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Abstract

In order to work well, many computer vision algorithms

require that their parameters be adjusted according to the

image noise level, making it an important quantity to es-

timate. We show how to estimate an upper bound on the

noise level from a single image based on a piecewise smooth

image prior model and measured CCD camera response

functions. We also learn the space of noise level functions–

how noise level changes with respect to brightness–and use

Bayesian MAP inference to infer the noise level function

from a single image. We illustrate the utility of this noise

estimation for two algorithms: edge detection and feature-

preserving smoothing through bilateral filtering. For a vari-

ety of different noise levels, we obtain good results for both

these algorithms with no user-specified inputs.

1. Introduction

Many computer vision algorithms can work well only

if the parameters of the algorithm are hand-tweaked to

account for characteristics of the particular images under

study. One of the most common needs for algorithm pa-

rameter adjustment is to account for variations in noise

level over input images. These variations can be caused

by changes in the light level or acquisition modality, and

the amount of variation can be severe. An essential step

toward achieving reliable, automatic computer vision algo-

rithms is the ability to accurately estimate the noise level of

images. Examples of algorithms requiring noise level es-

timates include motion estimation [1], denoising [12, 11],

super-resolution [5], shape-from-shading [19], and feature

extraction [9].

Estimating the noise level from a single image seems like

an impossible task: we need to recognize whether local im-

age variations are due to color, texture, or lighting variations

from the image itself, or due to the noise. It might seem that

accurate estimation of the noise level would require a very

sophisticated prior model for images. However, in this work

we use a very simple image model–piecewise smooth over

segmented regions–to derive a bound on the image noise

level. We fit the image data in each region with a smooth

function and estimate the noise using the residual. Such es-

timates are guaranteed to be over-estimates of the true noise

variance, since the regions can contain image variations that

are not being modeled. However, there are usually some re-

gions in each image for which the simple model holds, and

we find that our noise bounds are usually tight. While we

assume that auxiliary camera information is unknown, the

algorithm proposed in this paper can easily be augmented

with such information.

Unfortunately, real CCD camera noise is not simply ad-

ditive; it is strongly dependent on the image intensity level.

We call the noise level as a function of image intensity the

noise level function, or NLF. Since it may not be possible

to find image regions at all the desired levels of intensity or

color needed to describe the noise level function, we use the

Columbia camera response function database [6] to model

the NLF using principal components and bounds on deriva-

tives. These principal components serve as a prior model to

estimate the NLF over regions of missing data. We use a

Bayesian MAP framework to estimate the noise level func-

tions in RGB channels, using the bounds derived from the

noise estimates over each image region. Experiments on

both synthetic and real data demonstrate that the proposed

algorithm can reliably infer noise levels.

To illustrate that estimating the noise can make vision

algorithms more robust, we apply our noise inference to

two algorithms: bilateral filtering for feature-preserving

smoothing, and edge detection. The resulting algorithms,

properly accounting for image noise, show robust behavior

over a wide range of noise conditions.

The paper is organized as follows. We review related

work in Sect. 2. In Sect. 3, we describe our camera noise

model and show how it can be combined with a set of pa-

rameterized camera response functions to develop a prior on

the noise response function. We show how to estimate the

noise level function in Sect. 4 using a combination of per-

region variance estimation and the prior model on NLFs.

We provide experimental results in Sect. 5 and apply those

estimates to the two computer vision algorithms in Sect. 6.

We conclude in Sect. 7.
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Figure 1. CCD camera imaging pipeline, redrawn from [18].

2. Related Work

There is a large literature on image denoising. Although

very promising denoising results have been achieved using a

variety of methods, such as wavelets [12], anisotropic diffu-

sion [11] and bilateral filtering [17], the noise level is often

assumed known and constant for varying brightness values.

In contrast, the literature on noise estimation is very lim-

ited. Noise can be estimated from multiple images or a

single image. Estimation from multiple image is an over-

constrained problem, and was addressed in [7]. Estimation

from a single image, however, is an under-constrained prob-

lem and further assumptions have to be made for the noise.

In the image denoising literature, noise is often assumed

to be additive white Gaussian noise (AWGN). A widely

used estimation method is based on mean absolute devia-

tion (MAD) [3]. In [15], the authors proposed three meth-

ods to estimate noise level based on training samples and

the statistics (Laplacian) of natural images. However, real

CCD camera noise is intensity-dependent.

3. Noise Study

In this section, we build a model for the noise level func-

tions of CCD cameras. In Subsect. 3.1 we introduce the

terms of our camera noise model, showing the dependence

of the noise level function (the noise variance as function

of brightness) on the camera response function (the image

brightness as function of scene irradiance). Given a cam-

era response function, described in Subsect. 3.2, we can

synthesize realistic camera noise, as shown in Subsect. 3.3.

Thus, in Subsect. 3.4, from a parameterized set of camera

response functions (CRFs), we derive the set of possible

noise level functions. This restricted class of NLFs allows

us to accurately estimate the NLF from a single image, as

described in Sect. 4.

3.1. Noise Model of CCD Camera

The CCD digital camera converts the irradiance, the pho-

tons coming into the imaging sensor, to electrons and finally

to bits. See Figure 1 for the imaging pipeline of CCD cam-

era. There are mainly five noise sources as stated in [7],

namely fixed pattern noise, dark current noise, shot noise,

amplifier noise and quantization noise. These noise terms

are simplified in [18]. Following the imaging equation in

[18], we propose the following noise model of a CCD cam-

era

I = f(L + ns + nc) + nq, (1)

where I is the observed image brightness, f(·) is camera re-

sponse function (CRF), ns accounts for all the noise compo-

nents that are dependent on irradiance L, nc accounts for the

independent noise before gamma correction, and n q is addi-

tional quantization and amplification noise. Since nq is the

minimum noise attached to the camera and most cameras

can achieve very low noise, nq will be ignored in our model.

We assume noise statistics E(ns) = 0, Var(ns) = Lσ2
s and

E(nc) = 0, Var(nc) = σ2
c . Note the linear dependence of

the variance of ns on the irradiance L [18].

3.2. Camera Response Function (CRF)

The camera response function models the nonlinear pro-

cesses in a CCD camera that perform tonescale (gamma)

and white balance correction [14]. There are many

ways to estimate camera response functions given a set

of images taken under different exposures. To ex-

plore the common properties of many different CRFs,

we downloaded 201 real-world response functions from

http://www.cs.columbia.edu/CAVE [6]. Note that we

only chose 190 saturated CRFs since the unsaturated curves

are mostly synthesized. Each CRF is a 1024-dimensional

vector that represents the discretized [0, 1]→ [0, 1] function,

where both irradiance L and brightness I are normalized to

be in the range [0, 1]. We use notation crf(i) to represent the

ith function in the database.

3.3. Synthetic CCD Noise

In principle, we could set up optical experiments to mea-

sure precisely for each camera how the noise level changes

with image brightness. However, this would be time con-

suming and might still not adequately sample the space of

camera response functions. Instead, we use numerical sim-

ulation to estimate the noise function. The basic idea is to

transform the image I by the inverse camera response func-

tion f−1 to obtain an irradiance plane L. We then take L

through the processing blocks in Figure 1 to obtain the noisy

image IN .

A direct way from Eqn. (1) is to reverse transform I

to irradiance L, add noise independently to each pixel, and

transform to brightness to obtain IN . This process is shown

in Figure 2 (a). The synthesized noise image, for the test

pattern (c), is shown in Figure (d).

Real CCD noise is not white, however; there are spatial

correlations introduced by “demosaicing” [13], i.e., the re-
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Figure 2. Block diagrams showing noise simulations for color

camera images. (a) shows independent white noise synthesis; (b)

adds CCD color filter pattern sensing and demosaicing to model

spatial correlations in the camera noise [8]. (c): test pattern. (d)

and (e): the synthesized images of (a) and (b). (f) and (g): the

corresponding autocorrelation.

construction of three colors at every pixel from the single-

color samples measured under the color filter array of the

CCD. We simulate this effect for a common color filter

pattern (Bayer) and demosaicing algorithm (gradient-based

interpolation [8]); we expect that other filter patterns and

demosaicing algorithms will give comparable noise spatial

correlations. We synthesized CCD camera noise in accor-

dance with 2 (b) and took the difference between the de-

mosaiced images with and without noise, adding that to the

original image to synthesize CCD noise. The synthesized

noise is shown in Figure 2 (e). The autocorrelation func-

tions for noise images (d) and (e) are shown in (f) and (g),

respectively, showing that the simulated CCD noise shows

spatial correlations after taking into account the effects of

demosaicing.

3.4. The Space of Noise Level Functions

We define the noise level function (NLF) as the varia-

tion of the standard deviation of noise with respect to image

intensity. This function can be computed as

τ(I) =
√

E[(IN − I)2], (2)

where IN is the observation and I = E(IN ). Essentially

this is a function of how standard deviation changes with

respect to the mean value.
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Figure 3. The blue and red curves correspond to crf(50) and

crf(60). The NLFs are estimated at σs =0.06, σc =0.02.

Based on the CCD camera noise model Eqn. (1) and

noise synthesis process, IN is a random variable dependent

on the camera response function f and noise parameters σ s

and σc. Because L = f−1(I), the noise level function can

also be written as

τ(I; f, σs, σc) =
√

E[(IN (f−1(I), f, σs, σc) − I)2], (3)

where IN (·) is the noise synthesis process.

We use numerical simulation to estimate the noise func-

tion given f , σs and σc, for each of red, green and blue

channels. The smoothly changing pattern in Figure 2 (c) is

used to estimate Eqn. (3). To reduce statistical fluctuations,

we use an image of dimension 1024× 1024 and take the

mean of 20 samples for each estimate.

To see how the noise function changes with respect to

parameter f , we examine two CRFs, crf(50) and crf(60),

as shown in Figure 3 (a). Their derivatives are plotted in

(b). The corresponding NLFs, which have been computed

at σs = 0.06, σc = 0.02, are plotted in (c). Notice that the

derivative of crf(50) is significant at zero irradiance, result-

ing in high noise standard deviation there. It is clear that

the NLFs are highly dependent on the derivative function.

To represent the whole space of noise level functions, we

draw samples of τ(·; f, σs, σc) from the space of f , σs and

σc. The downloaded 190 CRFs are used to represent the

space of f . We found that σs = 0.16 and σc = 0.06 result

in very high noise, so these two values are set as the max-

imum of the two parameters. We sample σs from 0.00 to

0.16 with step size 0.02, and sample σc from 0.01 to 0.06
with step size 0.01. We get a dense set of samples {τi}K

i=1

of NLFs, where K =190×9×6=10, 260. Using principal

component analysis (PCA), we get mean noise level func-

tion τ , eigenvectors {wi}m
i=1 and the corresponding eigen-

values {υi}m
i=1. Thus, a noise function can be represented

as

τ = τ +

m
∑

i=1

βiwi, (4)

where coefficient βi is Gaussian distributed βi ∼ N (0, υi),
and the function must be positive everywhere, i.e.,

τ +

m
∑

i=1

βiwi � 0, (5)
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Figure 4. Camera noise function properties.

where τ, wi ∈ R
d and d = 256. This inequality constraint

implies that noise functions lie inside a cone in β space.

The mean noise function and eigenvectors are displayed in

Figure 4 (a) and (b), respectively.

Eigenvectors serve as basis functions to impose smooth-

ness to the function. We also impose upper and lower

bounds on 1st and 2nd order derivatives to further constrain

noise functions. Let T ∈ R
(d−1)×d and K ∈ R

(d−2)×d be

the matrix of 1st- and 2nd-order derivatives [16]. The con-

straints can be represented as

bmin � Tτ � bmax, hmin � Kτ � hmax, (6)

where bmin, bmax ∈ R
d−1, hmin, hmax ∈ R

d−2 are esti-

mated from the training data set {τi}K
i=1.

4. Noise Estimation from a Single Color Image

Noise estimation and image denoising are in general

chicken and egg problems. To estimate the noise level, the

underlying signal must be known, which could be estimated

using a denoising algorithm; conversely, most denoising al-

gorithms depend on knowing the noise level. Sophisticated

algorithms such as EM might find a stationary point, but al-

gorithms including denoising as an inner loop might be too

slow to be practical. Instead, we propose a rough estimate

of the signal using a piecewise smooth image prior. This

approach is reasonable since we aim at estimating an upper

bound of the noise.

4.1. Piecewise Smooth Image Prior

The estimation is fairly easy if the underlying clean im-

age I of the noisy input IN is constant. Although this is

not true in practice, we assume in our algorithm a piecewise

smooth prior for natural images. We group pixels into re-

gions based on both range and spatial similarities using a

K-means clustering method as described in [20]. Each seg-

ment is represented by a linear slope and spatial extent. The

spatial extent is computed so that the shape of the segment

is biased towards convex shapes and so that all segments

have similar size.

We assume that the mean estimate of each segment ac-

counts for brightness I and the variance estimation accounts

for σ̂. From all the segments, we can get samples {Ii, σ̂i},

which are then used to estimate the noise level function.

4.2. Likelihood Model

The goal of noise estimation is to fit a lower envelope to

the sample set as shown in Figure 6. We could simply fit the

noise function in the learnt space to lie below all the sample

points yet close to them. However, because the estimates

of variance in each segment are noisy, extracting these esti-

mates with hard constraints could result in bias due to a bad

outlier. Instead, we follow a probabilistic inference frame-

work to let every data point contribute to the estimation.

Let the estimated standard deviation of noise from k pix-

els be σ̂, with σ being the true standard deviation. When k
is large, the square root of chi-square distribution is approx-

imately N (0, σ2/k) [4]. In addition, we assume a noninfor-

mative prior for large k, and obtain the posterior of the true

standard deviation σ given σ̂:

p(σ|σ̂) ∝ 1
√

2πσ2/k
exp{− (σ̂ − σ)2

2σ2/k
}

≈ 1
√

2πσ̂2/k
exp{− (σ − σ̂)2

2σ̂2/k
}. (7)

Let the cumulative distribution function of a standard

normal distribution be Φ(z). Then, given the estimate

(I, σ̂), the probability that the underlying standard devia-

tion σ is larger than u is

Pr[ σ�u|σ̂]=

∫ ∞

u

p(σ|σ̂)dσ=Φ(

√
k(σ̂−u)

σ̂
). (8)

To fit the noise level function to the lower envelope of the

samples, we discretize the range of brightness [0, 1] into

uniform intervals {nh, (n + 1)h}
1

h
−1

n=0 . We denote the set

Ωn = {(Ii, σ̂i)|nh � Ii � (n + 1)h}, and find the pair

(In, σ̂n) with the minimum variance σ̂n =minΩn
σ̂i. Lower

envelope means that the fitted function should most prob-

ably be lower than all the estimates while being as close

as possible to the samples. Mathematically, the likelihood

function is the probability of seeing the observed image in-

tensity and noise variance measurements given a particular
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Figure 5. The likelihood function of Eq. 9. Each single likelihood

function (c) is a product of a Gaussian pdf (a) and Gaussian cdf

(b).

noise level function. It is formulated as

L(τ(I)) =P ({In, σ̂n}|τ(I))

∝
∏

n

Pr[σn �τ(In)|σ̂n] exp{− (τ(In)−σ̂n)2

2s2
}

=
∏

n

Φ(

√
kn(σ̂n−τ(In))

σ̂n

) exp{− (τ(In)−σ̂n)2

2s2
}, (9)

where s is the parameter to control how close the function

should approach the samples. This likelihood function is

illustrated in Figure 5, where each term (c) is a product of a

Gaussian pdf with variance s2 (a) and a Gaussian cdf with

variance σ̂2
n (b). The red dots are the samples of minimum

in each interval. Given the function (blue curve), each red

dot is probabilistically beyond but close to the curve with

the pdf in (c).

4.3. Bayesian MAP Inference

The parameters we want to infer are actually the coef-

ficients on the eigenvectors xl = [β1 · · · βm]T ∈ R
m,

l = 1, 2, 3 of the noise level function for RGB channels.

We denote the sample set to fit {(Iln, σ̂ln, kln)}. Bayesian

inference turns out to be an optimization problem

{x∗
l }=argmin

{xl}

3
∑

l=1

{

∑

n

[

−log Φ(

√
kln

σ̂n

(σ̂ln−eT
nxl−τn))

+
(eT

nxl+τn−σ̂ln)2

2s2
] + xT

l Λ
−1xl +

3
∑

j=1,j>l

(xl−xj)
T
E

T(γ1T
T
T+γ2K

T
K)E(xl−xj)







(10)

subject to

τ + Exl � 0, (11)

bmin � T(τ + Exl) � bmax, (12)

hmin � K(τ + Exl) � hmax. (13)
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Figure 6. Synthesized noisy images and their corresponding noise

level functions (noise standard deviation as a function of image

brightness). The red, green and blue curves are estimated using the

proposed algorithm, whereas the gray curves are the true values for

the synthetically generated noise.

In the above formula, the matrix E=[w1 · · · wm] ∈ R
d×m

contains the principal components, en is the nth row of E,

and Λ = diag(v1, · · · , vm) is the diagonal eigenvalue ma-

trix. The last term in the objective function accounts for

the similarity of the NLF for RGB channels. Their similar-

ity is defined as a distance on 1st and 2nd order derivative.

Since the dimensionality of the optimization is low, we use

the MATLAB standard nonlinear constrained optimization

function fmincon for optimization. The function was able

to find an optimal solution for all the examples we tested.

5. Experimental Results

We have conducted experiments on both synthetic and

real noisy images to test the proposed algorithm. First, we

applied our CCD noise synthesis algorithm in Sect 3.3 to 17

randomly selected pictures from the Berkeley image seg-

mentation database [10] to generate synthetic test images.

To generate the synthetic CCD noise, we specify a CRF

and two parameters σs and σc. From this information, we

also produce the ground truth noise level function using the

training database in Sect 3.4. For this experiment, we se-

lected crf(60), σs = 0.10 and σc = 0.04. Then, we applied

our method to estimate the NLF from the synthesized noisy

images. Both L2 and L∞ norms are used to measure the

distance between the estimated NLF and the ground truth.

The error statistics under the two norms are listed in Table

1, where the mean and maximum value of the ground truth

are 0.0645 and 0.0932, respectively.

Some estimated NLFs are shown in Figure 6. In (a) we

observe many texture regions especially at high intensity

values, which implies high signal variance. The estimated



Norm mean std. deviation

L2 0.0048 0.0033

L∞ 0.0110 0.0120

Table 1. The statistics of the L2 and L∞ norms between the esti-

mated NLF and the ground truth.
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Figure 7. Comparison of estimated camera noise with experimen-

tal measurement. (a) shows one of the 29 images taken with a

CanonTMEOS 10D. An enlarged patch is shown for (b) a single

image, and (c) the mean image. (d) is the estimated NLF from

a single image (color), showing good agreement with the ground

truth (gray), measured from the noise variations over all 29 im-

ages.

curves (in red, green and blue) do not tightly follow the

lower envelope of the samples at high intensities, although

they deviate from the true noise function (in gray) slightly.

In (b) the samples do not span the full intensity range, so

our estimate is only reliable where the samples appear. This

shows a limit of the prior model: the samples are assumed

to be well-distributed. The estimation is reliable if the color

distribution span the full range of the spectrum and there are

textureless regions, as in (c).

We conducted a further experiment as a sanity check. We

took 29 images of a static scene by CanonTMEOS 10D (ISO

1600, exposure time 1/30 s and aperture f/19) and computed

the mean image. One sample is shown in Figure 7 (a). A

close-up view of sample (a) and the mean image is shown

in (b) and (c), respectively. Clearly the noise is significantly

reduced in the mean image. Using the variance over the

29 images as a function of mean intensity, we calculated

the “ground truth” NLF and compared that to the NLF esti-

mated by our method from only one image. The agreement

between the NLFs in each color band is very good, see Fig-

ure 7 (d).

We also applied the algorithm to estimating noise level

functions from the other images taken by a CCD camera.

We evaluated our results based on repeatability: pictures

taken by the same camera with the same setting on the same

date should have the same noise level function, independent
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Figure 8. The two images are taken by a CanonTMEOS DIGITAL

REBEL and the estimated noise level functions. Very similar noise

level functions are derived, even though the two images have very

different tonescales.

of the image content. We collected two pictures taken by a

CanonTM EOS DIGITAL REBEL and estimated the corre-

sponding noise level functions, as shown in Figure 8 (a) and

(b). Even though image (a) is missing high intensity values,

the estimated NLFs are similar.

The performance of our unoptimized MATLAB code is

28.8s on a Pentium(R) D CPU 3.00GHz 2.00GB RAM PC

when the samples span the full spectrum of intensity.

6. Computer Vision Applications

Many computer vision problems are noise-dependent,

and the typical approach assumes the noise level is known

or supplied by the user. Our technique provides a way to au-

tomatically infer the noise level function directly from the

image.

6.1. Adaptive Bilateral Filtering

Bilateral filtering [17] is a simple and popular algorithm

for feature-preserving image smoothing. To take advantage

of our image noise estimates, we implemented the bilateral

filter in two steps. The first step is per pixel denoising, based

on Σn, the diagonal matrix of the noise variance of each

color band, obtained from the NLF. We can estimate the co-

variance of the signal, Σs from Σs = Σz −Σn, where Σz

is the covariance matrix in each segment. Let z be the ob-

servation of the pixel, and µ the value of piecewise smooth

function at the pixel, then by downweighting we can esti-

mate the signal for that pixel [12]

s = (Σ−1
n + Σ−1

s )−1(Σ−1
n z + Σ−1

s µ) (14)

The bilateral filter has two parameters, the spatial and range

standard deviations, σs and σr. In the second step we apply

a bilateral filter, separately in each color band, to the per-

pixel denoised image. We obtained visually pleasing results

using σs = 3, and σr = 1.95σn, where σn is the noise level

at each pixel in each color band obtained from the NLF.



Four synthetic noisy images were generated by gradually

increasing the noise level, as shown in Fig 9 (a). After es-

timating the NLFs shown in (b), we obtained the denoised

results shown in (d). For comparison, we show denoising

results of classical bilateral filtering with constant parame-

ter setting σr = 3 and σs = 0.12 in (c). Clearly our adaptive

method was able to remove more noise while maintaining

image structure.

6.2. Canny Edge Detection

The basic idea of Canny edge detection [2] is to find an

optimal filter so that the most salient edges can be found de-

spite noise. The optimal filter is theoretically independent

of noise, but the threshold is noise dependent. We designed

an adaptive Canny edge detector where the low pass filter is

fixed and the higher threshold is set to be 0.5σ2
n+2σn+0.1,

where σn is the average noise of the input image. The lower

threshold is set to be 0.4 of the higher threshold. The results

of the adaptive Canny edge detection are shown in Figure 9

(f). For comparison, the results of classical Canny edge de-

tection with automatic parameter setting in MATLABTMare

shown in (e). Although the edges are distorted by the noise

in (f) as the noise level is increased, the adaptive edge de-

tector does a better job of detecting true edges while sup-

pressing false ones.

7. Conclusion

In this paper, we have shown how to infer the noise as a

function of image intensity (the noise level function, NLF)

from a single image. We used a very simple prior model for

images to estimate the noise level without knowing the im-

age content, by deriving bounds on the noise level. We ver-

ified that these bounds are tight in three ways: (1) by show-

ing good agreement with experimentally measured noise

from repeated exposures of the same image, (2) by repeat-

ably measuring the same NLF’s with the same camera for

different image content, and (3) by accurately estimating

known synthetic noise functions.

The inferred NLFs are useful for computer vision algo-

rithms that require knowing the noise level to set algorithm

parameters (or to select a relevant training set). We have

shown examples for two algorithms, bilateral filtering and

Canny edge detection. Using our noise estimates to set al-

gorithm parameters, we achieved robust results over a wide

range of image noise levels.

Our work addresses the fundamental issue of making

computer vision algorithms more reliable. We feel that such

reliability can only be obtained by considering and model-

ing the sources of variability in real-world images. Auto-

matically inferring the image noise level and taking it into

account in vision algorithms is an important step.
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Figure 9. Noise estimation can make computer vision algorithms more robust to noise. Four synthetic noise contaminated images (a) are

obtained by increasing σs and σc. Noise level functions as inferred by our algorithm from each image (b). (c) Classical bilateral filtering

with constant parameter setting. Note the sensitivity of the output to the input noise level. (d) Adaptive bilateral filtering exploiting inferred

noise levels, leading to robust performance independent of noise level. (e) Canny edge detection using the automatic parameter settings

supplied in MATLABTMprogram, which attempt to adapt to the input image. Despite adaptation, the algorithm does not adequately

compensate for the changes in image noise level. (f) Canny edge detection after adapting algorithm parameters using inferred noise level

functions. Algorithm performance is now substantially independent of the image noise levels.
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