
Motion-Invariant Photography

Anat Levin Peter Sand Taeg Sang Cho Frédo Durand William T. Freeman
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Figure 1: Left: Blurred motion captured by a static camera.Center: The same scene captured by a camera with a specially designed motion
that causes both the static and dynamic regions to blur identically.Right: The blur from the center image can be removed independently of
motion via deconvolution of the entire image with a single known point spread function.

Abstract

Object motion during camera exposure often leads to noticeable
blurring artifacts. Proper elimination of this blur is challenging be-
cause the blur kernel is unknown, varies over the image as a func-
tion of object velocity, and destroys high frequencies. In the case of
motions along a 1D direction (e.g. horizontal) we show that these
challenges can be addressed using a camera that moves during the
exposure. Through the analysis of motion blur as space-time in-
tegration, we show that a parabolic integration (corresponding to
constant sensor acceleration) leads to motion blur that is invariant to
object velocity. Thus, a single deconvolution kernel can be used to
remove blur and create sharp images of scenes with objects moving
at different speeds, without requiring any segmentation and without
knowledge of the object speeds. Apart from motion invariance, we
prove that the derived parabolic motion preserves image frequency
content nearly optimally. That is, while static objects are degraded
relative to their image from a static camera, a reliable reconstruc-
tion of all moving objects within a given velocities range is made
possible. We have built a prototype camera and present successful
deblurring results over a wide variety of human motions.

Keywords: Computational Photography, Motion Deblurring,
Coded Imaging, Space-time

1 Introduction

Motion blur often limits the quality of photographs and can be
caused by either the camera shake or the movement of objects in

the scene. Modern cameras address the former case with image sta-
bilization, where motion sensors control mechanical actuators that
shift the sensor or lens element in real time during the exposure
to compensate for motion of the camera, e.g. [Canon 2003]. The
use of image stabilization enables sharp hand-held photographs of
still subjects at much slower shutter speeds, thereby reducing im-
age degradation. Unfortunately, image stabilization only addresses
camera motion and cannot help with moving objects.

One option is to remove the blur after the shot was taken using
deconvolution. However, this raises several challenges. First, the
typical motion-blur kernel is a line segment in the direction of mo-
tion, which corresponds to a box filter. This kernel severely atten-
uates high spatial frequencies and deconvolution quickly becomes
ill-conditioned as kernel size increases. Second, the length and di-
rection of the blur kernel both depend on object motion and are
therefore unknown and must be estimated. Finally, motion blur
usually varies over the image since different objects or regions can
have different motions, and segmentation must be used to separate
image regions with different motions. These two later challenges
lead most existing motion deblurring strategies to rely on multiple
input images [Bascle et al. 1996; Rav-Acha and Peleg 2005; Shi and
Zheng 2005; Bar et al. 2007; Ben-Ezra and Nayar 2004; Yuan et al.
2007]. Some recent methods attempt to remove blur from a single
input image using natural image statistics [Fergus et al. 2006; Levin
2006]. While these techniques enable impressive results, they have
their own limitations. Raskar et al. proposed a hardware approach
that addresses the first challenge [2006]. A fluttered shutter modi-
fies the line segment kernel to achieve a more broad-band frequency
response, which allows for dramatically improved deconvolution
results. While their solution blocks half of the light, the improved
kernel is well worth the tradeoff. However, their method still re-
quires the precise knowledge of motion segmentation boundaries
and object velocities, an unsolved problem.

In this paper, we show that if the motion is restricted to a 1D set
of velocities, such as in a horizontal motion (as is the case with
many real world objects like cars or walking people), we can ad-
dress all three challenges. Using camera hardware similar to that
used for image stabilization, we can make the point-spread function
(PSF) invariant to motion and easy to invert. For this, we introduce



a specific camera movement during exposure. This movement is
designed so that the compound motion of the camera and objects
at any depth results in nearly the same easy-to-invert PSF. Since
the entire scene is blurred with a nearly identical PSF, the blur can
be removed via deconvolution, without segmenting moving objects
and without estimating their velocities. In practice, we find that
motions even somewhat away from the selected 1D orientation are
deblurred as well.

Our approach is inspired by wavefront coding [Cathey and Dowski
1995] where depth of field is improved by modifying a lens to make
the defocus blur invariant to depth and easy to invert. While their
work deals with wave optics and depth of field, we consider geo-
metric ray optics and remove 1D motion blur.

By analyzing motion blur as integration in a space time volume
over curves resulting from camera and object motion, we prove that
the only integration curve that results in a motion-invariant PSF is a
parabola. This corresponds to constant 1D acceleration of the senor,
first going fast in one direction, progressively slowing down until it
stops, and then picking up speed in the other direction. As a result
for any object velocity within a range, there is always one moment
during exposure when the camera is perfectly tracking the object.
While the camera motion is along a straight line, we will call it
“parabolic motion” because of the parabolic relationship between
position and time.

In addition to its invariance to object speed, our PSF preserves more
high frequencies for moving objects than a normal exposure. This
however comes at the cost of slightly degraded performance for
static objects. In fact, we show that even if object motions could be
estimated perfectly, the type of PSFs resulting from the parabolic
camera motion is near-optimal for a stable deconvolution over a
range of possible object speeds. This optimality is in the sense of
minimizing the degradation of the reconstructed image for a range
of potential object velocities. In a nutshell, we show that there is a
fixed bandwidth budget for imaging objects at different velocities.
A static camera spends most of this budget to achieve high-quality
images of static objects, at the cost of severe blur for moving ob-
jects. Our design distributes this budget more uniformly, improving
the reconstruction of all motion velocities, at the price of a slightly
worse reconstruction of the static parts.

There are three basic options for implementing this camera move-
ment: a translation of the full camera, a rotation of the camera, or
a translation of the sensor or lens element. For a commercial prod-
uct, the latter may be the best solution, and could be achieved with
the existing hardware used for stabilization. However, if the field-
of-view is not too wide, camera rotation is a good approximation
to sensor translation and is easier to implement as a prototype. We
demonstrate a prototype using camera rotation and show 1D speed-
invariant deconvolution results for a range of 1D and even for some
2D motions.

2 Motion invariant integration

In order to derive a motion–invariant photography scheme, we char-
acterize motion blur as an integration in space–time. We show that
the effect of object motion can be characterized by a shear. We
also show that a camera parabolic movement is invariant to shear in
space–time and permits the removal of motion blur.

Space–time analysis of motion: The set of 2D images falling
on a detector over time forms a 3Dxyt–space–time volume of image
intensities. We consider a 2Dxt-slice through that 3D space-time
volume. Each row in this slice represents a horizontal 1D image, as

captured by a static pinhole camera with an infinitesimal exposure
time.

For sufficiently small exposure, a first order approximation to ob-
ject motion is sufficient, and motion paths are assumed to be linear.
In this case scene points trace straight lines in thext–slice and the
slopes of these lines are a function of the object velocity and depth.
Figure 2(a–d) demonstrate anxt–slice - the green object is static,
which means that it is invariant to time and results in vertical lines
in space time. The blue and red objects are moving in opposite
directions, resulting in oblique lines. The slope of these lines cor-
respond to image-space object velocity.

Formally, the space-time function of an object moving at constant
image–space velocitys is related to that of a static object by a shear,
since kinematics gives:

x(t) = x(0)+st (1)

Camera motion and integration: The xt–plane represents the
scene relative to a static camera. If the sensor is translating, the
image recorded at time instancet is a shifted version of rowt in
thext–plane. Thus, when the scene is captured by a translating sen-
sor over a finite exposure time, the recorded intensities (the blurred
image) are the average of all shifted images seen during the expo-
sure length, at all infinitesimal time instances. That is, the sensor
elements integrate light over curves in thext–plane. The simplest
case is a static camera, which integrate light over straight vertical
lines (Figure 2a). A sensor translating with constant velocity leads
to slanted integration lines (in Figure 2b the camera tracks the red
object motion). The integration curve of a uniformly-translating
sensor is a sheared version of that of the static sensor, following the
same principle as the object-motion shear (but in the opposite direc-
tion). More complex sensor motion leads to more general curves.
For example Figure 2c presents a parabola, obtained with trans-
lating sensor undergoing a parabolic displacement. If a shutter is
fluttered during exposure as in [Raskar et al. 2006], the integration
curve is discontinuous (Figure 2d).

Since we only translate the sensor, the integration curves we con-
sider are spatially shift invariant. We denote byL(x, t) the intensity
of light rays in thext–slice, I(x) the intensity of the captured im-
age, f (t) the integration curve, and[−T,T] an integration interval
of length 2T. The captured image can be modeled as:

I(x) =
∫ T

−T
L( f (t)+x, t)dt (2)

The Point Spread Function: Let us denote byI0(x) an ideal in-
stantaneous pinhole imageI0(x) = L(x,0). The movement of the
camera creates motion blur. For a static object, we can model the
camera blur as a convolution ofI0 with a Point Spread Function
(PSF)φ0: I = φ0⊗ I0. In this case,φ0 is simply the projection off
along the time direction onto the spatial line:

φ0(x) =
∫

t
δ f (t)=xdt (3)

whereδ is a Dirac.

We now consider objects moving at speeds and seek to derive an
equivalent Point Spread Functionφs. We can reduce this to the
static case by applying a change of frame that “stabilizes” this mo-
tion, that is, that makes the space-time volume of this object ver-
tical. We simply apply the inverse of the shear in eq. 1, which is
the shear in the opposite direction, and the sheared curve can be
expressed as:

fs(t) = f (t)−st (4)
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Figure 2: From integration curves to Point Spread Functions.Top row: xt-slice and integration curves resulting from different camera
motions. Middle row: integration curves sheared to account for object slope (curve colorsmatch corresponding object).Bottom row:
projected PSFs corresponding to different object velocities.

Sheared curves are illustrated in Figure 2(e-h). As a result, the PSF
φs for a moving object is the vertical projection1 of the sheared
integration curvefs. Equivalently, it is the oblique projection off
along the direction of motion.

Figs 2(i-l) presents the PSF of the 3 different objects, for each of
the curves in figs 2(a-d). For example, if the integration curve is
a straight line the PSF is a delta function for objects whose slope
matches the integration slope, and a box filter for other slopes. The
box width is a function of the deviation between the object slope
and integration slope. The analytic way to derive this projection is
to note that the vertical projection is the “amount of time” the curve
f spent at the spatial pointx - the slope of the inverse curve. That
is, if gs = f−1

s is the inverse curve, the PSF (the vertical projection)
satisfies:φs(x) = g′s(x).

Shear invariant curves: Our goal is to derive a camera mo-
tion rule that leads to a velocity invariant PSF. Intuitively, we can
achieve such effect if we devote a portion of the exposure time trac-
ing each possible velocity, and we spend an equal amount of time
tracing each velocity. The derivative of an integration curve repre-
senting such motion should be linear and therefore, the curve itself
should be aparabola. This intuition provides a hint that parabo-
las are good candidates, but we still need to prove that they yield
motion-invariant PSFs.

We have seen that PSFs corresponding to different velocities are
obtained from sheared version of the sensor integration curve. Con-
sider a parabola curve of the form:f (t) = a0t2 (Figure 2(c)). The
resulting PSF behaves like 1/

√
a0x (Figure 2(k)). We note that a

sheared parabola is also a parabola with the same scale, only the
center is shifting

fs(t) = f (t)−st = a0(t −
s

2a0
)2− s2

4a0
(5)

1Note that the shear does not affect the projection integral measure be-
cause the determinant of its Jacobian is 1.

Thus, the projectionsφs are alsoidentical up to a spatial shift. The
important practical application of this property is that if the camera
is moved during integration along a parabola curve we can decon-
volve all captured imagesI with the same PSF,without segmenting
the moving objects in the image, and without estimating their ve-
locity or depth. The small spatial shift of the PSF leads to a small
spatial shift of the deconvolved image, but such a shift is uncritical
as it does not translate to visual artifacts. This simply means that
the position of moving objects corresponds to different time instants
within the exposure. The time shift for a given velocity corresponds
to the time where the sensor is perfectly tracking this velocity.

We note that the above invariance is almost true, but involves two
source of approximation. The first approximation has to do with
the fact that the invariant convolution model is wrong at the motion
layer boundaries. However, this has not been a major practical issue
in our experiments and is visible only when both foreground and
background have high-contrast textures. The second approximation
results from the fact that a parabola is perfectly shear invariant only
if an infinite integration time is used. For any finite time interval,
the accurate projection is equal to:

φs(x)=



















1
√

a0(x+ s2
4a0

)
0≤ x+ s2

4a0
≤ a0(T − s

2a0
)2

1

2
√

a0(x+ s2
4a0

)
a0(T − s

2a0
)2 ≤ x+ s2

4a0
≤ a0(T + s

2a0
)2

0 otherwise
(6)

Thus, for a finite integration interval, the tails of the PSF do de-
pend on the slopes. This change in the tail clipping can also be
observed in the projected PSFs in Figure 2(k). For a sufficiently
bounded range of slopes the tail clipping happens far enough from
the center and its effect could be neglected. However, equation 6
also highlights the tradeoffs in the exact parabola scalinga0. Obvi-
ously, smallera0 values lead to sharper PSFs. On the other hand,
for a given integration interval[−T,T], the tail clipping starts at√

a(T − s
2a0

); thus reducinga0 also reduces the range ofs values
for which the tail clipping is actually negligible.



(a) Time 1 (b) Time 2

(c) Static camera (d) Parabolic camera

Figure 3: Simulation of photographs of 5 dots moving over a range
of speeds and directions. (a) Dot positions at beginning of photo-
graph exposure, showing dot velocities. (b) Dot positions at end
of exposure. (c) Photograph from stationary camera. Each differ-
ently moving dot produces a different blur. (d) Photograph from a
parabolic camera. Note that the blur kernel is nearly identical for
each of the differently moving dots, allowing for deblurring by a
spatially invariant deconvolution.

Simulation: To simulate the blur from a camera moving in a
parabolic displacement in space-time (constant 1D acceleration),
we projected synthetic scenes and summed displaced images over
the camera integration time. Figure 3(a) shows 5 dots at the ini-
tial time, with their motion vectors, and Figure 3b shows their final
configuration at the end of the camera integration period. Figure 3c
is the photograph obtained with a static camera, revealing the dif-
ferent impulse response for each of the 5 different dot speeds. Fig-
ure 3(d) shows the image that would be recorded from the camera
undergoing a parabolic displacement. Note that now each of the
dots creates virtually the same impulse response, regardless of its
speed of translation (there is a small speed-dependent spatial offset
to each kernel). This allows an unblurred image to be recovered
from spatially invariant deconvolution.

3 Uniqueness and optimality

In this section, we derive uniqueness and optimality criteria. The
reader interested in practical implementation can directly read sec-
tion 4.

3.1 Uniqueness

We have seen that a parabola integration curve leads to a shear in-
variant PSF. Moreover, we can prove that the parabola is theonly
shear invariant curve.

Theorem 1 If for every s there exist an a and b such that

f (t)−st = f (t +a)+b (7)

then the curve f(t) must be a parabola.

Proof: Differentiating equation 7 and rearranging, we find

∂ f (t +a)

∂ t
− ∂ f (t)

∂ t
= s

(a) Primal domain (b) Frequency domain

Figure 4: The velocity range of an xt–slice and the corresponding
frequency content.

which means that∂ f (t)
∂ t is a linear function oft, and thus,f (t) is a

parabola.

3.2 Upper Bound

We have seen that the parabola is the only shear invariant curve, and
therefore parabolic displacement is the only camera movement that
yields a PSF invariant to motion. Here we show that, in the case
of 1D motions, this curve approaches optimality even if we drop
the motion-invariant requirement. That is, suppose that we could
perfectly segment the image into different motions, and accurately
know the PSF of each segment. For good image restoration, we
want the PSFs corresponding to different velocities or slopes to be
as easy to invert as possible. In the Fourier domain, this means that
low Fourier coefficients must be avoided. We show that, for a given
range of velocities, the ability to maximize the Fourier spectrum is
bounded and that our parabolic integration approaches the optimal
spectrum bound.

At a high level, our proof is a bandwidth budget argument. We
show that, for a given spatial frequencyωx, we have a fixed budget
which must be shared by all motion slopes. A static camera spends
most of this budget on static objects and therefore does poorly for
other speeds. In contrast, our approach attempts to distribute this
budget uniformly across the range of velocities and makes sure that
no coefficient is low.

Space time integration in the frequency domain: We consider
the Fourier domainωx,ωt of a scanline of space time. Fourier trans-
forms will be denoted with a hat and Fourier pairs will be denoted
with k⇔ k̂.

First consider the space-time function of a static object. It is con-
stant over time, which means that its Fourier transform is non-zero
only on the pure spatial frequency lineωt=0 (green object in Fig-
ure 4). This line is the 1D Fourier transform of the ideal instanta-
neous imageI0.

We have seen that image-space object velocity corresponds to the
slope of a shear in space time. In the frequency domain, a given
slope corresponds to a line orthogonal to the primal slope (Fig-
ure 4). Or equivalently, the shear in the primal corresponds to a
shear in the opposite direction in the Fourier domain. The fre-
quency content of an object at velocitys is on the line of slopes
going through the origin. A range of velocities−S≤ s≤ Scorre-
sponds to a double-wedge in the Fourier domain. This is similar
to the link between depth and light field spectra [Chai et al. 2000;
Isaksen et al. 2000]. This double-wedged is the frequency content
that we strive to record. Areas of the Fourier domain outside it
correspond to faster motion, and can be sacrificed.

Consider a light integration curvef and its 2D tracek(x, t) in space
time, wherek(x, t) is non zero only atx = f (t) (Figure 5). The
1D image scanline can be seen as the combination of a 2D con-
volution in space time byk, and a 2D to 1D slicing. That is, we
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Figure 5: Top row: integration curve traces in space time.Bottom row: corresponding log spectrums

lookup the result of the convolution only at timet = 0. The con-
volution step is key to analyzing the loss of frequency content. In
the Fourier domain, the convolution byk is a multiplication by its
Fourier transform̂k.

For example, a static camera has a kernelk that is a box in time,
times a Dirac in space. Its Fourier transform is a sinc in time, times
a constant in space (Figure 5(a)). The convolution byk results in
a reduction of the high temporal frequencies according to the sinc.
Since faster motion corresponds to larger slopes, their frequency
content is more severely affected, while a static object is perfectly
imaged.

In summary, we have reduced the problem to designing an integra-
tion curve whose spectrum̂k has the highest possible Fourier coef-
ficients in the double-wedge defined by a desired velocity range.

Slicing: We now show that for each vertical slice of the Fourier
doubled wedge, we have a fixed bandwidth budget because of con-
servation of energy in the spatial domain. That is, the sum of
the squared Fourier coefficients for a given spatial frequencyωx
is bounded from above.

When studyingslicesin the Fourier domain, we can use the slicing
theorem. First consider the vertical Fourier slicek̂0 going through
(0,0). In the primal space time, this Fourier slice corresponds to
theprojectionalong the horizontalx direction.

k̂0(ωt) ⇔ kp(t) =
∫

x
k(x, t)dx

Using the shifting property, we obtain an arbitrary slice for a given
ωx using

k̂ωx(ωt) ⇔
∫

x
k(x, t)e−2π iωxxdx

which only introduces phases shifts in the integral.

Conservation of energy: We have related slices in the Fourier
domain to space-only integrals of our camera’s light integration
curve in space-time. In particular, the central slice is the Fourier

transform ofkp(t), the total amount of light recorded by the sen-
sor at a given moment during the exposure. Conservation of energy
imposes

kp(t) ≤ 1 (8)

Sincek is non-zero only during the 2T exposure time, we get a
bound on the square integral

∫

t
kp(t)

2dt ≤ 2T (9)

This bound is not affected by the phase shift used to extract slices
at differentωx.

Furthermore, by Parseval’s theorem, the square integral is the same
in the dual and the primal domains. This means that for each slice
at a spatial frequencyωx,

∫

ωt

k̂ωx(ωt)
2dωt =

∫

t

[

kp(t)e
−2π iωxx

]2
dt (10)

≤ 2T (11)

The squared integral for a slice is bounded by a fixed budget of 2T.
In order to maximize the minimal frequency response, one should
use a constant magnitude. Given the wedged shape of our velocity
range in the Fourier domain, we get

min
ωt

|k̂ωx(ωt)|2 ≤
T

S|ωx|
(12)

whereS is the absolute maximal slope (speed). This upper bound is
visualized in Figure 5(d). In other words, if we wish to maximize
the spectrum of the PSFs over a finite slope range−S≤ s≤S, eq 12
provides an upper bound on how much we can hope to achieve.

There is no free lunch: when one wants to cover a broader range
of velocities, the budget must be split between a larger area of the
Fourier domain and overall signal-noise ratio is reduced according
to a square root law.



(a) Static (b) Parabola (c) Flutter Shutter

Figure 6: Synthetic visualization of PSF information loss.Top: Blurred input.Bottom: Deblurring results.

3.3 Discussion of different cameras

We have seen that in a traditional static camera, the light integra-
tion curve in space-timek(x, t) is a vertical box function. Perfor-
mances are perfect for theωt = 0 line corresponding to static ob-
jects, but degrade according to a sinc for lines of increasing slope,
corresponding to higher velocities.

The flutter-shutter approach adds a broad-band amplitude pattern to
a static camera. The integration kernelk is a vertical 1D function
over[−T,T] and the amount of recorded light is halved. Because of
the loss of light, the vertical budget is reduced from 2T to T for each
ωx. Furthermore, sincek is vertical, its Fourier transform is con-
stant alongωx. This means that the optimal flutter code must have
constant spectrum magnitude over the full domain of interest (Fig-
ure 5(c)). This is why the spatial resolution of the camera must be
taken into account. The intersection of the spatial bandwidthΩmax
of the camera and the range of velocities defines a finite double-
wedge in the Fourier domain. The minimum magnitude of the slice
at Ωx is bounded by T

2SΩx
. Sincek̂ is constant alongωx, this bound

applies to allωx. As a result, for all band frequencies|ωx| < Ωmax,
k̂ spends energy outside the slope wedge and thus does not make a
full usage of the vertical̂kωx budget.

The parabolic integration curve attempts to distribute the bandwidth
budget equally for eachωx slice (Figure 5(b)), resulting in almost
the same performance for each motion slope in the range, but a
falloff proportional to 1/

√
ωx along the spatial dimension. To see

why, we note that using some calculus manipulation the Fourier
transform of an infinite parabola can be compute explicitly. If
the integration kernelk is defined via the (infinite) parabola curve
f (t) = a0t2, then

k̂(ωx,ωt) =
1√

2a0ωx
e

i
ω2

t
4a0ωx (13)

On the other hand, achieving a good PSF for all−S≤ s≤ Simplies
thata0 ≥ S

2T (otherwise, from eq 6 the PSF won’t include an infi-
nite spike). Using eq 13 we can conclude that if the exposure was
infinitely long |k̂(ωx,ωt)|2 = T

S|ωx| and the infinite parabola would
have the same falloff as the upper bound. Of course, the upper
bound is valid for a finite exposure, and we can relate the infinite
parabola to our finite kernel by a multiplication by a box in the spa-
tial domain, which is a convolution by a sinc in the Fourier domain.
Thus, the parabola curve of finite exposures approaches the upper

bound, in the limit of long exposure times. The intuitive reason
why the parabolic camera can better adapt to the wedged shape of
the Fourier region of interest is that its kernel is not purely vertical,
that is, the sensor is moving. A parabola in 2D contains edge pieces
of different slopes, which corresponds to Fourier components of
orthogonal orientation.

In summary, in the special case of 1D motions, if one seeks the
ability to reconstruct a given range of image-space velocities, with
minimal degradation to the reconstructed image for any velocity,
the parabolic light integration curve is near optimal. On the other
hand, a fluttered shutter can handle all motion directions, albeit at
the cost of motion identification and image segmentation.

Simulation: To visualize these tradeoffs, in Figure 6 we syn-
thetically rendered a moving car. We simulate a static camera, a
parabolic displacement, and a static camera with a flutter-shutter,
all with an identical exposure length and an equal noise level. To
better demonstrate information loss, a simplified wiener filter de-
convolution was applied. The box-deblurred car in Figure 6(a) lost
high frequencies. The flutter-shutter reconstruction (Figure 6(c)) is
much better, but the best results are obtained by the parabolic blur
(Figure 6(b)).

Cam

Lever

Rotating

Platform

Figure 7: Prototype camera setup.



Figure 8: Deblurring results.Top row: image from a static camera.Bottom row: deblurring results using the image from our parabolic
camera.

4 Experiments

While camera stabilization hardware should be capable of mov-
ing a detector with the desired constant acceleration (parabolic dis-
placement) inside a hand-held camera, we chose to use larger–scale
structures for our initial prototype, and approximate sensor trans-
lation using a rotation of the entire camera. The hardware shown
in figure 7 rotates the camera in a controlled fashion to evaluate
the potential of motion-invariant photography. The camera (Canon
EOS 1D Mark II with an 85mm lens) sits on a platform that rotates
about a vertical axis through the camera’s optical center. We use
a cam approach to precisely control the rotation angle over time
(Figure 7.) A rotating cam moves a lever that is rigidly attached to
the camera to generate the desired acceleration. Forθ ∈ [−π,π],
the cam edge is designed such that the polar coordinate radius is a
parabola:

x(θ) = cos(θ)(c−bθ2) (14)

y(θ) = sin(θ)(c−bθ2)

In our experiments we usedc = 8cm, b = 0.33cm. The cam ro-
tates at a constant velocity, pushing the lever arm to rotate the cam-
era with approximately constant angular acceleration, yielding hor-
izontal motion with the desired parabolic integration path in space-
time. For a fixed cam size, we can increase the magnitude of the
parabola by moving the cam closer to the camera. We place a static
camera next to the rotating camera to obtain a reference image for
each moving-camera image (this camera is not part of our system
and was used only for validation). A microcontroller synchronizes
the cam rotation and the camera shutters. In order to reduce me-
chanical noise, the camera exposure length was set to 1 second.
This relatively long exposure time limits the linear motion approx-
imation for some real-world motions. To calibrate the exact PSF
produced by our rotating camera we captured a blurred imageI of
a static calibration pattern. We also captured a static imageI0 of

the same pattern and solved for the PSFφ minimizing the squared
convolution error:φ = argmin‖I0−φ ∗ I‖2.

4.1 Results

All deconvolution results presented in this paper were achieved
with the sparse deconvolution algorithm of [Levin et al. 2007].
Comparable, but slightly worse, results can be obtained using the
Richardson-Lucy deconvolution algorithm [Lucy 1974].

Figure 8 presents deblurring results on images captured by our cam-
era. For all examples we present the scene captured by a synchro-
nized static camera, and the deconvolution results obtained from
our moving camera input (this input is not shown here). In the first
image, the moving objects were mounted on a linear rail to create
multiple velocities from the multiple depth layers. The other im-
ages involved natural human motions. Our approach deblurs the im-
ages reasonably well despite the fact that the human motions were
neither perfectly linear nor horizontal. The middle image shows
multiple independent motions in opposite directions, all deblurred
well. The far-right image had many non-horizontal motions, re-
sulting from the man walking toward the camera. While the face
contains some residual blur, the deconvolved image has few objec-
tionable artifacts. Results for more images under different test con-
ditions are available in the supplementary file. We were encouraged
by the deconvolution results on some images even with substantial
non-horizontal motions. One possible explanation for this result is
the aperture effect [Horn 1986], the ambiguity of the 2D motion
of locally 1-dimensional image structures, such as edges and con-
tours. The velocity component normal to the edge or contour is
determined from the image data, but the parallel component is am-
biguous. Local image motion that could be explained by horizontal
motions (within the allowed range of motions) should deconvolve
correctly, even though the true motions were not horizontal.
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Figure 9: Parabolic camera deblurring vs. state-of-the-art static
camera deblurring. (a) Static camera input images, (b) Box filter
fitted manually to moving layer and applied to deblur the entire
image. (c) Layer segmentation by [Levin 2006]. (d) Debluring re-
sults by [Levin 2006]. (e) Our result, obtained by spatially uniform
deconvolution of image from parabolic integration.

Note that the static object fidelity in our results decreases with re-
spect to the static camera input, as we uniformly distribute our
bandwidth budget over a range of velocities.

(a) Static camera input (b) Parabolic deblurring output

Figure 10: PSF clipping and handled velocity range.Top row:
Static scene.Middle row: scene with slow motion.Bottom row:
scene with fast motion. While in the 1st two cases the static PSF ap-
proximation is reasonable, the tail clipping translates into artifacts
in the faster motion case.

Motion deblurring from a stationary camera is very challenging due
to the need to segment the image by motion and estimate accurate
PSFs within each segment. Figure 9 demonstrate these challenges.
For example, we can try to deconvolve the image with a range of
box widths, and manually pick the one producing the most visually
plausible foreground results (Figure 9(b)). In the left image, de-
convolving with the correct blur can sharpen the moving layer, but
creates significant artifacts in the static parts, and an additional seg-
mentation stage is required. In the right image, most blurred edges
are occlusion boundaries and even manually identifying the correct
blur kernel is challenging. In Figure 9(c-d) we compare our results
with a recent automatic algorithm [Levin 2006]. While this algo-
rithm did a reasonable job for the first image (which was captured
using a linear rail) it did a much worse job on the human motion in
the second one.

In Figure10 we illustrate the effect of PSF tail clipping (discussed
toward the end of sec 2) on the valid velocity range. We used our
parabolic camera to capture a binary pattern. The pattern was static
in the first shot and for the other two, linearly moving during the
exposure. The static motion was easily deblurred, and the PSF ap-
proximation is reasonable for the slow motion as well. For the faster
motion, deconvolution artifacts start to be observed, as the effect of
the clipping of the PSF tails becomes important and the static mo-
tion PSF is not an accurate approximation for the moving object
smear.

Finally, Figure 11 illustrates the limitations of our technique for
motions involving significant non-horizontal components, such as
the man standing up or the board rotation. Note that despite the
significant non–horizontal components, the reconstruction of many
contours is actually artifacts free (such as the man’s body and most
of the rotating areas). This can possibly be explained by the aper-
ture effect discussed above. Another source of artifacts are intensity
non-linearities caused by highlights. Finally, both for the static and
dynamic parts of the scene, the deconvolution sometimes leads to



(a) Static image (b) Parabolic deblurring output

Figure 11: Results for motions involving a significant non-
horizontal component – man standing up and board rotation. Note
artifacts in face, although also note that many contours reconstruct
well. While some artifacts around the board boundary appear,
many of the rotating areas are recovered surprisingly well.

halo artifacts around high contrast edges. We suspect these artifacts
result from imperfect PSF calibration or mechanical noise, and thus
might be eliminated with a more careful mechanical implementa-
tion.

5 Summary and discussion

This paper suggests a simple solution that handles motion blur
along a 1D direction. The camera translates within its exposure
following a parabolic displacement rule. The blur resulting from
this special camera motion is shown to be invariant to object depth
and velocity. Hence, blur can be removed by deconvolving the en-
tire image with an identical, known PSF. This solution eliminates
the major traditional challenges involved with motion deblurring:
the need to segment motion layers and estimate a precise PSF in
each of them. Furthermore, we analyze the amount of information
that can be maintained by different camera paths, and show that
the parabolic path approaches the optimal PSF whose inversion is
stable at all velocities.

A static camera, the flutter shutter camera, and a parabolic motion
camera each offer different performance tradeoffs. A static camera
is optimal for photographing static objects, but suffers significantly
in its ability to reconstruct spatial details of moving objects. A flut-
ter shutter camera is also excellent for photographing static objects
(although records a factor of two less light than a full exposure).
It provides good spatial frequency bandwidth for recording moving
objects and can handle 2D motion. However, for reconstruction,
one needs to identify the image velocities and segment regions of
uniform motion. Motion-invariant photography requires no motion
estimation or object segmentation and provides nearly optimal re-
construction for the worst-case speed within a given range. How-
ever, relative to the static camera and the flutter shutter camera, it
gives a degraded reconstruction of static objects. While the method
is only designed for 1D motions, we found it gave reasonable re-
constructions of some 2D motions as well.
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