decathlon event
[Decathlon event]

make the gesture, allowing a simple open loop capture
of the video gesture.

Each of these systems, while simple and fast, recog-
nizes gestures under the constrained viewing conditions
where the hand dominates the image. We showed these
systems to many users, most of whom could use them
without practice. Generally, the system must be trained
for each user; in the run phase, the response is reliable
and fast.

We observed the conditions where the user was not
satisfied with the gesture classification. Figures 7a and 7b
show two images that users feel should represent the
same gesture. However, their orientation histograms are
very different, as illustrated by their overlaid histograms
in Figure 7c. This problem can be addressed by provid-
ing training images for each different version of gesture.
Some different gestures have very similar orientation
histograms. Figures 7d and 7e show an example of this,
with the histograms overlaid in Figure 7f. You must
choose a vocabulary of gestures that avoids such con-
fusing pairs. Finally, the hand must dominate the image
for this simple statistical technique to work. Figures 7g
and 7h show images where the hand is a small part of
the image. Even though the user has very different hand
positions, the orientation histograms of the two images
are similar (see Figure 7i). This orientation histogram
method is most appropriate for close-ups of the hand. A
uniform background provides the best results.

The processing is fast on a conventional general-pur-
pose processor. You can also use special hardware for
the low-level image processing tasks (see the sidebar
“Artificial Retina Chip”).

Motion analysis

Often a person’s motion signals the important inter-
face information to the computer. Computer vision
methods to analyze “optical flow” can be used to sense
movements or gestures.

We applied motion analysis to control the Sega Sat-
urn game, Decathlete (see Figure 8). The game involves
the Olympic events of the decathlon (see Figure 9). The
conventional game interface suffers from the limita-
tions of the handheld control—to make the game ath-
lete run faster, the player must press a key faster and
faster. We sought to let the user pantomime stationary
versions of the athletic events in front of the artificial
retina module by running or jumping in place. We

9 An example of a user playing a Decathlon event, the javelin throw. The computer’s timing of the set and release
for the javelin is based on when the integrated downward and upward motion exceeds predetermined thresholds.

May/June 1998




hoped this would add an extra dimension to the game
and make it more engaging.

Figure 10 shows examples of the human-computer
interaction for the 110-meter hurdles. The user runs in
place to make the computer character run. The charac-
ter’s speed is proportional to how fast the player runsin
place. To jump over a hurdle, the player raises both
hands simultaneously.

Recognizing these actions in a general context would
be very challenging, but knowing the game context
greatly simplifies the visual recognition. The game con-
text tells us which event the player performs, and we
only have to choose between a few different motions the
player should perform, or estimate timing or rate para-
meters. These problems prove much easier to solve. For
the 110-meter hurdles, the vision algorithm chooses
whether the player runs in place or raises his arms to
jump over a hurdle. If he runs in place, the algorithm
estimates how fast.

Many methods can analyze optical flow, but relative to
our low-cost, high-speed requirements, these can be too
slow on conventional machines. Although we don’t need
a detailed motion analysis, it must be extremely fast.

We developed a fast “optical flow” algorithm (see the
sidebar “Fast Optical Flow,” next page), which provides
an approximation to the screen velocity of moving points
on the image appropriate for the large-scale character-
istics of the optical flow. We used simple measurements
derived from the optical flow to estimate the relevant
motion parameters. For example, for the 110-meter hur-
dles, we tracked the frame averages of the horizontal and
vertical components of motion. The frequency of the hor-
izontal velocity’s alternation indicates how fast the play-
er runs in place. When the average vertical velocity
exceeds a threshold, that indicates a jump command.

With this simple processing, players can believe that
the computer understands their physical gestures. We
have demonstrated this game at various public venues,

10 Two participants playing the
Decathlete game (top). Image
mosaic showing another player, the
Decathlete game display, and the
artificial retina module located to
the right of the display (bottom).

Flex-cam
video
HP 735 Computer camera
| monitor clevisi
Television
Graphics
display i
~

Electronically
] controlled

e remote control

11 Block diagram of a prototype television set con-
trolled by hand gestures. While the prototype uses two
display screens, the graphics could be overlaid directly
on the television image.

including the computer trade show Comdex in 1996.
We used a stationary background to give the most reli-
able recognition. Players almost always controlled the
characters well on their first attempts and immediately
became engaged in the game itself.

Small object tracking

The previous algorithms involved tracking or char-
acterizing objects that appear large in the camera frame.
Many interactive applications also require tracking
objects, such as the user’s hand, that comprise only a
small part of the image. Here we describe one such
application and our system solution.

Our target application aimed to control a television set
by hand signals, thus replacing a remote control. Figure
11 shows the prototype of such a television set. This appli-
cation forced us to face two design problems: one from
the human’s point of view and one from the computer’s
point of view. On the human side, we wanted to give a
broad set of commands to the television set by hand sig-

IEEE Computer Graphics and Applications
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D Fast motion
estimation
algorithm. The
top image
shows how
contrast direc-
tion and motion
direction inter-
act to yield
temporal differ-
ence pixel
values (algo-
rithm step 2).
Figure D1: a
moving square.
Figures D2
through D5
show steps in
the algorithm
to calculate
optical flow and
correspond to
algorithm steps
1,3, 4, and 5,
respectively.
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Fast Optical Flow

For an approximation to the optical flow field,

3. Apply the 1D direction estimation rules to four

we developed a fast algorithm that works well for

the coarse-scale analysis we use in interactive
game applications. The algorithm classifies the
local mation of edges into various possibilities,

orientations (vertical, horizontal, and the two
diagonals) at each pixel.

4. Treat each possible motion direction estimate as

then pools local estimates across orientation and

across space to estimate large-scale optical flow.

The algorithm follows:

a vector and average the possible motion esti-
mates at each pixel.

5. Finally, average the above flow estimate at each

1. Subtract the current frame from the previous

one, yielding a temporal difference image.

pixel with the flow estimates of each of its eight
neighbors.

Figure D illustrates our algorithm for the case of

2. For pixels where the temporal difference is non-

zero, enumerate the possible motion directions
consistent with the local image measurements.
Consider the 1D motion shown in Figure D1.
From this example, we derive two rules for
motion direction estimation:

m If the temporal difference is negative, the

a 4 x 4 pixel moving square. Each subfigure
corresponds with one enumerated step of the
algorithm above. When the square moves (Figure
D1), some pixel value changes occur. Figure D2
represents the change of each pixel value by
taking their difference of the frame interval. Figure
D3 is a set of orientation vectors at each pixel, and

(3)

motion direction is toward the adjacent pixel
with higher luminance in the current frame.

motion vectors are shown in Figure D4, Figure D5
shows the optical flow pattern after spatial

m If the temporal difference is positive, the smoothing.
motion direction is toward the adjacent pixel
with lower luminance in the current frame.
m (2) (3 (4)
Light Light Light Light
Edge contrast T T
and its motion | | » -
direction Dark Dark Dark Dark
subtraction 0 O O

(positive or negative)

(M

(=]

(=30 & (= = =i =)
|
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nals, yet we didn’t want to require an intensive training
period before a user could control the television. On the
machine side, recognizing a broad set of hand gestures
made within a complex, unpredictable visual scene—
such as a living room—proves difficult and remains
beyond the realm of current vision algorithms.

We addressed both these design constraints by
exploiting the television screen’s ability to provide
graphical feedback.” Our interface design is simple (see
Figure 12). To turn on the television, the user holds up
his hand. Then a graphical hand icon appears on the
television screen, along with graphical sliders and but-
tons for television adjustments. The hand icon tracks
the motions of the user’s hand (see Figure 13). The user
adjusts the various television controls by moving the
hand icon on top of the onscreen controls. The graphi-
cal displays and position feedback allows a rich inter-
action using only simple actions from the user.

The method of moments and orientation histograms
of the previous sections aren’t adequate to track a small
object through the scene. We adopted a template-based

12 sample session of television viewing. (a) Television is off, but searching
for the trigger gesture. (b) Viewer shows trigger gesture (open hand).
Television set turns on and hand icon and graphics overlays appear. (c) The
hand icon tracks the user’s hand movement. User changes controls as with
a mouse. (d) User has moved hand icon to change channel. (e) User closes
hand to leave control mode. After one second, the hand icon and controls

then disappear.

technique, called normalized correlation (see the sidebar
“Normalized Correlation,” next page). We examine the
fit of a hand template to every position in the analyzed
image. The location of maximum correlation gives the
candidate hand’s position—the value of that correlation
indicates the likelihood that the image region is a hand.

To simplify the processing, we used a single template
for the hand. This restricts the scale and orientation
changes allowed by the image of the user’s hand. The
working range of the single template system was 6 to 10
feet from the television. To increase the processing
speed, we restricted the field of view of the television’s
camera to 15 degrees when initially searching for the
hand, and 25 degrees in tracking mode. We used a run-
ning temporal average of the image to subtract out sta-
tionary objects. Nonetheless, the best results occured
when the background contrasted with the foreground
hand. To increase robustness to lighting changes, we
used an orientation representation. Although the track-
ing method is not adequate for unpredictable environ-
ments like living rooms, under demonstration
conditions it can work quite well. Other tracking meth-
ods may improve performance.’

The working demonstration allowed us to informal-
ly survey people’s reactions to controlling a television
set by hand signals. Most people seemed quite excited by
the approach; it seemed in some ways magical. Unfor-
tunately, to hold up the hand in the required way for a
long time is tiresome. While the initial gesture to turn
the television set on may be adequate, for channel
surfers a more relaxed signal must be developed to indi-
cate a new channel.
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input, the hand
icon tracks the
user’s hand,
allowing him to
use his hand like
a computer
mouse.
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E (a) Stored
hand template.
(b) Image to be
analyzed.

(c) Normalized
correlation
values at each
pixel. The
bright spot of
the normalized
correlation
indicates the
position of the
best match.
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Normalized Correlation

To find instances of an intensity pattern within

another image, we can examine the correlation

- between each small patch of the image and the
target pattern. To remove effects due to large,
overall changes in brightness, we calculate the
normalized correlation between every point of
the image and the target pattern.

Consider the M x N pixel target pattern to be
an MN dimensional vector, a. For each possible
placement of the target pattern within the
image, let the corresponding M x N pixels of the
image be an MN dimensional vector, b. The
normalized correlation for that particular offset
of the target pattern within the image is the
cosine of the angle between the vectors a and b:

a-b
e
J(@-a) (b-b)
Figure E shows the normalized correlation
between an image and a hand template. Note

the peak correlation intensity at the true position
of the hand.

(a)

Conclusion

Fast, simple vision algorithms and interactive com-
puter graphic applications fit together well at a system
level to accommodate human-computer interaction
based on computer vision. The demands of the interac-
tive application require a robust, fast response with low-
cost hardware. Fortunately, the graphical application
also simplifies the problem by providing context to limit
the range of visual interpretations and providing user
feedback. This allows for interfaces to computer graph-
ic applications based on simple and fast vision algo-
rithms, and possibly special, low-cost hardware.
Advances in algorithms, processing power, and memo-
ry will continually improve these vision-based interfaces
which, over time, may become commonplace. |
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