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Abstract

In many applications of graphical models arising in computer vision, the hidden variables of interest
are most naturally specified by continuous, non-Gaussian distributions. There exist inference algorithms
for discrete approximations to these continuous distributions, but for the high-dimensional variables
typically of interest, discrete inference becomes infeasible. Stochastic methods such as particle filters
provide an appealing alternative. However, existing techniques fail to exploit the rich structure of the
graphical models describing many vision problems.

Drawing on ideas from regularized particle filters and belief propagation (BP), this paper develops
a nonparametric belief propagation (NBP) algorithm applicable to general graphs. Each NBP itera-
tion uses an efficient sampling procedure to update kernel-based approximations to the true, continuous
likelihoods. The algorithm can accomodate an extremely broad class of potential functions, including
nonparametric representations. Thus, NBP extends particle filtering methods to the more general vision
problems that graphical models can describe. We apply the NBP algorithm to infer component interre-
lationships in a parts-based face model, allowing location and reconstruction of occluded features.

This report describes research done within the Laboratory for Information and Decision Systems and the Artificial Intelli-
gence Laboratory at the Massachusetts Institute of Technology. This research was supported in part by ONR under Grant
N00014-00-1-0089, by AFOSR under Grant F49620-00-1-0362, and by an ODDR&E MURI funded through ARO Grant
DAAD19-00-1-0466. E. S. was partially funded by an NDSEG fellowship.
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1. Introduction
Graphical models provide a powerful, general framework
for developing statistical models of computer vision prob-
lems [7, 9, 10]. However, graphical formulations are only
useful when combined with efficient algorithms for infer-
ence and learning. Computer vision problems are par-
ticularly challenging because they often involve high–
dimensional, continuous variables and complex, multi-
modal distributions. For example, the articulated models
used in many tracking applications have dozens of degrees
of freedom to be estimated at each time step [18]. Realis-
tic graphical models for these problems must represent out-
liers, bimodalities, and other non–Gaussian statistical fea-
tures. The corresponding optimal inference procedures for
these models typically involve integral equations for which
no closed form solution exists. Thus, it is necessary to de-
velop families of approximate representations, and corre-
sponding methods for updating those approximations.

The simplest method for approximating intractable
continuous–valued graphical models is discretization. Al-
though exact inference in general discrete graphs is NP
hard [2], approximate inference algorithms such as loopy
belief propagation (BP) [17, 22, 24, 25] have been shown to
produce excellent empirical results in many cases. Certain
vision problems, including stereo vision [21] and phase un-
wrapping [8], are well suited to discrete formulations. For
problems involving high–dimensional variables, however,
exhaustive discretization of the state space is intractable.
In some cases, domain–specific heuristics may be used to
dynamically exclude those configurations which appear un-
likely based upon the local evidence [3, 7]. In more chal-
lenging vision applications, however, the local evidence at
some nodes may be inaccurate or misleading, and these ap-
proaches will heavily distort the computed estimates.

For temporal inference problems, particle filters [6, 10]
have proven to be an effective, and influential, alternative to
discretization. They provide the basis for several of the most
effective visual tracking algorithms [15, 18]. Particle fil-
ters approximate conditional densities nonparametrically as
a collection of representative elements. Although it is possi-
ble to update these approximations deterministically using
local linearizations [1], most implementations use Monte
Carlo methods to stochastically update a set of weighted
point samples. The stability and robustness of particle fil-
ters can often be improved by regularization methods [6,
Chapter 12] in which smoothing kernels [16, 19] explicitly
represent the uncertainty associated with each point sample.

Although particle filters have proven to be extremely ef-
fective for visual tracking problems, they are specialized
to temporal problems whose corresponding graphs are sim-
ple Markov chains (see Figure 1). Many vision problems,
however, are characterized by non–causal (e.g., spatial or
model–induced) structure which is better represented by a

Markov Chain

Graphical Models

Figure 1: Particle filters assume variables are related by a sim-
ple Markov chain. The NBP algorithm extends particle filtering
techniques to arbitrarily structured graphical models.

more complex graph. Because particle filters cannot be ap-
plied to arbitrary graphs, graphical models containing high–
dimensional variables may pose severe problems for exist-
ing inference techniques. Even for tracking problems, there
is often structure within each time instant (for example,
associated with an articulated model) which is ignored by
standard particle filters.

Some authors have used junction tree representa-
tions [12] to develop structured approximate inference tech-
niques for general graphs. These algorithms begin by
clustering nodes into cliques chosen to break the original
graph’s cycles. A wide variety of algorithms can then be
specified by combining an approximate clique variable rep-
resentation with local methods for updating these approx-
imations [4, 11]. For example, Koller et al. [11] propose
a framework in which the current clique potential estimate
is used to guide message computations, allowing approxi-
mations to be gradually refined over successive iterations.
However, the sample algorithm they provide is limited to
networks containing mixtures of discrete and Gaussian vari-
ables. In addition, for many graphs (e.g. nearest–neighbor
grids) the size of the junction tree’s largest cliques grows
exponentially with problem size, requiring the estimation
of extremely high–dimensional distributions.

The nonparametric belief propagation (NBP) algorithm
we develop in this paper differs from previous nonparamet-
ric approaches in two key ways. First, for graphs with cy-
cles we do not form a junction tree, but instead iterate our
local message updates until convergence as in loopy BP.
This has the advantage of greatly reducing the dimension-
ality of the spaces over which we must infer distributions.
Second, we provide a message update algorithm specifically
adapted to graphs containing continuous, non–Gaussian po-
tentials. The primary difficulty in extending particle fil-
ters to general graphs is in determining efficient methods
for combining the information provided by several neigh-
boring nodes. Representationally, we address this problem
by associating a regularizing kernel with each particle, a
step which is necessary to make message products well de-
fined. Computationally, we show that message products
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may be computed using an efficient local Gibbs sampling
procedure. The NBP algorithm may be applied to arbitrar-
ily structured graphs containing a broad range of potential
functions, effectively extending particle filtering methods to
a much broader range of vision problems.

Following our presentation of the NBP algorithm, we
validate its performance on a small Gaussian network. We
then show how NBP may be combined with parts–based lo-
cal appearance models [5, 14, 23] to locate and reconstruct
occluded facial features.

2. Undirected Graphical Models
An undirected graph G is defined by a set of nodes V , and a
corresponding set of edges E . The neighborhood of a node
s ∈ V is defined as Γ(s) , {t|(s, t) ∈ E}, the set of all
nodes which are directly connected to s. Graphical models
associate each node s ∈ V with an unobserved, or hidden,
random variable xs, as well as a noisy local observation ys.
Let x = {xs}s∈V and y = {ys}s∈V denote the sets of all
hidden and observed variables, respectively. To simplify
the presentation, we consider models with pairwise poten-
tial functions, for which p (x, y) factorizes as

p (x, y) =
1

Z

∏

(s,t)∈E

ψs,t (xs, xt)
∏

s∈V

ψs (xs, ys) (1)

However, the nonparametric updates we present may be di-
rectly extended to models with higher–order potential func-
tions.

In this paper, we focus on the calculation of the condi-
tional marginal distributions p (xs | y) for all nodes s ∈ V .
These densities provide not only estimates of xs, but also
corresponding measures of uncertainty.

2.1. Belief Propagation
For graphs which are acyclic or tree–structured, the desired
conditional distributions p (xs | y) can be directly calcu-
lated by a local message–passing algorithm known as belief
propagation (BP) [17, 25]. At iteration n of the BP algo-
rithm, each node t ∈ V calculates a message mn

ts (xs) to be
sent to each neighboring node s ∈ Γ(t):

mn
ts (xs) = α

∫

xt

ψs,t (xs, xt)ψt (xt, yt)

×
∏

u∈Γ(t)\s

mn−1
ut (xt) dxt (2)

Here, α denotes an arbitrary proportionality constant. At
any iteration, each node can produce an approximation
p̂n(xs | y) to the marginal distributions p (xs | y) by com-
bining the incoming messages with the local observation

potential:

p̂n(xs | y) = αψs (xs, ys)
∏

t∈Γ(s)

mn
ts (xs) (3)

For tree–structured graphs, the approximate marginals, or
beliefs, p̂n(xs | y) will converge to the true marginals
p (xs | y) once the messages from each node have propa-
gated to every other node in the graph.

Because each iteration of the BP algorithm involves only
local message updates, it can be applied even to graphs
with cycles. For such graphs, the statistical dependencies
between BP messages are not properly accounted for, and
the sequence of beliefs p̂n(xs | y) will not converge to the
true marginal distributions. In many applications, however,
the resulting loopy BP algorithm exhibits excellent empir-
ical performance [7, 8]. Recently, several theoretical stud-
ies have provided insight into the approximations made by
loopy BP, partially justifying its application to graphs with
cycles [22, 24, 25].

2.2. Nonparametric Representations
Exact evaluation of the BP update equation (2) involves an
integration which, as discussed in the Introduction, is not
analytically tractable for most continuous hidden variables.
An interesting alternative is to represent the resulting mes-
sage mts (xs) nonparametrically as a kernel–based density
estimate [16, 19]. Let N (x;µ,Λ) denote the value of a
Gaussian density of mean µ and covariance Λ at the point
x. We may then approximate mts (xs) by a mixture of M
Gaussian kernels as

mts (xs) =
M
∑

i=1

w(i)
s N

(

xs;µ
(i)
s ,Λs

)

(4)

where w
(i)
s is the weight associated with the ith kernel

mean µ(i)
s , and Λs is a bandwidth or smoothing parameter.

Other choices of kernel functions are possible [19], but in
this paper we restrict our attention to mixtures of diagonal–
covariance Gaussians.

In the following section, we describe stochastic meth-
ods for determining the kernel centers µ

(i)
s and associ-

ated weights w(i)
s . The resulting nonparametric represen-

tations are only meaningful when the messages mts (xs)
are finitely integrable.1 To guarantee this, it is sufficient to
assume that all potentials satisfy the following constraints:

∫

xs

ψs,t (xs, xt = x̄) dxs <∞
∫

xs

ψs (xs, ys = ȳ) dxs <∞
(5)

1Probabilistically, BP messages are likelihood functions mts (xs) ∝

p (y = ȳ | xs), not densities, and are not necessarily integrable (e.g.,
when xs and y are independent).

3



Under these assumptions, a simple induction argument will
show that all messages are normalizable. Heuristically,
equation (5) requires all potentials to be “informative,” so
that fixing the value of one variable constrains the likely lo-
cations of the other. In most application domains, this can
be trivially achieved by assuming that all hidden variables
take values in a large, but bounded, range.

3. Nonparametric Message Updates
Conceptually, the BP update equation (2) naturally de-
composes into two stages. First, the message prod-
uct ψt (xt, yt)

∏

um
n−1
ut (xt) combines information from

neighboring nodes with the local evidence yt, producing
a function summarizing all available knowledge about the
hidden variable xt. We will refer to this summary as
a likelihood function, even though this interpretation is
only strictly correct for an appropriately factorized tree–
structured graph. Second, this likelihood function is com-
bined with the compatibility potential ψs,t (xs, xt), and
then integrated to produce likelihoods for xs. The non-
parametric belief propagation (NBP) algorithm stochasti-
cally approximates these two stages, producing consistent
nonparametric representations of the messages mts (xs).
Approximate marginals p̂(xs | y) may then be determined
from these messages by applying the following section’s
stochastic product algorithm to equation (3).

3.1. Message Products
For the moment, assume that the local observation poten-
tials ψt (xt, yt) are represented by weighted Gaussian mix-
tures (such potentials arise naturally from learning–based
approaches to model identification [7]). The product of d
Gaussian densities is itself Gaussian, with mean and covari-
ance given by

d
∏

j=1

N (x;µj ,Λj) ∝ N
(

x; µ̄, Λ̄
)

Λ̄−1 =

d
∑

j=1

Λ−1
j Λ̄−1µ̄ =

d
∑

j=1

Λ−1
j µj

(6)

Thus, a BP update operation which multiplies d Gaussian
mixtures, each containing M components, will produce an-
other Gaussian mixture with Md components. The weight
w̄ associated with product mixture component N

(

x; µ̄, Λ̄
)

is given by

w̄ ∝

∏d
j=1 wjN (x;µj ,Λj)

N
(

x; µ̄, Λ̄
) (7)

where {wj}d
j=1 are the weights associated with the input

Gaussians. Note that equation (7) produces the same value

for any choice of x. Also, in various special cases, such as
when all input Gaussians have the same variance Λj = Λ,
computationally convenient simplifications are possible.

Since integration of Gaussian mixtures is straightfor-
ward, in principle the BP message updates could be per-
formed exactly by repeated use of equations (6,7). In prac-
tice, however, the exponential growth of the number of mix-
ture components forces approximations to be made. Given
d input mixtures of M Gaussian, the NBP algorithm ap-
proximates their Md–component product mixture by draw-
ing M independent samples.

Direct sampling from this product, achieved by explic-
itly calculating each of the product component weights (7),
would require O(Md) operations. The complexity associ-
ated with this sampling is combinatorial: each product com-
ponent is defined by d labels {lj}d

j=1, where lj identifies a
kernel in the jth input mixture. Although the joint distribu-
tion of the d labels is complex, the conditional distribution
of any individual label lj is simple. In particular, assuming
fixed values for {lk}k 6=j , equation (7) can be used to sample
from the conditional distribution of lj in O(M) operations.

Since the mixture label conditional distributions are
tractable, we may use a Gibbs sampler [9] to draw asymp-
totically unbiased samples from the product distribution.
Details are provided in Algorithm 1, and illustrated in Fig-
ure 2. At each iteration, the labels {lk}k 6=j for d − 1 of
the input mixtures are fixed, and a new value for the jth la-
bel is chosen according to equation (7). At the following
iteration, the newly chosen lj is fixed, and another label is
updated. This procedure continues for a fixed number of
iterations κ; more iterations lead to more accurate samples,
but require greater computational cost. Following the final
iteration, the mean and covariance of the selected product
mixture component is found using equation (6), and a sam-
ple point is drawn. To draw M (approximate) samples from
the product distribution, the Gibbs sampler requires a total
of O(dκM2) operations.

Although formal verification of the Gibbs sampler’s con-
vergence is difficult, in our experiments we have observed
good performance using far fewer computations than re-
quired by direct sampling. Note that the NBP algorithm
uses the Gibbs sampling technique differently from clas-
sic simulated annealing procedures [9]. In simulated an-
nealing, the Gibbs sampler updates a single Markov chain
whose state dimension is proportional to the graph dimen-
sion. In contrast, NBP uses many local Gibbs samplers,
each involving only a few nodes. Thus, although NBP must
run more independent Gibbs samplers, for large graphs the
dimensionality of the corresponding Markov chains is dra-
matically smaller.

In some applications, the observation potentials
ψt (xt, yt) are most naturally specified by analytic func-
tions. The previously proposed Gibbs sampler may
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Figure 2: Top row: Gibbs sampler for a product of 3 Gaussian mixtures, with 4 kernels each. New indices are sampled according to
weights (arrows) determined by the two fixed components (solid). The Gibbs sampler cycles through the different messages, drawing a
new mixture label for one message conditioned on the currently labeled Gaussians in the other messages. Bottom row: After κ iterations
through all the messages, the final labeled Gaussians for each message (right, solid) are multiplied together to identify one (left, solid) of
the 43 components (left, thin) of the product density (left, dashed).

be easily adapted to this case using importance sam-
pling [6], as shown in Algorithm 2. At each iteration, the
weights used to sample a new kernel label are rescaled by
ψt

(

µ̄(i), yt

)

, the observation likelihood at each kernel’s
center. Then, the final sample is assigned an importance
weight to account for variations of the analytic potential
over the kernel’s support. This procedure will be most
effective when ψt (xt, yt) varies slowly relative to the
typical kernel bandwidth.

3.2. Message Propagation
In the second stage of the NBP algorithm, the informa-
tion contained in the incoming message product is propa-
gated by stochastically approximating the belief update in-
tegral (2). To perform this stochastic integration, the pair-
wise potential ψs,t (xs, xt) must be decomposed to separate
its marginal influence on xt from the conditional relation-
ship it defines between xs and xt.

The marginal influence function ζ(xt) is determined by
the relative weight assigned to all xs values for each xt:

ζ(xt) =

∫

xs

ψs,t (xs, xt) dxs (8)

The NBP algorithm accounts for the marginal influence of
ψs,t (xs, xt) by incorporating ζ(xt) into the Gibbs sampler.
If ψs,t (xs, xt) is a Gaussian mixture, extraction of ζ(xt) is

trivial. Alternately, if ζ(xt) can be evaluated (or approxi-
mated) pointwise, analytic pairwise potentials may be dealt
with using importance sampling. In the common case where
pairwise potentials depend only on the difference between
their arguments (ψs,t (x, x̄) = ψs,t (x − x̄)), ζ(xt) is con-
stant and can be neglected.

To complete the stochastic integration, each particle x(i)
t

produced by the Gibbs sampler is propagated to node s

by sampling x(i)
s ∼ ψs,t(xs, x

(i)
t ). Note that the assump-

tions of Section 2.2 ensure that ψs,t(xs, x
(i)
t ) is normaliz-

able for any x(i)
t . The method by which this sampling step

is performed will depend on the specific functional form
of ψs,t (xs, xt), and may involve importance sampling or
MCMC techniques. Finally, having produced a set of inde-
pendent samples from the desired output messagemts (xs),
NBP must choose a kernel bandwidth to complete the non-
parametric density estimate. There are many ways to make
this choice; for the results in this paper, we used the com-
putationally efficient “rule of thumb” heuristic [19].

The NBP message update procedure developed in this
section is summarized in Algorithm 3. Note that various
stages of this algorithm may be simplified in certain special
cases. For example, if the pairwise potentials ψs,t (xs, xt)
are mixtures of only one or two Gaussians, it is possible
to replace the sampling and kernel size selection of steps
3–4 by a simple deterministic kernel placement. However,
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Given d mixtures of M Gaussians, where {µ(i)
j ,Λ

(i)
j , w

(i)
j }

M
i=1

denote the parameters of the jth mixture:

1. For each j ∈ [1 : d], choose a starting label lj ∈ [1 : M ] by
sampling p (lj = i) ∝ w

(i)
j .

2. For each j ∈ [1 : d],

(a) Calculate the mean µ∗ and variance Λ∗ of the product
∏

k 6=j
N

(

x;µ
(lk)
k ,Λ

(lk)
k

)

using equation (6).

(b) For each i ∈ [1 : M ], calculate the mean µ̄(i) and vari-

ance Λ̄(i) of N (x;µ∗,Λ∗) · N
(

x;µ
(i)
j ,Λ

(i)
j

)

. Using

any convenient x, compute the weight

w̄(i) = w
(i)
j

N
(

x;µ
(i)
j ,Λ

(i)
j

)

N (x;µ∗,Λ∗)

N
(

x; µ̄(i), Λ̄(i)
)

(c) Sample a new label lj according to p (lj = i) ∝ w̄(i).

3. Repeat step 2 for κ iterations.

4. Compute the mean µ̄ and variance Λ̄ of the product
∏d

j=1N
(

x;µ
(lj)

j ,Λ
(lj)

j

)

. Draw a sample x̂ ∼ N
(

x; µ̄, Λ̄
)

.

Algorithm 1: Gibbs sampler for products of Gaussian mixtures.

Given d mixtures of M Gaussians and an analytic function f(x),
follow Algorithm 1 with the following modifications:

2. After part (b), rescale each computed weight by the analytic
value at the kernel center: w̄(i) ← f(µ̄(i))w̄(i).

5. Assign importance weight ŵ = f(x̂)/f(µ̄) to the sampled
particle x̂.

Algorithm 2: Gibbs sampler for the product of several Gaussian
mixtures with an analytic function f(x).

these more sophisticated updates are necessary for graphical
models with more expressive priors, such as those used in
Section 5.

4. Gaussian Graphical Models
Gaussian graphical models provide one of the few continu-
ous distributions for which the BP algorithm may be imple-
mented exactly [24]. For this reason, Gaussian models may
be used to test the accuracy of the nonparametric approxi-
mations made by NBP. Note that we cannot hope for NBP to
outperform algorithms (like Gaussian BP) designed to take
advantage of the linear structure underlying Gaussian prob-
lems. Instead, our goal is to verify NBP’s performance in a
situation where exact comparisons are possible.

We have tested the NBP algorithm on Gaussian models
with a range of graphical structures, including chains, trees,
and grids. Similar results were observed in all cases, so
here we only present data for a single typical 5× 5 nearest–

Given input messages mut (xt) = {µ(i)
ut ,Λ

(i)
ut , w

(i)
ut }

M
i=1 for each

u ∈ Γ(t) \ s, construct an output message mts (xs) as follows:

1. Determine the marginal influence ζ(xt) using equation (8):

(a) If ψs,t (xs, xt) is a Gaussian mixture, ζ(xt) is the
marginal over xt.

(b) For analytic ψs,t (xs, xt), determine ζ(xt) by sym-
bolic or numeric integration.

2. Draw M independent samples {x̂(i)
t }

M
i=1 from the product

ζ(xt)ψt (xt, yt)
∏

u
mut (xt) using the Gibbs sampler of

Algorithms 1-2.

3. For each {x̂(i)
t }

M
i=1, sample x̂(i)

s ∼ ψs,t(xs, xt = x̂
(i)
t ):

(a) If ψs,t (xs, xt) is a Gaussian mixture, x̂(i)
s is sampled

from the conditional of xs given x̂(i)
t .

(b) For analytic ψs,t (xs, xt), importance sampling or
MCMC methods may be used as appropriate.

4. Construct mts (xs) = {µ(i)
ts ,Λ

(i)
ts , w

(i)
ts }

M
i=1:

(a) Set µ(i)
ts = x̂

(i)
s , and w

(i)
ts equal to the importance

weights (if any) generated in step 3.

(b) Choose {Λ(i)
ts }

M
i=1 using any appropriate kernel size

selection method (see [19]).

Algorithm 3: NBP algorithm for updating the nonparametric
message mts (xs) sent from node t to node s as in equation (2).

neighbor grid (as in Figure 1), with randomly selected inho-
mogeneous potential functions. To create the test model, we
drew independent samples from the single correlated Gaus-
sian defining each of the graph’s clique potentials, and then
formed a nonparametric density estimate based on these
samples. Although the NBP algorithm could have directly
used the original correlated potentials, sample–based mod-
els are a closer match for the information available in many
vision applications (see Section 5).

For each node s ∈ V , Gaussian BP converges to a
steady–state estimate of the marginal mean µs and variance
σ2

s after about 15 iterations. To evaluate NBP, we performed
15 iterations of the NBP message updates using several dif-
ferent particle set sizes M ∈ [10, 400]. We then found the
marginal mean µ̂s and variance σ̂2

s estimates implied by the
final NBP density estimates. For each tested particle set
size, the NBP comparison was repeated 100 times.

Using the data from each NBP trial, we computed the er-
ror in the mean and variance estimates, normalized so each
node behaved like a unit–variance Gaussian:

µ̃s =
µ̂s − µs

σs
σ̃2

s =
σ̂2

s − σ2
s√

2σ2
s

(9)

Figure 3 shows the mean and variance of these error statis-
tics, across all nodes and trials, for different particle set
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Figure 3: NBP performance for a 5 × 5 grid with Gaussian po-
tentials and observations. Plots show the mean (solid line) and
standard deviation (dashed line) of the normalized error measures
of equation (9), as a function of particle set size M .

sizes M . The NBP algorithm always provides unbiased es-
timates of the conditional mean, but overly large variance
estimates. This bias, which decreases as more particles are
used, is due to the smoothing inherent in kernel–based den-
sity estimates. As expected for samples drawn from Gaus-
sian distributions, the standard deviation of both error mea-
sures falls as M−1/2.

5. Component–Based Face Models
Just as particle filters have been applied to a wide range of
problems, the NBP algorithm has many potential computer
vision applications. Previously, NBP has been used to es-
timate dense stereo depth maps [20]. However, in this sec-
tion we instead use NBP to infer relationships between the
PCA coefficients in a component–based model of the hu-
man face, which combines elements of [14, 23]. Local ap-
pearance models of this form share many features with the
articulated models commonly used in tracking applications.
However, they lack the implementational overhead associ-
ated with state–of–the–art person trackers [18], for which
we think NBP would also be well suited.

5.1. Model Construction
In order to focus attention on the performance of the NBP
algorithm, we make several simplifying assumptions. We
assume that the scale and orientation (but not the position)
of the desired face are known, and that the face is ori-
ented towards the camera. Note, however, that the graph-
ical model we propose could be easily extended to estimate
more sophisticated alignment parameters [5].

To construct a model of facial variations, we used train-
ing images from the AR face database [13]. For each of
94 individuals, we chose four standard views containing a
range of expressions and lighting conditions (see Figure 4).
We then manually selected five feature points (eyes, nose
and mouth corners) on each person, and used these points
to transform the images to a canonical alignment. These

Figure 4: Two of the 94 training subjects from the AR face
database. Each subject was photographed in these four poses.

(a) (b) (c)

Figure 5: PCA–based facial component model. (a) Control points
and feature masks for each of the five components. Note that the
two mouth masks overlap. (b) Mean features. (c) Graphical prior
relating the position and PCA coefficients of each component.

same control points were used to center the feature masks
shown in Figure 5(a). In order to model facial variations,
we computed a principal component analysis (PCA) of each
of the five facial components [14]. The resulting com-
ponent means are shown in Figure 5(b). For each facial
feature, only the 10 most significant principal components
were used in the subsequent analysis.

After constructing the PCA bases, we computed the cor-
responding PCA coefficients for each individual in the train-
ing set. Then, for each of the component pairs connected by
edges in Figure 5(c), we determined a kernel–based non-
parametric density estimate of their joint coefficient proba-
bilities. Figure 6 shows several marginalizations of these
20–dimensional densities, each of which relates a single
pair of coefficients (e.g., the first nose and second left eye
coefficients). Note that all of these plots involve one of
the three most significant PCA bases for each component,
so they represent important variations in the data. We can
clearly see that simple Gaussian approximations would lose
most of this data set’s interesting structure.

Using these nonparametric estimates of PCA coefficient
relationships and the graph of Figure 5(c), we constructed
a joint prior model for the location and appearance of each

7



Figure 6: Empirical joint densities of six different pairs of PCA
coefficients, selected from the three most significant PCA bases
at each node. Each plot shows the corresponding marginal distri-
butions along the bottom and right edges. Note the multimodal,
non–Gaussian relationships.

facial component. The hidden variable at each node is 12
dimensional (10 PCA coefficients plus location). We ap-
proximate the true clique potentials relating neighboring
PCA coefficients by the corresponding joint probability es-
timates [7]. We also assume that differences between fea-
ture positions are Gaussian distributed, with a mean and
variance estimated from the training set.

5.2. Estimation of Occluded Features
In this section, we apply the graphical model developed in
the previous section to the simultaneous location and recon-
struction of partially occluded faces. Given an input image,
we first localize the region most likely to contain a face us-
ing a standard eigenface detector [14] trained on partial face
images. This step helps to prevent spurious detection of
background detail by the individual components. We then
construct observation potentials by scanning each feature
mask across the identified subregion, producing the best 10–
component PCA representation ŷ of each pixel window y.
For each tested position, we create a Gaussian mixture com-
ponent with mean equal to the matching coefficients, and

weight proportional to exp
{

−||y − ŷ||2/2σ2
}

. To account
for outliers produced by occluded features, we add a single
zero mean, high–variance Gaussian to each observation po-
tential, weighted to account for 20% of the total likelihood.

We tested the NBP algorithm on uncalibrated images of
individuals not found in the training set. Each message was
represented by M = 100 particles, and each Gibbs sam-
pling operation used κ = 100 iterations. Total computa-
tion time for each image was a few minutes on a Pentium 4
workstation. Due to the high dimensionality of the variables
in this model, and the presence of the occlusion process,
discretization is completely intractable. Therefore, we in-
stead compare NBP’s estimates to the closed form solution
obtained by fitting a single Gaussian to each of the empiri-
cally derived mixture densities.

Figure 7 shows inference results for two images of a man
concealing his mouth. In one image he is smiling, while in
the other he is not. Using the relationships between eye and
mouth shape learned from the training set, NBP is able to
correctly infer the shape of the concealed mouth. In con-
trast, the Gaussian approximation loses the structure shown
in Figure 6, and produces two mouths which are visually
equal to the mean mouth shape. While similar results could
be obtained using a variety of ad hoc classification tech-
niques, it is important to note that the NBP algorithm was
only provided unlabeled training examples.

Figure 8 shows inference results for two images of a
woman concealing one eye. In one image, she is seen under
normal illumination, while in the second she is illuminated
from the left by a bright light. In both cases, the concealed
eye is correctly estimated to be structurally similar to the
visible eye. In addition, NBP correctly modifies the illumi-
nation of the occluded eye to match the intensity of the cor-
responding mouth corner. This example shows NBP’s abil-
ity to seamlessly integrate information from multiple nodes
to produce globally consistent estimates.

6. Discussion
We have developed a nonparametric sampling–based vari-
ant of the belief propagation algorithm for graphical mod-
els with continuous, non–Gaussian random variables. Our
parts–based facial modeling results demonstrate NBP’s
ability to infer sophisticated relationships from training
data, and suggest that it may prove useful in more complex
visual tracking problems. We hope that NBP will allow the
successes of particle filters to be translated to many new
computer vision applications.
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Gaussian Neutral NBP Gaussian Smiling NBP

Figure 7: Simultaneous estimation of location (top row) and appearance (bottom row) of an occluded mouth. Results for the Gaussian
approximation are on the left of each panel, and for NBP on the right. By observing the squinting eyes of the subject (right), and exploiting
the feature interrelationships represented in the trained graphical model, the NBP algorithm correctly infers that the occluded mouth should
be smiling. A parametric Gaussian model doesn’t capture these relationships, producing estimates indistinguishable from the mean face.

Gaussian Ambient Lighting NBP Gaussian Lighted from Left NBP

Figure 8: Simultaneous estimation of location (top row) and appearance (bottom row) of an occluded eye. NBP combines information
from the visible eye and mouth to determine both shape and illumination of the occluded eye, correctly inferring that the left eye should
brighten under the lighting conditions shown at right. The Gaussian approximation fails to capture these detailed relationships.
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