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Abstract MAP,, ;. score tends to favor the no-blur explanation, for
In blind deconvolution one aims to estimate from an in- whichk is a delta kernel and is the mpgt blurred image.
The MAP, ;. score does favor sharp signals at the vicinity

put blurred imagey a sharp imager and an unknown blur . )
kernel k. Recent research shows that a key to success ismc step edges, and thus steering it towards the sharp selutio

to consider the overall shape of the posterior distribution IS usually_sensitive_ toa C?fe“!“ detection of step edges and
: : .. the boosting of their contribution.

p(z, k|y) and not only its mode. This leads to a distinction Whil il VAP estimati f both |

between MAR, strategies which estimate the mode pair i€ a simuftaneous estimation ot both image

2.k and often lead to undesired results, and MAstrate- and kernel is ill-posed, estimating the kernel alone isdvett
gies which select the bestwhile margiﬁalizing over all conditioned because the number of parameters to estimate

possibler images is small relative to the number of image pixels measured

The MAR, principle is significantly more robust than [15]. This leads to MAR estimation:
the MAR; ;, one, yet, it involves a challenging marginal- . Kl) = el 3
ization over latent images. As a result, MARchniques = argmax p(kly) = argmax/p(m’ y)dz. @)

are considered complicated, and have not been widely ex- . .
ploited. This paper derives a simple approximated MAP The challenge of the MAPscore is that computing(k|y)

algorithm which involves only a modest modification of @n Eq. (3) involves a computationally intractable marginal

common MAR . algorithms. We show that MARean, in ization over all possible: explanations. The best practi-

fact, be optimized easily, with no additional computationa cal MAP’C ?"go”th”? IS tha_t of Fergust al [6].’ but th's
complexity. algorithm is sometimes viewed as challenging to imple-

ment. In general, despite the superior robustness of the
MAP,, estimation principle, only a few recent approaches
1. Introduction to blind deconvolution have taken this direction [6, 22,,18]
whereas many research attempts are devoted to the, MAP
approach [20, 2, 4, 8,7, 21, 3, 23].

The main contribution of this paper is to show that an ap-
proximation to MAR. can, in fact, be optimized easily us-
ing a simple modification to MAP;, algorithms. Similar to
y=kow (1) most MAP, appro.aches, we .alternate betvx_/(?en splving for
the kernel and solving for the image. The critical differenc
is that our kernel update system accounts for the covariance
around the current latent image estimate, and not only for
the centrak: estimate itself. Furthermore, an efficient ap-
proximation to this covariance can be computed with no
extra computational complexity. We derive this simple al-

orithm by casting the MAP problem in the Expectation-
inimization framework where the latent variable is the

Blind deblurring is the problem of recovering a sharp
version of a blurred input image when the blur parameters
are unknown. Under certain motion types, a blurred input
y can be modeled as convolution of a latent sharp image
with a blur kernelk

where bothz and & are unknown. Since there is an in-
finite set of pairs(z, k) that can explain an input image
y, additional assumptions are required. The common ap-
proach is to utilize prior knowledge about the statistics
of natural images, such as their sparse derivative distribu
tion[6, 12, 20, 2,4, 8,7, 21, 3, 23]. However, the prior itsel
is usually not enough, and the estimation strategy should b
chosen with caution. sharp image:.

The direct approach is to look for a MAR. estimate, We build on the algorithm of Ferguet al. [6], but pro-

that is, a pail(z, k) with maximal a posteriori probability vide a significantly simpler derivation. As a result we shed
new light on the success of this algorithm and lead to im-
proved performance.

The MAP, ;; pair should minimize the convolution error, To isolate the effect of the various algorithmic compo-
and have sparse derivatives. However, as shown by Levinnents, we compare experimentally multiple algorithmic ver

et al. [15], the total contrast of all derivatives in a blurred sions. In particular, we show that the use of independent

image is usually lower than in a sharp one. As a result, theand y derivative images, which was originally thought of

(#, k) = arg max log p(x, k|y). @)



as an approximation to the correct use of a real derivative
field, significantly improves performance. To encourage fol
low up research, we include oomt | ab implementation.

2. MAP,, blind deconvolution

In blind deconvolution, one observes a blurred imgge
which is the convolution of a latent sharp imagevith a
latent blur kernek, corrupted by measurement noise

y=k®zx+n (4)

We denote the number of unknownsink by N, M respec-
tively, where typicallyM < N. Ferguset al. [6], formulate
the problem in derivative space, and consider:

fh®y:k®(fh®x)+nh7 fv®y:k®(fv®m)+nv (5)

with {fn, fo} = {[-1,1],[-1,1]7}. In their formulation,

the “blurred input” is taken ag = [f1 ® y; f, ® y], and

one solves for the derivative image= [f), ® z; f, ® z],

without enforcing{ f;, ® z, f, ® x} to integrate into a single

imagexz. While ignoring integrability neglects an impor-

tant constraint on the problem, we show that the derivative

representation significantly improves the results in pcact
Our goal is to estimate and k from the blurred input

y. Since there are many pairsk which can explain the

y observation, one should utilize some prior knowledge. A

common natural image prior is to assume that the image

derivatives are sparse. In this article we express the spars
prior as a mixture off Gaussians (MOG):

HiH’Yp(fi.'y(x))

Z iz_ ||f1,.y(z)||2
J

wheref; - (x) denotes the output ¢f, ® = at thei’'th pixel.
In the image space formulation (Eq. (4))f, 521 are a
set of derivative filters. In the derivative space formwati
(Eq. (5)).{ f+} consists of the delta filter.

Most blind deconvolution algorithms use a sparsity prior
on the kernel, and in practice our implementation employs
a weak sparsity prior as well. However, the contribution
of this term is usually small and for the simplicity of the
derivation, we consider here a uniform prior brand only
enforce all entries of to be non negative.

Assuming an i.i.d. Gaussian imaging noise with variance
n?, we can write

(6)
(7)

p(x)
p(fin())

Vi 271'0]

1 _lk®@c—y|?
p(ylz, k) = ——Fxe (8)
(vamn)”
whereN is the number of image pixels.
Combining Egs. (6)—(8) we express
p(y,x, k) = p(y, z|k)p(k) = p(y|z, k)p(z)p(k)
Thus,
k —

—tog ply, alk) = 1EEL—vl” ®z ull” Zlogp fin(@) +c (9)

wherec denotes a constantandp(k) is assumed uniform
and ignored.

The straightforward approach to blind deconvolution is
to search for the MAPR, solution:

(&, k) =argmax p(z, kly) =argmaxp(z,y, k) (10)

However, as analyzed by Levat al. [15], for priors of the
form of Eq. (6), MAR; ;, does not provide the expected an-
swer and favors the no blur explanation. Instead, they sug-
gest that since the kernel size is significantly smaller than
the image size, a MAP estimation of the kernel alone is well
conditioned. Thus, one should look for a MARSstimate,
marginalizing over all latent images:

k = arg max p(k|y) = arg max p(y|k)

p@%%=/p@wWﬂw

However, computing the integral of Eq. (11) is not trivial,
and the remainder of this paper discusses approximation
strategies.

()

2.1. EM optimization

To optimize the MAR score, we consider an
Expectation-Maximization framework which treats the la-
tent image as a hidden variable and marginalizes over it. In
a nutshell, this algorithm alternates between two mairsstep
In the E-step one solves a non-blind deconvolution problem
and estimates the mean image given the current kernel, with
the covariance around it. In the M-step one solves for the
best kernel given the image. However, it accounts for the
covariance around the image estimate and not only for the
mean image estimate itself. Accounting for the covariance
is the crucial difference distinguishing the EM MARp-
proach from the MAR ;. approach. Formally, the algorithm
is defined as follows:

1. E-step: Sey(z) = p(z|y, k), and compute:, C, the
mean and covariance ¢fx), which are the mean im-
age given a kernel and the covariance around it.

2. M-step: Findk minimizing

Eq[lk®z—yl?]. (12)

As explained below, since Eq. (12) integrates a
guadratic term, the mean and covariance computed in
the E-step are the sufficient statisticsq¢f) required

for that minimization.

The standard EM derivation shows that if the E-step is ex-
act, every step of this algorithm improvéss p(y|k) [9].
The M-step minimization can be done easily, by solving a
guadratic programming problem. This requires knowledge
of the mean and covariance @flone and not the full dis-
tribution.

IThrough this paper, we overload the variable denote any additive
constant independent of the variables of current interest.



Claim 1l Eqg. (12) is minimized by the solution to the as:
guadratic programming problem Ik ® E I,
x — i

~logp(y, xlk)="—5 +Z ol
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1 _ _
min 5kTAkk: —bik, st k>0 (13)

1 T T
=T A,z —b 18
where 2x TobprAce (18)

Ak(zl,m =S plit i) puli+io) + Clitin,itio) (14) wherec denotes an additive constant and:
bi ) =>_; pi+in)y ). (15) A= ET T+ 55, T] Ty, (19)

Proof: For a fixedz, the convolution error is quadratic in be =Ty (20)

and therefore can be written as ) ) o
whereT, denotes a Toeplitz (convolution) matrix with the

Ik @z —y|* = k" Apk — bL k (16) filter ¢. The conditional distributiop(z|y, k) is also Gaus-
sian, and its mean and covariance can be shown to be:

If kis anm xm kernel andM = m?, A, isanM x M

— -1 —
matrix representing the covariance ofall m windows in =4 H=Cbe. (21)
x, andby, the correlation withy: This implies thaty is the solution of the linear system
A, = by, which is essentially a non-blind deconvolution
k(i1,92) Zm (1 +41)z(i + i2), Zm (1+11)y problem: find an imagg such that its convolution witt

approximatesy, plus a regularization term on the deriva-
tives. The deconvolution system can be solved efficiently
in the frequency domain. We show in Sec. 3 that this sim-
ple Gaussian prior already provides good results, but spars
priors can further improve performance.

17
wherei sums over all image pixels, angl, io are ke(rn()el
indexes (in practice these are 2D indexes but we use the
1D vectorized version of the image and kernel). Averaging
Eq. (17) overx values coming from the distributiog(x)
provides Egs. (14) and (15). Therefore, minimizing Eq. (12)

with respect td: is equivalent to minimizing Eq. (13)] Approximate E-step using sampling: Unfortunately,

there is no closed-form formula for the mean and covari-
ance under a general sparse prior. One approach is to ap-
EM MAP , v.s. MAP, . MAP, ; algorithms usually al-  proximate these using samples. We tried the MOG sam-
ternate between two main steps: 1) sebnstant and solve  pling algorithm of Levi and Weiss [11, 19]. However, this
for the bestz (a non-blind deconvolution problem), and 2) sampling algorithm is quite slow. A better option discussed
setx constant and solve for the bdst The EM algorithm in the next section, is to consider variational free-enaigyy
is not more complicated: finding the mean image in the E- proximations.
step is equivalent to solving fargivenk. In the M-step one
solves fork, where the only difference is that solving for ~ 2.2. Variational free energy strategies
in Eq. (13) takes into account not only the besbut also Since for a sparse prior the mean and covariance can-
the covariance around it. However, this small covariance not be computed in closed form, we approximate the condi-
term has a crucial effect on the results. Deleting the co- tional distribution with a simpler one using variational-op
variance term from Eq. (14) will move us from the desired timization. The major algorithmic steps are summarized
MAP;, result to the problematic MAP,; one. We show that  in Algorithm 1. In practice, this algorithm is very simple
an approximated covariance can be computed efficiently. to implement and involves steps which are anyway com-
puted by MAR, ;, algorithms. Givenk it solves a non-
2.1.1 The E-step blind deconvolution problem, at which a mean latent im-
.age estimate is computed using iterative reweighted least
squares [13, 14]. In each iteration, one fipdsy solving an
N x N linear systemA . = b,.. This system seeks mini-
mizing the convolution error plus a weighted regularizatio
term on the derivatives (compare Eq. (19) with Eq. (26)).
The weights are selected to provide a quadratic upper bound
on the MOG negative log likelihood based on the previous
1 solution. This iterative reweighted least squares algorit
E-step under a Gaussian prior: A Gaussian prior o is a standard strategy for findingin a MAP, ;, approach.
can be expressed using Eq. (7) with a single mixture com-The covariance approximation uses the weighted deconvo-
ponentp(y, z|k) is then Gaussian as well, and Eq. (9) reads lution systemA, which was already computed anyhow. A

For general sparse priors, computing the mean and covari,
ance of the distribution is hard, and below we discuss our
approximation strategy. For simplicity, we start with the
case of a Gaussian prior an For a Gaussian prior, the co-
variance can be computed in closed form, resulting in the
Gaussian blind deconvolution algorithm of [16].



full covariance would be th&/ x N inverse Algorithm 1 Blind deconvolution using free-energy

. Iterate:
C=A" (22)
- . 1. Update weights:
However, for efficiency, we show that a diagonal approx- P g _ 7%2L”21
imation is sufficient. This diagonal approximation can be ﬁe J0
computed easily irO(N), by inverting the diagonal ele- Wirjo = Bl £, (@) 12] (24)
™ p
ments ofA,, alone >, U; e 207
Clisi) = (23) with E[| 7, (2)]?] given by, C
»(1:7) SetWV,, to be a diagonal matrix with:
G_iven M,C,. one employs the M-step described in the. W, (i, i) = z wﬂ_gﬂ (25)
previous section, and solves for the kernel as a quadratic 5%
programming problem. This is again a standard step in
MAP,. ;. algorithms with the important difference that one 2. Updater: set
accounts for the covariance and not only the singl&o- - .
lution. However, including the covariance can be done at Ay = 2T Tk+z Ty Wiy, (26)
no extra computational complexity. We usually iterate step by = %Tk y (27)

1&2 (solving forx) of Algorithm 1 three times before pro-
ceeding to step (solving fork).

For completeness, we provide below a formal derivation
of the variational free-energy algorithm. Similar derivats set diagonal covariance!(i, i) = 5.
can be found in [17, 1]. The reader who is interested in
experimental evaluation can directly read Sec. 3.

solve: A, = b,.

3. Updatek: set

2.2.1 Hidden mixture component variables Aplinia) =22, pli+in)pli+io) + Clitini+is). (28)
Before introducing the variational framework, we rewrite bi(i1)=>_; pi+i)y(). (29)
the MOG prior of Eq. (7) with a slight change. We associate

with each derivative a hidden variabtg ., indicating the solve the quadratic program

mixture component from which it arisek; -, can take each

of J discrete valueg € {1,...,J}. Then ming %k:T[lkk: +0F kst k>0 (30)

5tz I fiqy @)

p(fir (2)|hiy) Z \/1; 2 (31)

_ ) _ Similarly, with h included, the joint distribution of Eq. (9)
whereh; . ; is a short notation fos(h; , — j). The prioron  gimplifies to:

the hidden variables is the mixture component prior

Ik @z —yl
p(hiy ) =75 32) ~logply. e b =T
i@ 1
Therefore +thg<”f 20)] + 5 log(o7) —10g(7fj)) +e
i,7,J
p(fiqy(2)) = Z (Riy, 3 )P(firy (@) | Py ) (35)
/ 2.2.2 The free energy
_ Z 2(1]2. £ @)II? (33) The idea behind the variational framework is to search for a
\/2770—] distributiong(x) approximatingp(z|y, k). While p(z|y, k)

cannot be computed in closed form, the trick is to select
which is exactly the original prior definition in Eq. (7). q(x) from some simpler parametric family, which allows
The main advantage in introducing the hidden variables for tractable computation. In our case we chogse be a
is that given their values, things become Gaussian. For ex-distribution on both: andh, of the form
ample, sinceh; , ; are binary, the log of Eq. (31) involves B — h. 36
no exponents: q(z, h) Q(x)Hq by (36)

Hfmu)n q(x) is chosen to be a Gaussian distribution, character-
log p(firy (@) |hiy)=2; hiw’( —log(v QMJ)) ized by a meanu and covarianc€. ¢(h;.) is just a.J-
(34) dimensional vector whose elements suni {¢o be a valid



distribution), thej’th element of this vector ip(h;, = j). Updating g(hiy): Fixing z1, C, k, for eachi, v we can iso-

To fully expressq(h) we need to define a separafe late from Eq. (40) the terms which involve.,:
dimensional vector for each image pixel, resulting in agabl
()2
OfNX’}/ xf]QIements_. - . qu(hi’%j)<E[Hf3;£ )| ]—&-%log(a’?)—log(wj)—i—log(q(hi,.y,j))
The variational optimization then alternates between two g

: . . 41
main steps which approximate the E and M steps. In theWhereE[Hfi @I = [ @) fin(@)2da, is the( e>2-

first step, we hold; constant, find a distribution(x)q(h) pected derivative magnitude according to the curgedis-
(within the simpler parametric family) which bes.t approxXi~ winytion, which can be easily computed using the mean and
matesp(x|y7/~c_), and_ compute its mean an(_:i covariance. The covariance, C, e.g. if £, is a delta filter,B[|| f; . (x)[|2] =
second step is equivalent to the M-step: find the bhegith w02 + C(i ’Z.) ' 7 7

respect to the distribution (Eq. (12)). $

_ > q(hi~) should be a unit suni-dimensional vector. By
More precisely, we attempt to minimize the free energy: '

writing the Lagrangian of the problem, one can show that

Flg) = — fq(:c,h) log p(y, , h|k)dhda Eq. (41) is minimized by

+ [q(z,h)log q(x, h)dhdx (37) Bl @I Bl @12
alhinge) = 2e o 3T I (42)
We note that since %jo 59
logp(y, @, hik) = log p(w, hly, k) + log p(ylk), (38) Updating p:  We hold k, ¢(h; ) fixed and isolate from
we can write the free energy as Eq. (40) the terms which involve. We can write:
F(q) = — [q(x,h)logp(z, hly, k)dhdx (39) F(q) = /q(x) <%xTAzx - bfx) dz — %log|C| +c (43)
—logp(y|k) [q(x, h)dhdx . . . . . -
+ [q(x, h)log (x, h)dhda with A, b, defined in Eq. (26). Sincg(x) is Gaussian, the

integral of Eq. (43) can be computed easily:
— Dice (a(ar 1)l Ip(e, Ay, k) ~log p(ylk) gral of Eq. (43) . y

_ 17 r 1 1
That is, the free energy is the KL-divergence between (@) =gt Aspi=by pt5Tr(A.C) 5 log|Cl+c  (44)
q(z,h) and the correct conditiongbh(x, h|y, k), minus

log p(y|k). Since the KL-divergence is non-negative, min-
imizing the free energy minimizes an upper bound on the

Since Eq. (44) is quadratic im, it is minimized by the so-
lution to the linear system:

term — log p(y|k) we wish to minimize. If the family of Agp = by. (45)

q distributions include(z, h|y, k) such as in the Gaus-

sian case, andl is fixed, the besy in the family is exactly Note that iterating Egs. (42) and (45) is essentially
p(z, hly, k). If the ¢ family is not expressive enough, the an iterative reweighted least squares non-blind deconvolu
best approximation should be chosen. tion [13, 14]. In Eq. (45) we solve a weighted non-blind

To minimize the free energy we use an alternate opti- d€convolution- find an imagge, such that its convolution
mization over the parameteks:, C, q(h; ). In each step ~ With & approximates;, plus a regularization term on the
it selects the optimal value for one of the parameters while derivatives. The weights on the derivatives are updated in
holding the others fixed. The update equations are deriveceVery iteration by Eq. (42).

below. For the specific case of a Gaussian prior the, filter
weights are uniform and one can solve foefficiently in
2.2.3 Update equations the frequency basis. Otherwise, we would like to employ a

To derive th dat i let bstitute E 35fastnumerical solver, and our implementation uses the con-
0 derive the update equations, let us substitute Egs. ( %ugate gradient algorithm. One can also consider the fast

and (36) in Eq. _(37).and express the blind deconvolution solver of [10], but we found that for this application, con-
free energy explicitly: jugate gradient converges faster. Another solver disclisse
Flq)= below is the simple Gauss-Seidel solver, which is employed
by the classical mean-field approach [6, 17].

k®z—y|? | fiy ()11
oo (L5530 4 5, o) L ) o

(40) Updating C: The following claim derives a formula for
+ 350 A(hing) (3 log(0F) — log(m;) + log(q(hin,5))) the best update af, by differentiating Eq. (44) with respect
- to C.

—11log|C| +c.

We now attempt to minimize Eq. (40) with respect to each C/aim2 The covari<_';11r1ce matrix minimizing the free energy
of its variables while fixing the others. of Eq. (44)isC' = A", for A, defined in Eq. (26).



Proof: Fixing &, 11, ¢(h; ), the free energy of Eq. (44) can
be written as:

F(q) = %TT(AJCC) —0.5log|C| +c.

Since log det is a convex function (see e.g. [5]), Eq. (46)
has a global minimum and it is enough to show that'at
At the derivative of Eq. (46) with respect to each of the
entries ofC' is zero.

We recall that for every square matix

(46)

log|B| -1, .
m =B (7417 ZQ). (47)
Thus, differentiating Eq. (46) & = A, ! provides
Flay) = Au(inin) — Aulin,ia) =0.  (48)

80(1‘1, ’i2) c=A71

[

Covariance approximations: The drawback of the above
approach is that to comput€ one needs to invert an
N x N matrix. For large images, this is computationally
intractable. To simplify computation, one can search for
a C matrix with a simpler parametric form. The simplest
choice would be a zero covariance, but ignoring the vari-
ance aroung completely leads to the undesirable MAP

solution. A more reasonable alternative we derive below is ™ :
e Pixelsq(z) = Ilq(w;), where eachy(z;) is a 1D Gaus-

to constrainC' to be diagonal. While not derived here, on
could consider several other simplified covariance forms,
for example, a block diagonal covariance, or a Toeplitz
(convolution) covariance which is diagonal in the frequenc
domain.

How should we update a diagor@lmatrix? Let us fix
k., q(hqi~;) and also fix all the off-diagonal elements of
C to 0. We then isolate from Eqg. (44) the terms involving
C(i,1):

(49)

ﬂ@:%&ﬁ@c@n—;%c@ﬂ+a

Differentiating Eq. (49) shows that it is minimized by:
b
Ag(iyi)
Therefore, a diagonal’ can be updated efficiently, in
o(N).

C(i,i) = (50)

Updating k: Given the mean and covariance computed
above, we updatg by solving the quadratic programming
problem of Eq. (13).
2.3. Fergus et al.’s algorithm

Our algorithm is related to the successful Fergusl.

Free energy definition: Ferguset al. [6] and the origi-

nal Miskin and MacKay [17] algorithms use a more general
free energy function, which aims to approximate the joint
distributionp(z, k|y) and not just the conditional x|k, y).

In practice, this means that they also estimate the variance
aroundk, while our approach considers a singlestimate

at each iteration. However, since Fergus’ algorithm works
in derivative domain, the: estimated by their variational
approach is an independent set of derivatives and not the
desired image. Thig derivative estimate cannot be used
directly, leading Fergust al. to a MAP, approach. That

is, they picked only thé estimate resulting from their vari-
ationalp(z, k|y) approximation, and used it to deconvolve
the input image. Later, Leviet al. [15] showed that this
MAP,, approach is actually a major reason for their success.
In this paper we have observed that once the goal is directly
expressed as computing MAPthe full conditional distri-
butionp(x, k|y) is not required, which significantly simpli-
fies the update equations.

Mean field: The algorithms of [6, 17] employ a mean-
field approach. The classical mean field approach is ba-
sically a specific simplified choice of approximate distri-
bution ¢, which factorizes as an independent product over

sian, whose mean and variance should be estimated. This
is essentially the case if a diagonal covariance is assumed.
However, in the mean field framework, one typically up-
dates only a single(z;) at a time, holding all other pixels
fixed. On the other hand, since we vieMz) as a joint
distribution on all pixels, we update all of them simultane-
ously. Solving Eqg. (45) with respect to a single pixél) at

a time is equivalent to the Gauss-Seidel linear solver, whic

is known as a slow numerical solver. If all variables can be
updated simultaneously, stronger solvers can be employed.
In our implementation we have observed that, with a suffi-
cient number of iterations, the Gauss-Seidel approacislead
to good results, but stronger solvers converge much faster.

Noise estimate: Ferguset al. algorithm also automati-
cally estimates the noise variance. We have observed this
is often a source of problems since their optimization di-
verges when the noise estimate decreases too much. Our
implementation alleviates this component by assuming the
noise variance is known, and we usge- 0.01 in all exper-
iments. However, one reason for a noise update is that EM

approach [6], and our analysis is aimed to alleviate some@lgorithms are known to converge slowly at low noise levels

of its components and simplify extensions [22, 18]. Fergus
et al. [6] algorithm is similar to the diagonal free-energy

and faster at higher ones. To speed convergence, we start
with a high noise variance and gradually reduce it during

approach, and represents the problem in derivative SpaCé)ptimization, dividing by a factor of.15, until the desired

(Eq. (5)). The main differences are summarized below.

n = 0.01 value is reached.



Fergus Cho

Figure 2. Recovered kernels, for the seBdftest images, including test images blurred witR different kernels.

3. Experiments tation processes th5 x 255 test images of [15] in about
A mat | ab implementation of the algorithms derived in 2-4 minutes. _ - _ _
this paper is available onliReThis unoptimized implemen- The MAP;; algorithms described in the previous section

involve three main choices. First, whether we express the
2www.wisdom.weizmann.ac.illevina/papers/LevinEdRR2011Code.zipproblem in the image (Eq. (4)) or filter spaces (Eq. (5)).




Input Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio4.75 Error ratio9.78 Error ratio6.44

Our alg: sparse, free-eng, filt space Sparse, samplingpéittes Fergus Cho
Error ratio2.06 Error ratio3.51 Error ratio10.45 Error ratio4.00

Input Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio4.80 Error ratio7.86 Error ratio2.15

Our alg: sparse, free-eng, filt space Sparse, samplingpféittes Fergus Cho
Error ratio2.46 Error ratio2.05 Error ratio293.8 Error ratio6.38

Figure 3. Recovered images, 1. We empirically observe teedmvolution results are visually plausible when the rafierrors between
deconvolution with the estimated kernel and deconvolutith the ground truth kernel is belogu



Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio2.32 Error ratio1.74 Error ratio2.39

Our alg: sparse, free-eng, filt space Sparse, samplingpéittes Cho

Error ratio1.33 Error ratio2.05

Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio3.07 Error ratio2.76 Error ratio4.14

. &

Our alg: sparse, free-eng, filt space Sparse, samplingpféittes Fergus Cho
Error ratio1.86 Error ratio2.63 Error ratio1.91 Error ratio9.21

Figure 4. Recovered images, 2



Input Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio3.62 Error ratio2.88 Error ratio3.84

Our alg: sparse, free-eng, filt space Sparse, samplingpéittes Fergus Cho
Error ratio2.10 Error ratio1.97 Error ratio3.34 Error ratio5.30

Gaussian, img space Sparse, free-eng, img space i@aUdsspace
Error ratio1.68 Error ratio1.49 Error ratio2.69

Our alg: sparse, free-eng, filt space Sparse, samplingpféittes Fergus Cho
Error ratio1.27 Error ratio1.18 Error ratio1.30 Error ratio1.28

Figure 5. Recovered images, 3



slightly less accurate results. We observe that decorivolut

——Gaussian, img spase . . . .
— Sparse, FE, img space results are usually visually plausible when their erroiorat
— Gaussian, filt spase is below 3. Thus, the error ratios in Fig. 1 sh&#/% suc-
| —Sparse, FE, filt space cess for our diagonal free energy deconvolution, compared
Sparse, Smp, filt space with 75% success for the original Ferges al. implemen-
_Eirgus tation and69% for Cho and Lee. Despite the subtle differ-

ences, all these algorithms perform relatively well. Most
importantly, they significantly outperform a naive MAR
approach with no extra computational complexity.

Success percent
=
o

The success of the derivative space approach:The
derivative space solution assumes independence between
5 3 4 5 derivatives and ignores the important integrability con-
Error ratios straint. Despite this problematic assumption, it largety i
Figure 1. Evaluation results: Cumulative histogram of teeah- proves the results in practlcej . o .
volution error ratio across test examples (it bin counts the ~ One advantage of the derivative representation is that it
percentage of test examples achieving error ratio bejow fits better with the variational model which considers an in-
dependent product over variables. Another advantagetis tha
the deconvolution system solved in each iteration is better
onditioned, since the regularization is placed on the un-
nowns themselves and not on their derivatives.

Another possible explanation is that the prior parame-
ter fitting of independent derivative signals is more accu-
rate, since it is enough to match the observed derivative
histogram. In contrast, learning prior models which cor-

Second, the type of prior used— Gaussian or sparse. An
finally, the choice of covariance approximation. To isolate
the effect of the different factors we have compared five dif-
ferent algorithmic versions. First, a Gaussian prior [16] i
both image and filter domains. In this case the covariance
can be computed exactly and efficiently in the frequency ba- . ) .
sis. Second, we used a sparse MOG prior in the image an ectly encode dependencies between horizontal and verti-

filter domains. We use the free energy approach to computec@! derivatives is not trivial. Thus, it is possible that the
a diagonal covariance.  The last algorithm used the fil- PYior we used in the images space representation is not suf-

ter domain and estimated a covariance using the s:’;\mplingf'c'em,Iy a(_:curate. _In fact, a Gaussmn prior in the image
algorithm of [11, 19]. Like most recent blind deconvolu- domain might provide a better approximation to the distri-
tion algorithms, we used a coarse to fine approach. We alsd?Ution than a sparse prior with wrong parameters, as sug-

compare our results with Cho and Lee [2], the best available9eSted by its superior performance in Fig. 1. »
MAP, . algorithm, and with the original implementation of The filter domain approach which ignores integrability
Fergu:set al. [6]. is used only when estimating the kernel. Giverthe sharp

We used the 32 test images of [15]. To evaluate the re-'tirgﬁg?ﬁfh'; irni:goge(;g?n:is:]ng standard non-blind deconvolu-
sults we used the SSD ratio test of [15], and measured the 9 ‘
ratio of error between deconvolution with the estimated and

correct kernels. The idea is to normalize for the fact that 4. Discussion
harder kernels achieve a larger reconstruction error even  The MAP, blind deconvolution principle is significantly
when estimated correctly. In Fig. 1 we plot the cumulative more robust than the MAP; principle. Yet, it is consid-
histogram of error ratios (e.g. bin = 3 counts the per-  ered hard to implement and has not been widely exploited.
centage of test examples with error ratio bel®v Fig. 2 |n this paper we argue that the MABpproach can actually
visualizes the estimated kernels. Figs. 3-5, visualize de-pe optimized easily, and present simple and practical MAP
convolution results for some test images. Other images areaigorithms. While popular MAP,. strategies basically al-
included in the code package. ternate between latent image estimation given a kernel and
The best results are obtained by the diagonal free energykernel estimation given an image, our MARIgorithm em-
approach in the derivative space. The original results of ploys the same steps, where the only difference is that the
Ferguset al. [6] slightly outperform Cho and Lee [2]. The kernel estimation accounts for the covariance aratiadd
evaluation shows that the derivative-space approachiglear notonly for the mean solution. While an exact estimation of
outperforms the image-domain approach, and we discusghe covariance is challenging, a diagonal approximation ca
this success below. The simple Gaussian prior performsbe computed efficiently i@ (V) as the inverse diagonal of
surprisingly well and, in the image domain, it even outper- the deconvolution system.
forms the sparse one (our Gaussian results improve over the While we have presented the basic principles of MAP
original results of [15]). The sampling approach is signifi- optimization, there are many more algorithmic choices to
cantly slower than the free energy approach, and produce®xplore, such as the choice of filters, the choice of covari-



ance approximation, and the prior model. We hope that the[22] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Nonarnif

basic principles laid in this paper will open the door forfol deblurring for shaken images. VPR 2010.
low up research on these important questions. [23] L. Xu and J. Jia. Two-phase kernel estimation for robust
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