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Abstract

We seek to build a large collection of images with ground truth labels to be used for object

detection and recognition research. Such data is useful forsupervised learning and quantitative

evaluation. To achieve this, we developed a web-based tool that allows easy image annotation
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and instant sharing of such annotations. Using this annotation tool, we have collected a large

dataset that spans many object categories, often containing multiple instances over a wide vari-

ety of images. We quantify the contents of the dataset and compare against existing state of the

art datasets used for object recognition and detection. Also, we show how to extend the dataset

to automatically enhance object labels with WordNet, discover object parts, recover a depth or-

dering of objects in a scene, and increase the number of labels using minimal user supervision

and images from the web.

1 Introduction

Thousands of objects occupy the visual world in which we live. Biederman [4] estimates that

humans can recognize about 30000 entry-level object categories. Recent work in computer

vision has shown impressive results for the detection and recognition of a few different object

categories [42, 16, 22]. However, the size and contents of existing datasets, among other factors,

limit current methods from scaling to thousands of object categories. Research in object detec-

tion and recognition would bene�t from large image and videocollections with ground truth

labels spanning many different object categories in cluttered scenes. For each object present in

an image, the labels should provide information about the object's identity, shape, location, and

possibly other attributes such as pose.

By analogy with the speech and language communities, history has shown that performance

increases dramatically when more labeled training data is made available. One can argue that

this is a limitation of current learning techniques, resulting in the recent interest in Bayesian

approaches to learning [10, 35] and multi-task learning [38]. Nevertheless, even if we can learn

each class from just a small number of examples, there are still many classes to learn.

Large image datasets with ground truth labels are useful forsupervised learning of object cat-

egories. Many algorithms have been developed for image datasets where all training examples

have the object of interest well-aligned with the other examples [39, 16, 42]. Algorithms that

exploit context for object recognition [37, 17] would bene�t from datasets with many labeled

object classes embedded in complex scenes. Such datasets should contain a wide variety of

environments with annotated objects that co-occur in the same images.

When comparing different algorithms for object detection and recognition, labeled data is nec-

essary to quantitatively measure their performance (the issue of comparing object detection
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algorithms is beyond the scope of this paper; see [2, 20] for relevant issues). Even algorithms

requiring no supervision [31, 28, 10, 35, 34, 27] need this quantitative framework.

Building a large dataset of annotated images with many objects is a costly and lengthy en-

terprise. Traditionally, datasets are built by a single research group and are tailored to solve

a speci�c problem. Therefore, many currently available datasets only contain a small num-

ber of classes, such as faces, pedestrians, and cars. Notable exceptions are the Caltech 101

dataset [11], with 101 object classes (this was recently extended to 256 object classes [15]), the

PASCAL collection [8], and the CBCL-streetscenes database[5].

We wish to collect a large dataset of annotated images. To achieve this, we consider web-

based data collection methods. Web-based annotation toolsprovide a way of building large

annotated datasets by relying on the collaborative effort of a large population of users [43, 30,

29, 33]. Recently, such efforts have had much success. The Open Mind Initiative [33] aims

to collect large datasets from web users so that intelligentalgorithms can be developed. More

speci�cally, common sense facts are recorded (e.g. red is a primary color), with over 700K facts

recorded to date. This project is seeking to extend their dataset with speech and handwriting

data. Flickr [30] is a commercial effort to provide an onlineimage storage and organization

service. Users often provide textual tags to provide a caption of depicted objects in an image.

Another way lots of data has been collected is through an online game that is played by many

users. The ESP game [43] pairs two random online users who view the same target image.

The goal is for them to try to “read each other's mind” and agree on an appropriate name

for the target image as quickly as possible. This effort has collected over 10 million image

captions since 2003, with the images randomly drawn from theweb. While the amount of data

collected is impressive, only caption data is acquired. Another game, Peekaboom [44] has been

created to provide location information of objects. While location information is provided for a

large number of images, often only small discriminant regions are labeled and not entire object

outlines.

In this paper we describe LabelMe, a database and an online annotation tool that allows the

sharing of images and annotations. The online tool providesfunctionalities such as drawing

polygons, querying images, and browsing the database. In the �rst part of the paper we describe

the annotation tool and dataset and provide an evaluation ofthe quality of the labeling. In the

second part of the paper we present a set of extensions and applications of the dataset. In this

section we see that a large collection of labeled data allowsus to extract interesting information

that was not directly provided during the annotation process. In the third part we compare
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the LabelMe dataset against other existing datasets commonly used for object detection and

recognition.

2 LabelMe

In this section we describe the details of the annotation tool and the results of the online collec-

tion effort.

2.1 Goals of the LabelMe project

There are a large number of publically available databases of visual objects [38, 2, 21, 25, 9,

11, 12, 15, 7, 23, 19, 6]. We do not have space to review them allhere. However, we give a

brief summary of the main features that distinguishes the LabelMe dataset from other datasets.

� Designed for object class recognition as opposed to instance recognition. To recognize

an object class, one needs multiple images of different instances of the same class, as

well as different viewing conditions. Many databases, however, only contain different

instances in a canonical pose.

� Designed for learning about objects embedded in a scene. Many databases consist of

small cropped images of object instances. These are suitable for training patch-based

object detectors (such as sliding window classi�ers), but cannot be used for training de-

tectors that exploit contextual cues.

� High quality labeling. Many databases just provide captions, which specify that the ob-

ject is present somewhere in the image. However, more detailed information, such as

bounding boxes, polygons or segmentation masks, is tremendously helpful.

� Many diverse object classes. Many databases only contain a small number of classes,

such as faces, pedestrians and cars (a notable exception is the Caltech 101 database,

which we compare against in Section 4).

� Many diverse images. For many applications, it is useful to vary the scene type (e.g.

nature, street, and of�ce scenes), distances (e.g. landscape and close-up shots), degree of

clutter, etc.

� Many non-copyrighted images. For the LabelMe database mostof the images were taken

by the authors of this paper using a variety of hand-held digital cameras. We also have
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many video sequences taken with a head-mounted web camera.

� Open and dynamic. The LabelMe database is designed to allow collected labels to be

instantly shared via the web and to grow over time.

2.2 The LabelMe web-based annotation tool

The goal of the annotation tool is to provide a drawing interface that works on many platforms,

is easy to use, and allows instant sharing of the collected data. To achieve this, we designed a

Javascript drawing tool, as shown in Figure 1. When the user enters the page, an image is dis-

played. The image comes from a large image database coveringa wide range of environments

and several hundred object categories. The user may label a new object by clicking control

points along the object's boundary. The user �nishes by clicking on the starting control point.

Upon completion, a popup dialog bubble will appear queryingfor the object name. The user

freely types in the object name and presses enter to close thebubble. This label is recorded on

the LabelMe server and is displayed on the presented image. The label is immediately available

for download and is viewable by subsequent users who visit the same image.

The user is free to label as many objects depicted in the imageas they choose. When they are

satis�ed with the number of objects labeled in an image, theymay proceed to label another

image from a desired set or press theShow Next Imagebutton to see a randomly chosen im-

age. Often, when a user enters the page, labels will already appear on the image. These are

previously entered labels by other users. If there is a mistake in the labeling (either the outline

or text label is not correct), the user may either edit the label by renaming the object or delete

and redraw along the object's boundary. Users may get creditfor the objects that they label

by entering a username during their labeling session. This is recorded with the labels that they

provide. The resulting labels are stored in the XML �le format, which makes the annotations

portable and easy to extend.

The annotation tool design choices emphasizes simplicity and ease of use. However, there are

many concerns with this annotation collection scheme. One important concern is quality con-

trol. Currently quality control is provided by the users themselves, as outlined above. Another

issue is the complexity of the polygons provided by the users(i.e. do users provide simple or

complex polygon boundaries?). Another issue is what to label. For example, should one label

the entire body, just the head, or just the face of a pedestrian? What if it is a crowd of people?

Should all of the people be labeled? We leave these decisionsup to each user. In this way, we
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Figure 1. A screenshot of the labeling tool in use. The user is shown an image along with

possibly one or more existing annotations, which are drawn o n the image. The user has the

option of annotating a new object by clicking along the bound ary of the desired object and

indicating its identity, or editing an existing annotation . The user may annotate as many

objects in the image as they wish.
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hope the annotations will re�ect what various people think are natural ways of segmenting an

image. Finally, there is the text label itself. For example,should the object be labeled as a “per-

son”, “pedestrian”, or “man/woman”? An obvious solution isto provide a drop-down menu of

standard object category names. However, we prefer to let people use their own descriptions

since these may capture some nuances that will be useful in the future. In Section 3.1, we de-

scribe how to cope with the text label variability via WordNet [13]. All of the above issues are

revisited, addressed, and quanti�ed in the remaining sections.

A Matlab toolbox has been developed to manipulate the dataset and view its contents. Example

functionalities that are implemented in the toolbox allow dataset queries, communication with

the online tool (this communication can in fact allow one to only download desired parts of the

dataset), image manipulations, and other dataset extensions (see Section 3).

The images and annotations are organized online into folders, with the folder names providing

information about the image contents and location of the depicted scenes/objects. The folders

are grouped into two main categories: static pictures and sequences extracted from video. Note

that the frames from the video sequences are treated as independent static pictures and that

ensuring temporally consistent labeling of video sequences is beyond the scope of this paper.

Most of the images have been taken by the authors using a variety of digital cameras. A small

proportion of the images are contributions from users of thedatabase or come from the web.

The annotations come from two different sources: the LabelMe online annotation tool and

annotation tools developed by other research groups. We indicate the sources of the images and

annotations in the folder name and in the XML annotation �les. For all statistical analyses that

appear in the remaining sections, we will specify which subset of the database subset was used.

2.3 Content and evolution of the LabelMe database

We summarize the content of the LabelMe database as of December 21, 2006. The database

consists of 111490 polygons, with 44059 polygons annotatedusing the online tool and 67431

polygons annotated of�ine. There are 11845 static picturesand 18524 sequence frames with at

least one object labeled.

As outlined above, a LabelMe description corresponds to theraw string entered by the user to

de�ne each object. Despite the lack of constraint on the descriptions, there is a large degree of

consensus. Online labelers entered 2888 different descriptions for the 44059 polygons (there

are a total of 4210 different descriptions when consideringthe entire dataset). Figure 2(a) shows
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a sorted histogram of the number of instances of each object description for all 111490 poly-

gons1. Notice that there are many object descriptions with a largenumber of instances. While

there is much agreement among the entered descriptions, object categories are nonetheless frag-

mented due to plurals, synonyms, and description resolution (e.g. “car”, “car occluded”, and

“car side” all refer to the same category). In section 3.1 we will address the issue of unifying

the terminology to properly index the dataset according to real object categories.

Figure 2(b) shows a histogram of the number of annotated images as a function of the per-

centage of pixels labeled per image. The graph shows that 11571 pictures have less than 10%

of the pixels labeled and around 2690 pictures have more than90% of labeled pixels. There

are 4258 images with at least 50% of the pixels labeled. Figure 2(c) shows a histogram of the

number of images as a function of the number of objects in the image. There are, on average,

3.3 annotated objects per image over the entire dataset. There are 6876 images with at least

5 objects annotated. Figure 3 shows images depicting a rangeof scene categories, with the

labeled objects colored to match the extent of the recorded polygon. For many images, a large

number of objects are labeled, often spanning the entire image.

The web-tool allows the dataset to continuously grow over time. Figure 4 depicts the evolution

of the dataset since the annotation tool went online. We showthe number of new polygons and

text descriptions entered as a function of time. For this analysis, we only consider the 44059

polygons entered using the web-based tool. The number of newpolygons increased steadily

while the number of new descriptions grew at a slower rate. Tomake the latter observation

more explicit, we also show the probability of a new description appearing as a function of

time (we analyze the raw text descriptions).

2.4 Quality of the polygonal boundaries

Figure 5 illustrates the range of variability in the qualityof the polygons provided by different

users for a few object categories. For the analysis in this section, we only use the 44059

polygons provided online. For each object category, we sortthe polygons according to the

number of control points. Figure 5 shows polygons corresponding to the 25th, 50th, and 75th

percentile with respect to the range of control points clicked for each category. Many objects

1A partial list of the most common descriptions for all 111490polygons in the LabelMe dataset, with counts

in parenthesis: person walking (25330), car (6548), head (5599), tree (4909), window (3823), building (2516),

sky (2403), chair (1499), road (1399), bookshelf (1338), trees (1260), sidewalk (1217), cabinet (1183), sign (964),

keyboard (949), table (899), mountain (823), car occluded (804), door (741), tree trunk (718), desk (656).
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Figure 2. Summary of the database content. (a) Sorted histog ram of the number of in-

stances of each object description. Notice that there is a la rge degree of consensus with

respect to the entered descriptions. (b) Histogram of the nu mber of annotated images as a

function of the area labeled. The �rst bin shows that 11571 im ages have less than 10 % of

the pixels labeled. The last bin shows that there are 2690 pic tures with more than 90 % of

the pixels labeled. (c) Histogram of the number of labeled ob jects per image.

Figure 3. Examples of annotated scenes. These images have mo re than 80 % of their pixels

labeled and span multiple scene categories. Notice that man y different object classes are

labeled per image.
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Figure 4. Evolution of the online annotation collection ove r time. Left: total number of poly-

gons (blue) and descriptions (green) in the LabelMe dataset as a function of time. Right:

the probability of a new description being entered into the d ataset as a function of time.

Note that the graph plots the evolution through March 23rd, 2 007 but the analysis in this

paper corresponds to the state of the dataset as of December 2 1, 2006, as indicated by

the star. Notice that the dataset has steadily increased whi le the rate of new descriptions

entered has decreased.

9



Person
7 12 21

Dog
16 28 52

Bird
13 37 168

Chair
7 10 15

Street
lamp

5 9 15
House

5 7 12

Motorbike
12 22 36

Boat
6 9 14

Tree
11 20 36

Mug
6 8 11

Bottle
7 8 11

Car
8 15 22

Figure 5. Illustration of the quality of the annotations in t he dataset. For each object we

show three polygons depicting annotations corresponding t o the 25th, 50th, and 75th per-

centile of the number of control points recorded for the obje ct category. Therefore, the

middle polygon corresponds to the average complexity of a se gmented object class. The

number of points recorded for a particular polygon appears n ear the top-left corner of each

polygon. Notice that, in many cases, the object's identity c an be deduced from its silhou-

ette, often using a small number of control points.

can already be recognized from their silhouette using a small number of control points. Note

that objects can vary with respect to the number of control points to indicate its boundary. For

instance, a computer monitor can be perfectly described, inmost cases, with just four control

points. However, a detailed segmentation of a pedestrian might require 20 control points.

Figure 6 shows some examples of cropped images containing a labeled object and the corre-

sponding recorded polygon.

2.5 Distributions of object location and size

At �rst, one would expect objects to be uniformly distributed with respect to size and image

location. For this to be true, the images should come from a photographer who randomly points

their camera and ignores the scene. However, most of the images in the LabelMe dataset were

taken by a human standing on the ground and pointing their camera towards interesting parts

of a scene. This causes the location and size of the objects tonot be uniformly distributed in

the images. Figure 7 depicts, for a few object categories, a density plot showing where in the

image each instance occurs and a histogram of object sizes, relative to the image size. Given
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Paper cup

Rock

Statue

Chair

Figure 6. Image crops of labeled objects and their correspon ding silhouette, as given by

the recorded polygonal annotation. Notice that, in many cas es, the polygons closely follow

the object boundary. Also, many diverse object categories a re contained in the dataset.

how most pictures were taken, many of the cars can be found in the lower half region of the

images. Note that for applications where it is important to have uniform prior distribitions of

object locations and sizes, we suggest cropping and rescaling each image randomly.

3 Extending the dataset

We have shown that the LabelMe dataset contains a large number of annotated images, with

many objects labeled per image. The objects are often carefully outlined using polygons instead

of bounding boxes. These properties allow us to extract fromthe dataset additional informa-

tion that was not provided directly during the labeling process. In this section we provide

some examples of interesting extensions of the dataset thatcan be achieved with minimal user

intervention. Code for these applications is available as part of the Matlab toolbox.

3.1 Enhancing object labels with WordNet

Since the annotation tool does not restrict the text labels for describing an object or region, there

can be a large variance of terms that describe the same objectcategory. For example, a user

may type any of the following to indicate the “car” object category: “car”, “cars”, “red car”,
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Figure 7. Distributions of object location and size for a num ber of object categories in the

LabelMe dataset. The distribution of locations are shown as a 2D histogram of the object

centroid location in the different images (coordinates are normalized with respect to the

image size). The size histogram illustrates what is the typi cal size that the object has in the

LabelMe dataset. The horizontal axis is in logarithmic unit s and represents the percentage

of the image area occupied by the object.
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“car frontal”, “automobile”, “suv”, “taxi”, etc. This makes analysis and retrieval of the labeled

object categories more dif�cult since we have to know about synonyms and distinguish between

object identity and its attributes. A second related problem is the level of description provided

by the users. Users tend to provide basic-level labels for objects (e.g. “car”, “person”, “tree”,

“pizza”). While basic-level labels are useful, we would also like to extend the annotations to

incorporate superordinate categories, such as “animal”, “vehicle”, and “furniture”.

We use WordNet [13], an electronic dictionary, to extend theLabelMe descriptions. WordNet

organizes semantic categories into a tree such that nodes appearing along a branch are ordered,

with superordinate and subordinate categories appearing near the root and leaf nodes, respec-

tively. The tree representation allows disambiguation of different senses of a word (polysemy)

and relates different words with similar meanings (synonyms). For each word, WordNet re-

turns multiple possible senses, depending on the location of the word in the tree. For instance,

the word “mouse” returns four senses in WordNet, two of whichare “computer mouse” and

“rodent”2. This raises the problem of sense disambiguation. Given a LabelMe description and

multiple senses, we need to decide what the correct sense is.

WordNet can be used to automatically select the appropriatesense that should be assigned to

each description [18]. However, polysemy can prove challenging for automatic sense assign-

ment. Polysemy can be resolved by analyzing the context (i.e. which other objects are present

in the same image). To date, we have not found instances of polysemy in the LabelMe dataset

(i.e. each description maps to a single sense). However, we found that automatic sense as-

signment produced too many errors. To avoid this, we allow for of�ine manual intervention to

decide which senses correspond to each description. Since there are fewer descriptions than

polygons (c.f. Figure 4), the manual sense disambiguation can be done in a few hours for the

entire dataset.

We extended the LabelMe annotations by manually creating associations between the different

text descriptions and WordNet tree nodes. For each possibledescription, we queried WordNet

to retrieve a set of senses, as described above. We then choseamong the returned senses the

one that best matched the description. Despite users entering text without any quality control,

2The WordNet parents of these terms are (i)computer mouse: electronic device; device; instrumentality, in-

strumentation; artifact, artifact; whole, unit; object, physical object; physical entity; entity and (ii)rodent: rodent,

gnawer, gnawing animal; placental, placental mammal, eutherian, eutherian mammal; mammal, mammalian; ver-

tebrate, craniate; chordate; animal, animate being, beast, brute, creature, fauna; organism, being; living thing,

animate thing; object, physical object; physical entity; entity.
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person (27719 polygons) car (10137 polygons)

Label Polygon count Label Polygon count

person walking 25330 car 6548

person 942 car occluded 804

person standing 267 car rear 584

person occluded 207 car side 514

person sitting 120 car crop 442

pedestrian 121 car frontal 169

man 117 taxi 8

woman 75 suv 4

child 11 cab 3

girl 9 automobile 2
Table 1. Examples of LabelMe descriptions returned when que rying for the objects “person”

and “car” after extending the labels with WordNet (not all of the descriptions are shown).

For each description, the counts represents the number of re turned objects that have the

corresponding description. Note that some of the descripti ons do not contain the query

words.

3916 out of the 4210 (93%) unique LabelMe descriptions founda WordNet mapping, which

corresponds to 104740 out of the 111490 polygon descriptions. The cost of manually specifying

the associations is negligible compared to the cost of entering the polygons and must be updated

periodically to include the newest descriptions. Note thatit may not be necessary to frequently

update these associations since the rate of new descriptions entered into LabelMe decreases

over time (c.f. Figure 4).

We show the bene�t of adding WordNet to LabelMe to unify the descriptions provided by the

different users. Table 1 shows examples of LabelMe descriptions that were returned when

querying for “person” and “car” in the WordNet-enhanced framework. Notice that many of

the original descriptions did not contain the queried word.Figure 8 shows how the number of

polygons returned by one query (after extending the annotations with WordNet) are distributed

across different LabelMe descriptions. It is interesting to observe that all of the queries seem to

follow a similar law (linear in a log-log plot).

Table 2 shows the number of returned labels for several object queries before and after applying

WordNet. In general, the number of returned labels increases after applying WordNet. For
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Figure 8. How the polygons returned by one query (in the WordN et-enhanced framework)

are distributed across different descriptions. The distri butions seem to follow a similar law:

a linear decay in a log-log plot with the number of polygons fo r each different description

on the vertical axis and the descriptions (sorted by number o f polygons) on the horizontal

axis. Table 1 shows the actual descriptions for the queries “ person” and “car”.

many speci�c object categories this increase is small, indicating the consistency with which

that label is used. For superordinate categories, the number of returned matches increases

dramatically. The object labels shown in Table 2 are representative of the most frequently

occurring labels in the dataset.

One important bene�t of including the WordNet hierarchy into LabelMe is that we can now

query for objects at various levels of the WordNet tree. Figure 9 shows examples of queries for

superordinate object categories. Very few of these examples were labeled with a description

that matches the superordinate category, but nonetheless we can �nd them.

While WordNet handles most ambiguities in the dataset, errors may still occur when querying

for object categories. The main source of error arises when text descriptions get mapped to an

incorrect tree node. While this is not very common, it can be easily remedied by changing the

text label to be more descriptive. This can also be used to clarify cases of polysemy, which our

system does not yet account for.

3.2 Object-parts hierarchies

When two polygons have a high degree of overlap, this provides evidence of either (i) an object-

part hierarchy or (ii) an occlusion. We investigate the former in this section and the latter in
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Category Original description WordNet description

person 27019 27719

car 10087 10137

tree 5997 7355

chair 1572 2480

building 2723 3573

road 1687 2156

bookshelf 1588 1763

animal 44 887

plant 339 8892

food 11 277

tool 0 90

furniture 7 6957
Table 2. Number of returned labels when querying the origina l descriptions entered into the

labeling tool and the WordNet-enhanced descriptions. In ge neral, the number of returned

labels increases after applying WordNet. For entry-level o bject categories this increase is

relatively small, indicating the consistency with which th e corresponding description was

used. In contrast, the increase is quite large for superordi nate object categories. These de-

scriptions are representative of the most frequently occur ring descriptions in the dataset.
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Animal

seagull squirrel bull horse elephant

Plant

flower cactus tree potted plant bushes palm tree

Food

dish with food orange mustard applepizza

Tool

toolbox knife scissors corkscrew

Figure 9. Queries for superordinate object categories afte r incorporating WordNet. Very few

of these examples were labeled with a description that match es the superordinate category

(the original LabelMe descriptions are shown below each ima ge). Nonetheless, we are able

to retrieve these examples.
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Section 3.3.

We propose the following heuristic to discover semantically meaningful object-part relation-

ships. LetIO denote the set of images containing a query object (e.g. car)andIP � IO denote

the set of images containing partP (e.g. wheel). Intuitively, for a label to be considered as a

part, the label's polygons must consistently have a high degree of overlap with the polygons

corresponding to the object of interest when they appear together in the same image. Let the

overlap score between an object and part polygons be the ratio of the intersection area to the

area of the part polygon. Ratios exceeding a threshold of 0.5get classi�ed as having high over-

lap. Let IO;P � IP denote the images where object and part polygons have high overlap. The

object-part score for a candidate label isNO;P=(NP + a ) whereNO;P andNP are the number of

images inIO;P andIP respectively anda is a concentration parameter, set to 5. We can think of

a as providing pseudocounts and allowing us to be robust to small sample sizes.

The above heuristic provides a list of candidate part labelsand scores indicating how well

they co-occur with a given object label. In general, the scores give good candidate parts and

can easily be manually pruned for errors. Figure 10 shows examples of objects and proposed

parts using the above heuristic. We can also take into account viewpoint information and �nd

parts, as demonstrated for the car object category. Notice that the object-parts are semantically

meaningful.

Once we have discovered candidate parts for a set of objects,we can assign speci�c part in-

stances to their corresponding object. We do this using the intersection overlap heuristic, as

above, and assign parts to objects where the intersection ratio exceeds the 0.5 threshold. For

some robustness to occlusion, we compute a depth ordering ofthe polygons in the image (see

Section 3.3) and assign the part to the polygon with smallestdepth that exceeds the intersection

ratio threshold. Figure 11 gives some quantitative resultson the number of parts per object and

the probability with which a particular object-part is labeled.

3.3 Depth ordering

Frequently, an image will contain many partially overlapping polygons. This situation arises

when users complete an occluded boundary or when labeling large regions containing small

occluding objects. In these situations we need to know whichpolygon is on top in order to

assign the image pixels to the correct object label. One solution is to request depth ordering

information while an object is being labeled. Instead, we wish to reliably infer the relative
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Figure 10. Objects and their parts. Using polygon informati on alone, we automatically dis-

cover object-part relationships. We show example parts for the building, person, mountain,

sky, and car object classes, arranged as constellations, wi th the object appearing in the

center of its parts. For the car object class, we also show par ts when viewpoint is consid-

ered.
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Figure 11. Quantitative results showing (a) how many parts a n object has and (b) the like-

lihood that a particular part is labeled when an object is lab eled. Note that there are 29

objects with at least one discovered part (only 15 are shown h ere). We are able to discover

a number of objects having parts in the dataset. Also, a part w ill often be labeled when an

object is labeled.

depth ordering and avoid user input.

The problem of infering depth ordering for overlaping regions is a simpler problem than seg-

mentation. In this case we only need to infer who owns the region of intersection. We summa-

rize a set of simple rules to decide the relative ordering of two overlapping polygons:

� Some objects are always on the bottom layer since they cannotocclude any objects. For

instance, objects that do not own any boundaries (e.g. sky) and objects that are on the

lowest layer (e.g. sidewalk and road).

� An object that is completely contained in another one is on top. Otherwise, the object

would be invisible and, therefore, not labeled. Exceptionsto this rule are transparent or

wiry objects.

� If two polygons overlap, the polygon that has more control points in the region of inter-

section is more likely to be on top. To test this rule we hand-labeled 1000 overlapping

polygon pairs randomly drawn from the dataset. This rule produced only 25 errors, with

31 polygon pairs having the same number of points within the region of intersection.

� We can also decide who owns the region of intersection by using image features. For
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Figure 12. Each image pair shows an example of two overlappin g polygons and the �nal

depth-ordered segmentation masks. Here, white and black re gions indicate near and far

layers, respectively. A set of rules (see text) were used to a utomatically discover the depth

ordering of the overlapping polygon pairs. These rules prov ided correct assignments for

97% of 1000 polygon pairs tested. The bottom right example shows an instance where the

heuristic fails. The heuristic sometimes fails for wiry or t ransparent objects.

instance, we can compute color histograms for each polygon and the region of intersec-

tion. Then, we can use histogram intersection [36] to assignthe region of intersection to

the polygon with the closest color histogram. This strategyachieved 76% correct assign-

ments over the 1000 hand-labeled overlapping polygon pairs. We use this approach only

when the previous rule could not be applied (i.e. both polygons have the same number of

control points in the region of intersection).

Combining these heuristics resulted in 29 total errors out of the 1000 overlapping polygon

pairs. Figure 12 shows some examples of overlapping polygons and the �nal assignments.

The example at the bottom right corresponds to an error. In cases in which objects are wiry

or transparent, the rule might fail. Figure 13 shows the �nallayers for scenes with multiple

overlapping objects.

3.4 Semi-automatic labeling

Once there are enough annotations of a particular object class, one could train an algorithm to

assist with the labeling. The algorithm would detect and segment additional instances in new

images. Now, the user task would be to validate the detection[41]. A successful instance of

this idea is the Seville project [1] where an incremental, boosting-based detector was trained.

They started by training a coarse detector that was good enough to simplify the collection of
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Figure 13. Decomposition of a scene into layers given the aut omatic depth ordering recov-

ery of polygon pairs. Since we only resolve the ambiguity bet ween overlapping polygon

pairs, the resulting ordering may not correspond to the real depth ordering of all the ob-

jects in the scene.

additional examples. The user provides feedback to the system by indicating when a bounding

box was a correct detection or a false alarm. Then, the detector was trained again with the

enlarged dataset. This process was repeated until a satisfactory number of images were labeled.

We can apply a similar procedure to LabelMe to train a coarse detector to be used to label

images obtained from online image indexing tools. For instance, if we want more annotated

samples ofsailboats, we can query both LabelMe (18 segmented examples of sailboats were

returned) and online image search engines (e.g. Google, Flickr, and Altavista). The online

image search engines will return thousands of unlabeled images that are very likely to contain a

sailboat as a prominent object. We can use LabelMe to train a detector and then run the detector

on the retrieved unlabeled images. The user task will be to select the correct detections in order

to expand the amount of labeled data.

Here, we propose a simple object detector. Although objectslabeled with bounding boxes have

proven to be very useful in computer vision, we would like theoutput of the automatic object

detection procedure to provide polygonal boundaries following the object outline whenever

possible.

� Find candidate regions: instead of running the standard sliding window, we propose cre-
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(a) Sailboats from the LabelMe dataset (b) Detection and segmentation

Figure 14. Using LabelMe to automatically detect and segmen t objects depicted in images

returned from a web search. (a) Sailboats in the LabelMe data set. These examples are used

to train a classi�er. (b) Detection and segmentation of a sai lboat in an image download from

the web using Google. First, we segment the image (upper left ), which produces around

10 segmented regions (upper right). Then we create a list of c andidate bounding boxes by

combining all of the adjacent regions. Note that we discard b ounding boxes whose aspect

ratios lie outside the range of the LabelMe sailboat crops. T hen we apply a classi�er to

each bounding box. We depict the bounding boxes with the high est scores (lower left),

with the best scoring one colored in red. The candidate segme ntation is the outline of the

regions inside the selected bounding box (lower right). Aft er this process, a user may then

select the correct detections to augment the dataset.
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(a) Images returned from online search engines with the query ‘sailboat’

   Images sorted after training with LabelMe

(b) Images returned from online search engines with the query ‘dog’

   Images sorted after training with LabelMe
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Figure 15. Enhancing web-basd image retrieval using labele d image data. Each pair of rows

depict sets of sorted images for a desired object category. T he �rst row in the pair is the

ordering produced from an online image search using Google, Flickr and Altavista (the

results of the three search engines are combined respecting the ranking of each image).

The second row shows the images sorted according to the con�d ence score of the object

detector trained with LabelMe. To better show how the perfor mance decreases with rank,

each row displays one out of every ten images. Notice that the trained classi�er returns

better candidate images for the object class. This is quanti �ed in the graphs on the right,

which show the precision (percentage correct) as a function of image rank.
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ating candidate bounding boxes for objects by �rst segmenting the image to produce

10-20 regions. Bounding boxes are proposed by creating all the bounding boxes that cor-

respond to combinations of these regions. Only the combinations that produce contiguous

regions are considered. We also remove all candidate bounding boxes with aspect ratios

outside the range de�ned by the training set. This results ina small set of candidates for

each image (around 30 candidates).

� Compute features: resize each candidate region to a normalized size (96� 96 pixels).

Then, represent each candidate region with a set of features(e.g. bag of words [28], edge

fragments [26], multiscale-oriented �lters [24]). For theexperiments presented here, we

used the Gist features [24] (code available online) to represent each region.

� Perform classi�cation: train a support vector machine classi�er [40] with a Gaussian

kernel using the available LabelMe data and apply the classi�er to each of the candidate

bounding boxes extracted from each image. The output of the classi�er will be a score for

the bounding boxes. We then choose the bounding box with the maximum score and the

segmentation corresponding to the segments that are insidethe selected bounding box.

For the experiments presented here, we queried four object categories: sailboats, dogs, bottles,

and motorbikes. Using LabelMe, we collected 18 sailboat, 41dog, 154 bottle, and 49 motorbike

images. We used these images to train four classi�ers. Then,we downloaded 4000 images for

each class from the web using Google, Flickr and Altavista. Not all of the images contained

instances of the queried objects. It has been shown that image features can be used to improve

the quality of the ranking returned by online queries [14, 3]. We used the detector trained with

LabelMe to sort the images returned by the online query tools.

Figure 15 shows the results and compares the images sorted according to the ranking given by

the output of the online search engines and the ranking provided by the score of the classi�er.

For each image we have two measures: (i) the rank in which the image was returned and (ii) the

score of the classi�er corresponding to the maximum score ofall the candidate bounding boxes

in the image. In order to measure performance, we provided ground truth for the �rst 1000 im-

ages downloaded from the web (for sailboats and dogs). The precision-recall graphs show that

the score provided by the classi�er provides a better measure of probability of presence of the

queried object than the ranking in which the images are returned by the online tools. However,

for the automatic labeling application, good quality labeling demands very good performance

on the object localization task. For instance, in current object detection evaluations [9], an ob-
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Figure 16. Examples of automatically generated segmentati ons and bounding boxes for

sailboats, motorbikes, bottles, and dogs.

ject is considered correctly detected when the area of overlap between the ground truth bound-

ing box and the detected bounding box is above 50% of the object size. However, this degree

of overlap will not be considered satisfactory for labeling. Correct labeling requires above 90%

overlap to be satisfactory.

After running the detectors on the 4000 images of each class collected from the web, we were

able to select 162 sailboats, 64 dogs, 40 bottles, and 40 motorbikes that produced good annota-

tions. This is shown in Figure 16. The user had the choice to validate the segmentation or just

the bounding box. The selection process is very ef�cient. Therefore, semi-automatic labeling

may offer an interesting way of ef�ciently labeling images.

However, there are several drawbacks to this approach. First, we are interested in labeling full

scenes with many objects, making the selection process lessef�cient. Second, in order for

detection to work with a reasonable level of accuracy with current methods, the object needs to

occupy a large portion of the image or be salient. Third, the annotated objects will be biased

toward being easy to segment or detected. Note that despite semi-automatic labeling not being

desirable for creating challenging benchmarks for evaluating object recognition algorithms, it

can still be useful for training. There are also a number of applications that will bene�t from

having access to large amounts of labeled data, including image indexing tools (e.g. Flickr) and

photorealistic computer graphics [32]. Therefore, creating semi-automatic algorithms to assist

image labeling at the object level is an interesting area of application on its own.
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Dataset # categories # images # annotations Annotation type

LabelMe 183 30369 111490 Polygons

Caltech-101 [12] 101 8765 8765 Polygons

MSRC [45] 23 591 1751 Region masks

CBCL-Streetscenes [5] 9 3547 27666 Polygons

Pascal2006 [9] 10 5304 5455 Bounding boxes

Table 3. Summary of datasets used for object detection and re cognition research. For the

LabelMe dataset, we provide the number of object classes wit h at least 30 annotated exam-

ples. All the other numbers provide the total counts.

4 Comparison with existing datasets for object detection and

recognition

We compare the LabelMe dataset against four annotated datasets currently used for object

detection and recognition: Caltech-101 [12], MSRC [45], CBCL-Streetscenes [5], and PAS-

CAL2006 [9]. Table 3 summarizes these datasets. The Caltech-101 and CBCL-streetscenes

provide location information for each object via polygonalboundaries. PASCAL2006 provides

bounding boxes and MSRC provides segmentation masks.

For the following analysis with the LabelMe dataset, we onlyinclude images that have at least

one object annotated and object classes with at least 30 annotated examples, resulting in a

total of 183 object categories. We have also excluded, for the analysis of the LabelMe dataset,

contributed annotations and sequences.

Figure 17(a) shows, for each dataset, the number of object categories and, on average, how

many objects appear in an image. Notice that currently the LabelMe dataset contains more

object categories than the existing datasets. Also, observe that the CBCL-Streetscenes and

LabelMe datasets often have multiple annotations per image, indicating that the images corre-

spond to scenes and contain multiple objects. This is in contrast with the other datasets, which

prominently feature a small number of objects per image.

Figure 17(b) is a scatter plot where each point corresponds to an object category and shows

the number of instances of each category and the average size, relative to the image. Notice

that the LabelMe dataset has a large number of points, which are scattered across the entire

plot while the other datasets have points clustered in a small region. This indicates the range
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of the LabelMe dataset: some object categories have a large number of examples (close to

10K examples) and occupy a small percentage of the image size. Contrast this with the other

datasets where there are not as many examples per category and the objects tend to occupy

a large portion of the image. Figure 17(c) shows the number oflabeled instances per object

category for the �ve datasets, sorted in decreasing order bythe number of labeled instances.

Notice that the line corresponding to the LabelMe dataset ishigher than the other datasets,

indicating the breadth and depth of the dataset.

We also wish to quantify the quality of the polygonal annotations. Figure 17(d) shows the

number of polygonal annotations as a function of the number of control points. The LabelMe

dataset has a wide range of control points and the number of annotations with many control

points is large, indicating the quality of the dataset. The PASCAL2006 and MSRC datasets

are not included in this analysis since their annotations consist of bounding boxes and region

masks, respectively.

5 Conclusion

We described a web-based image annotation tool that was usedto label the identity of ob-

jects and where they occur in images. We collected a large number of high quality annotations,

spanning many different object categories, for a large set of images, many of which are high res-

olution. We presented quantitative results of the dataset contents showing the quality, breadth,

and depth of the dataset. We showed how to enhance and improvethe quality of the dataset

through the application of WordNet, heuristics to recover object parts and depth ordering, and

training of an object detector using the collected labels toincrease the dataset size from images

returned by online search engines. We �nally compared against other existing state of the art

datasets used for object detection and recognition.

Our goal is not to provide a new benchmark for computer vision. The goal of the LabelMe

project is to provide a dynamic dataset that will lead to new research in the areas of object

recognition and computer graphics, such as object recognition in context and photorealistic

rendering.
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Figure 17. Comparison of �ve datasets used for object detect ion and recognition: Caltech-

101 [10], MSRC [45], CBCL-Streetscenes [38], PASCAL2006 [9 ], and LabelMe. (a) Number

of object categories versus number of annotated objects per image. (b) Scatter plot of

number of object category instances versus average annotat ion size relative to the image

size, with each point corresponding to an object category. ( c) Number of labeled instances

per object category, sorted in decreasing order based on the number of labeled instances.

Notice that the LabelMe dataset contains a large number of ob ject categories, often with

many instances per category, and has annotations that vary i n size and number per image.

This is in contrast to datasets prominently featuring one ob ject category per image, making

LabelMe a rich dataset and useful for tasks involving scene u nderstanding. (d) Depiction of

annotation quality, where the number of polygonal annotati ons are plotted as a function of

the number of control points (we do not show the PASCAL2006 an d MSRC datasets since

their annotations correspond to bounding boxes and region m asks, respectively).
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