
Seeing the Arrow of Time

Lyndsey C. Pickup1 Zheng Pan2 Donglai Wei3 YiChang Shih3 Changshui Zhang2

Andrew Zisserman1 Bernhard Schölkopf4 William T. Freeman3

1Visual Geometry Group, Department of Engineering Science, University of Oxford.
2Department of Automation, Tsinghua University State Key Lab of Intelligent Technologies and Systems,

Tsinghua National Laboratory for Information Science and Technology (TNList).

3Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

4Max Planck Institute for Intelligent Systems, Tübingen.

Abstract

We explore whether we can observe Time’s Arrow in a

temporal sequence–is it possible to tell whether a video is

running forwards or backwards? We investigate this some-

what philosophical question using computer vision and ma-

chine learning techniques.

We explore three methods by which we might detect

Time’s Arrow in video sequences, based on distinct ways

in which motion in video sequences might be asymmetric

in time. We demonstrate good video forwards/backwards

classification results on a selection of YouTube video clips,

and on natively-captured sequences (with no temporally-

dependent video compression), and examine what motions

the models have learned that help discriminate forwards

from backwards time.

1. Introduction

How much of what we see on a daily basis could be

time-reversed without us noticing that something is amiss?

Videos of certain motions can be time-reversed without

looking wrong, for instance the opening and closing of au-

tomatic doors, flexing of the digits of a human hand, and

elastic bouncing or harmonic motions for which the damp-

ing is small enough as to be undetectable in a short video.

The same is not true, however, of a cow eating grass, or a

dog shaking water from its coat. In these two scenarios,

we don’t automatically accept that a complicated system

(chewed food, or the spatter pattern of water drops) will

re-compose itself into a simpler one.

There has been much study of how the underlying

physics, and the second law of thermodynamics, create a

direction of time [14, 16]. While physics addresses whether

the world is the same forwards and backwards, our goal will

be to assay whether and how the direction of time manifests

itself visually. This is a fundamental property of the visual

world that we should understand. Thus we ask the question:

can we see the Arrow of Time? – can we distinguish a video

playing forward from one playing backward?

Here, we seek to use low-level visual information –

closer to the underlying physics – to see Time’s Arrow, not

object-level visual cues. We are not interested in memoriz-

ing that cars tend to drive forward, but rather in studying the

common temporal structure of images. We expect that such

regularities will make the problem amenable to a learning-

based approach. Some sequences will be difficult or im-

possible; others may be straightforward. We want to know:

how strong is the signal indicating Time’s Arrow? Where

do we see it, and when is it reliable? We study these ques-

tions using several different learning-based approaches.

Asking such fundamental questions about the statistical

structure of images has helped computer vision researchers

to formulate priors and to develop algorithms exploiting

such priors. For example, asking, “are images invariant

over scale?” led researchers to develop the now widely-

used multi-resolution spatial pyramid architectures [3]. Hu-

man vision researchers have learned properties of human

visual processing by asking “can we recognize faces upside

down?” [19], or about tonescale processing by asking,“can

we recognize faces if the tonescale is inverted?” [9]. Both

symmetries and asymmetries of priors provide useful infor-

mation for visual inference. The prior assumption that light

comes from above is asymmetric and helps us disambiguate

convex and concave shapes [15]. Spatial translation invari-

ance, on the other hand, allows us to train object detection

or recognition systems without requiring training data at all

possible spatial locations.

Learning and representing such statistical structure has

provided the prior probabilities needed for a variety of com-

puter vision tasks for processing or synthesizing images and

image sequences, including, for example: noise removal

1

billf
Typewritten Text
IEEE Computer Vision and Pattern Recognition (CVPR) 2014.

[17], inpainting over spatial or temporal gaps [1, 24], im-

age enhancement [25], and texture synthesis [13].

In contrast to quite extensive research on the statistical

properties of the spatial structure in images [6], there has

been far less investigation of temporal structure (one of the

exceptions to this rule includes [7]). However, knowledge

of the temporal structure of images/videos can be used in

a variety of tasks, including video enhancement or analy-

sis, filling-in missing data, and the prediction of what will

be seen next, an important feedback signal for robotics ap-

plications. Thus, we can similarly ask: are video temporal

statistics symmetric in time?

We expect that the answer to this question can guide us as

we develop priors and subsequent algorithms. For example,

an understanding of the precise asymmetries of temporal vi-

sual priors may have implications for methods for video de-

noising or video decompression or optical flow estimation

or ordering of images [4]. In addition, causal inference,

of which seeing Time’s Arrow is a special case, has been

connected to machine learning topics relevant to computer

vision, such as semi-supervised learning, transfer learning

and covariate shift adaptation [18]. Our question relates to

this issue of causality, but seen through the lens of vision.

In the sequel, we probe how Time’s Arrow can be de-

termined from video sequences in three distinct ways: first,

section 3, by using features that represent local motion pat-

terns and learning from these whether there is an asymme-

try in temporal behaviour that can be used to determine the

video direction; second, section 4, by explicitly represent-

ing evidence of causality; and third, section 5, by using a

simple auto-regressive model to distinguish whether a cause

at a time point influences future events or not (since it can’t

influence the past).

2. Dataset and baseline method

In this section we describe the two video datasets and a

baseline method for measuring Time’s Arrow.

2.1. YouTube dataset

We have assembled a set of videos that act as a com-

mon test bed for the methods investigated in this paper.

Our criteria when selecting videos is that the information

on Time’s Arrow should not be ‘semantic’ but should be

available principally from the ‘physics’. Thus we do not in-

clude strong semantic cues for example from the coupling

of the asymmetries of animals and vehicles with their direc-

tions of motion (e.g. eyes at the front of the head tending to

move forwards); or from the order of sequences of actions

(such as traffic lights or clock hands). What remains is the

‘physics’ – gravity, friction, entropy, etc [21].

This dataset consists of 180 video clips from YouTube.

This was obtained manually using more than 50 keywords,

aimed at retrieving a diverse set of videos from which we

might learn low-level motion-type cues that indicate the di-

rection of time. Keywords included “dance”, “steam train”,

and “demolition”, amongst other terms. The dataset is avail-

able at http://www.robots.ox.ac.uk/data/arrow/.

Selection criteria: Video clips were selected to be 6–10

seconds long, giving at least 100 frames on which to run

the computations. This meant having to discard clips from

many professionally-produced videos where each shot’s du-

ration was too short, since each clip was required to be a

single shot. We restricted the selections to HD videos, al-

lowing us to subsample extensively to avoid block artifacts

and minimize the interaction with any given compression

method.

Videos with poor focus or lighting were discarded,

as were videos with excessive camera motion or motion

blur due to hand shake. Videos with special effects and

computer-generated graphics were avoided, since the un-

derlying physics describing these may not match exactly

with the real-world physics underpinning our exploration of

Time’s Arrow. Similarly, split-screen views, cartoons and

computer games were all discarded. Finally, videos were

required to be in landscape format with correct aspect ra-

tios and minimal interlacing artefacts. In a few cases, the

dataset still contains frames in which small amounts of text

or television channel badges have been overlaid, though we

tried to minimize this effect as well.

Finally, the dataset contains a few clips from “back-

wards” videos on YouTube; these are videos where the au-

thors or uploaders have performed the time-flip before sub-

mitting the video to YouTube, so any time-related artefacts

that might have been introduced by YouTube’s subsequent

compression will also be reversed in these cases relative to

the forward portions of our data. In these cases, because rel-

atively few clips meeting all our our criteria exist, multiple

shots of different scenes were taken from the same source

video in a few cases. In all other cases, only one short clip

from each YouTube video was used.

In total, there are 155 forward videos and 25 reverse

videos in the dataset. Two frames from each of six ex-

ample videos are shown in Figure 1. The first five are

forwards-time examples (horse in water, car crash, mine

blasting, baseball game, water spray), and the right-most

pair of frames is from a backwards-time example where pil-

lows are “un-thrown”.

Train/val/test split and evaluation procedure. For eval-

uating the methods described below, the dataset was divided

into 60 testing videos and 120 training videos, in three dif-

ferent ways such that each video appeared as a testing video

exactly once and training exactly twice. Where methods re-

quired it, the 120 videos of the training set were further sub-

divided into 70 training and 50 validation videos. The three

http://www.robots.ox.ac.uk/data/arrow/

Figure 1. Six examples of videos from our 180-clip YouTube dataset, including one reverse-time example (right-most frames).

train/test splits are labeled A, B and C, and are the same for

each of the methods we report. The backwards-to-forwards

video ratios for the three test sets were 9:51, 8:52 and 8:52

respectively.

The evaluation measure for each method is the propor-

tion of the testing videos on which the method could cor-

rectly predict the time-direction.

2.2. Tennis­ball dataset

We also filmed a small number of video clips using a

camera which could record in a video codec which used

only intra-frame, rather than inter-frame coding, meaning

that there was no possibility of compression artefacts hold-

ing any time-direction information. This dataset comprises

13 HD videos of tennis balls being rolled along a floor and

colliding with other rolling or static balls. An example of

one of these sequences is used later in Figure 6.

2.3. Baseline method

We consider Spatial-temporal Orientated En-

ergy (SOE) [5] as an off-the-shelf method which can

be employed to describe video motion. SOE is a filter-

based feature for video classification, and is sensitive to

different spacetime textures. Our implementation is faithful

to that laid out in [5], and comprises third-derivative-

of-Gaussian filters in eight uniformly-distributed spatial

directions, with three different temporal scales. As in

the prior work, we split each video into 2 × 2 spatial

sub-regions, and concatenated the SOE responses for each

sub-region for form a final feature.

Using these SOE features in a linear SVM classifier, the

baseline performance on the three splits of the YouTube

dataset described above are 57%, 48% and 60% respec-

tively. The relatively poor performance can be attributed

to the difficulty in generalizing motion over different sub-

regions, and the fact that these features were designed to

characterize regular motion textures, rather than particular

one-off dynamic events.

3. Statistical flow method

Without semantic information, the most telling cues for

the Arrow of Time in video data may well come from pat-

Figure 2. Construction of Flow-words features. Top: pair of

frames at times t− 1 and t+ 1, warped into the coordinate frame

of the intervening image. Left: vertical component of optical flow

between this pair of frames; lower copy shows the same with the

small SIFT-like descriptor grids overlaid. Right: expanded view

of the SIFT-like descriptors shown left. Not shown: horizontal

components of optical flow which are also required in constructing

the descriptors.

terns of motion. So can simply looking at the occurrences

of particular motion patterns across a time-sequence give us

clues to Time’s Arrow?

There are many other subtle physical reasons why the

forward and reverse time directions may look different on

average. Friction and damping will tend to have character-

istic effects on dynamic systems, and the reverse of these

sorts of processes – objects taking in small amounts of heat

energy from their surroundings in order to accelerate them-

selves – are far less likely to happen, so the way in which

objects move is very relevant.

We propose a method we call Flow-Words in order to

capture local regions of motion in a video so that we can

examine which types of motion exhibit temporal asymme-

tries that might be useful for detecting the Arrow of Time.

Flow-words are based on a SIFT-like descriptor of mo-

tion occurring in small patches of a video. We first register

the frames of a video in order to compensate for hand-shake

and intentional camera motion (panning and zooming etc.),

and then we assume that any residual motion is due to ob-

jects moving in the scene. Rather than computing a SIFT

based on image edge gradients, motion gradients from an

optical flow computation as substituted, giving a descriptor

which represents local histograms of image motion. An ex-

ample of the descriptors used to build these flow-words is

shown in Figure 2.

These object-motion descriptors are then vector-

quantized to form a discrete set of flow words, and a bag-of-

flow-word descriptor representing the entire video sequence

is thus computed. With sufficient forward and reverse-time

examples, a classifier can be trained to discriminate between

the two classes.

Implementation details. In a similar manner to [23],

computation starts from dense trajectories. However, in-

stead of only representing the histogram of optical flow over

a region, as in the HOF features of [10], we also represent

its spatial layout in a local patch in a manner similar to a

local SIFT descriptor.

In detail, frames were downsized to 983 pixels wide in a

bid to remove block-level artefacts and to provide a consis-

tent image size for the rest of the pipeline. Images at t − 1
and t+ 1 were registered to the image at time t, and an op-

tical flow computation carried out [2]. This was repeated

over the video sequence in a temporal sliding window, i.e.

giving T − 2 optical flow outputs for a sequence of length

T . These outputs take the form of motion images in the

horizontal and vertical directions. A normal VLFeat dense

SIFT descriptor [22] uses intensity gradient images in the

x- and y-directions internally in its computations, so to de-

scribe the flows instead of the image structure, we simply

operated on the vertical and horizontal motion images in-

stead of the intensity gradients. This yielded motion-patch

descriptors whose elements represented the magnitudes of

motion in various directions passing through the tth frame,

on a small 4× 4 grid (bin size 6 pixels) sampled once every

3 pixels in the horizontal and vertical directions.

We suppressed static trajectories, because we were only

interested in dynamic behaviour for this work. This was

achieved by setting the motion-gradient images to zero

where the image difference was below a threshold, and not

including motion-patch descriptors from such areas in fur-

ther processing. This excised large areas, as can be seen in

the constant background color in Figure 2.

Divergence operator for flow-words: In analyzing the

results, it will be useful to quantify the divergence or other

motion-field properties of a given flow-word descriptor. Us-

ing the divergence theorem, we make an approximation to

the integral of the divergence over a descriptor by consid-

Construction Pos Div Neg Div

Figure 3. Left: construction of the divergence operator by sum-

ming contributions along straight-edge segments of a square su-

perimposed on the flow-word grid. Centre & right: positive and

negative elements of the div operator, respectively.

ering the net outward and inward motion fluxes across a

square that joins the centers of the four corner cells on the

descriptor grid, assuming that motion at every point within

a grid cell is drawn independently from the histogram which

is represented at the centre of that cell. The resulting diver-

gence operator for flow-words is shown in the central and

right parts of figure 3, with the negative and positive flux

contributions separated for visualization.

3.1. Learning

A dictionary of 4000 words was learnt from a random

subset of the training data (O(107) examples) using K-

means clustering, and each descriptor was assigned to its

closest word. A video sequence was then described by a

normalized histogram of visual flow-words across the en-

tire time-span of the video. Performance was improved if

the square roots of the descriptor values were taken prior to

clustering, rather than the raw values themselves.

For each video in the training/validation set, we extracted

four descriptor histograms: (A): the native direction of the

video; (B): this video mirrored in the left-right direction;

(C): the original video time-flipped; and (D): the time-

flipped left-right-mirrored version. An SVM was trained

using four histograms A–D extracted from each video of a

training set, 280 (4 × 70) videos in total. Similarly, the 50

videos of the validation set generate 200 histograms A–D

in total, and each is classified with the trained SVM. For a

valid classification, A andB must have one sign, and C and

D another. We combine the SVM scores asA+B−C−D,

and this should give a positive score for forwards clips, a

negative score for backwards clips, and some chance to self-

correct if not all of the component scores are correct.

TheC parameter for the SVMwas chosen to be the value

that maximized the classification accuracy on the validation

set over all three train/test splits. Once this C parameter

was fixed, the whole set of 120 training videos, including

the previously-withheld validation set, was used to learn a

final SVM for each train/test split.

Testing proceeds in a similar manner to that used for the

validation set: the SVM scores for the four bag-of-flow-

word representations for each testing video are combined

as A + B − C − D, and the sign of the score gives the

video’s overall classification.

3.2. Experimental results

Training and testing were carried out according to the

procedure set out in 3.1. The three trained models were

used to classify the 60 videos in the three testing partitions,

and achieved accuracies of 90%, 77% and 75% for splits A

to C respectively.

Of the videos that were mis-classified, a few have lots of

individuals moving separately in the shot: groups of people

or animals, or a large number of small balls, which might

not be well-suited for the scale of feature we are using.

A further three were stop-motion films of seeds growing,

which tend to have jerkier motions than most normal videos.

Tests on the Tennis-ball dataset were run in a leave-one-

out manner, because of the small size of the dataset. The

model was trained on 12 videos (and their various flips),

and then tested on the withheld video, and all 13 possible ar-

rangements were run. The correct time direction was found

in 12/13 cases, i.e. over 90% accuracy.

3.3. Further analysis of Flow­words results

We can use the trained flow-words model to look at

which flow-words were particularly characteristic of for-

wards or backwards motion. This was achieved by taking

the SVM weights fixed using the training and set, and ap-

plying them to the descriptors for the test videos in their

native playing direction. The 10 words (0.25% of the

total vocabulary size) contributing most positively to the

scores for forwards-direction clips, or most negatively for

the backwards-direction clips, were recorded.

Figures 4 and 5 show flow-word results on two of the

test cases. Each of these figures is split into four parts: a

synopsis of the video motion, a plot showing where in the

video clip the 10 most informative flow-words for classi-

fication originated (out of 4000 possible flow-words from

this vocabulary), the most-informative frame marked with

all the instances of any of these 10 highly-weighted words,

and then finally the top four most informative flow-words

for the given video clip.

In Figure 4, the example comes from one of the videos

which was uploaded to YouTube after being time-reversed,

and the synopsis images show a boy emerging from a pool

with an inverse-splash. The motion of the water in this

splash is the strongest indicator in this clip that time is run-

ning in the backwards direction. In Figure 5, time runs in

the forwards direction as usual, and the synopsis shows a

steam train gradually approaching the camera. The gentle

upwards divergence, arising from the plume of steam from

the train, is a good indicator of Time’s Arrow, and interest-

ingly, the most-useful words for capturing this appear peri-

453505

0 20 40 60 80 100 120 140 160 180
0

200

400

frame number

#
w

o
rd

s
 i
n

 t
o

p
 0

.2
% Indicative word count

vid 38, frame 34

293 counts341 counts

887 counts1144 counts

Figure 4. Video from the test set, correctly classified as being back-

wards in time. The most informative point in the video is the few

frames around 34 (shown), where there is an inverse splash of wa-

ter. Red dots here mark the locations of all strongly-backwards

flow-words. This type of motion (shown in the four flow-word

grids) was learnt to be strongly indicative of a backwards time di-

rection.

odically in the video clip as the rhythm of the train’s motion

causes the fumes to billow in a regular way.

Overall, there is a very slight tendency for flow-words

describing forwards-time videos to have a higher diver-

gence score than those describing backwards videos. Cor-

relations scores between model weight and flow-word di-

vergence are small but consistent, with models learnt on the

three splits having correlation coefficients of 0.329, 0.033
and 0.038 respectively.

4. Motion-causation method

The flow-words motion above considered how we could

examine simple motion patterns, but not how those patterns

related to one another. To explore motion relations, we now

sketch a method that considers motions causing other mo-

tions. Our starting hypothesis is that it is far more common

for one motion to cause multiple motions than for multi-

ple motions to collapse into one consistent motion. For in-

stance, the cue ball during a snooker break-off hits the pack

of red balls and scatters them, but in a reverse-time direc-

tion, it is statistically highly unlikely that the initial condi-

tions of the red balls (position, velocity, spin etc) can be set

up exactly right, so that they come together, stop perfectly,

and shoot the cue ball back towards the cue.

To exploit this observation, we simply look at regions in

230125020

0 50 100 150 200
0

50

100

frame number

#
w

o
rd

s
 i
n

 t
o

p
 0

.2
% Indicative word count

vid 195, frame 224

1893 counts1487 counts

1363 counts3640 counts

Figure 5. Video from the test set, correctly classified as being for-

wards in time. The most informative forwards-time words refer to

the motion of the billowing steam, and occur periodically as the

steam train puffs. Red dots marked on frame 224 show the loca-

tions of the most-forwards 10 flow-words in this frame.

frame 104

motion regions 103−104

frame 114

motion regions 113−114

frame 134

motion regions 133−134

Figure 6. Three frames from one of the Tennis-ball dataset se-

quences, in which a ball is rolled into a stack of static balls. Bot-

tom row: regions of motion, identified using only the frames at t

and t−1. Notice that the two rolling balls are identified as separate

regions of motion, and colored separately in the bottom right-most

plot. The fact that one rolling ball (first frame) causes two balls

to end up rolling (last frame) is what the motion-causation method

aims to detect and use.

the video from frame to frame where differences are appear-

ing, which we assume are due to object motion. Smoothed

regions of motion in one frame are compared to similar re-

gions in the previous frame. These motion regions are illus-

trated in Figure 6. Broadly speaking, we expect more oc-

currences of one region splitting in two than of two regions

joining to become one, in the forwards-time direction.

Implementation outline: We warp the image at t + 1
It+1 into the frame of It, using pixels from It to fill any

regions not present in It+1. This yields a warped image

W t+1. The difference |(It −W t+1)| now highlights mov-

ing areas. A smooth-edged binary mask of image motion is

made by summing this difference over color channels, re-

sizing down to 400 pixels, convolving with a disk function

and then thresholding. The different regions in the motion

mask are enumerated. Where one or more regions at time t

intersect more than one region each at time t − 1, a viola-
tion is counted for that frame pair, since this implies motion

merging. We count the violations for each time direction

of a sequence separately, with a variety of parameter set-

tings. We used three different threshold-radius pairs: radii

of 5, 6.6 and 8.7 pixels, and corresponding thresholds of

0.1, 0.01 and 0.056, where image intensities lie between 0

and 1. Finally, we trained a standard linear SVM using the

violation counts as 6d features (two time-directions; three

parameterizations).

Experimental results: Results on splits A to C were

70%, 73% and 73% respectively. This is weaker than the

flow-words method, and performance drops to just below

60% overall if only the first radius-threshold pair is used

(i.e. a 2d decision space instead of 6d).

While the accuracy of the motion-causation approach is

weaker, it is at the same time computationally much simpler

and quicker to compute than the flow-words method. There

is also the chance that it may complement the capabilities of

the flow-words method well, because the motion-causation

considers spatial location of motion, and comparison of mo-

tion between neighboring frames, whereas the flow-words

method at present considers only snapshots of motion for

each frame separately. Of the 50 videos that this system

mis-classified, only 10 overlapped with the mis-classified

set from the flow-words method.

On the Tennis-ball dataset, the motion-causation method

also achieved 12/13 correct classifications; the mis-

classified sequence was different to that mis-classified by

the flow-words method.

5. AR method

Researchers have recently studied the question of mea-

suring the direction of time as a special case of the problem

of inferring causal direction in cause-effect models. Peters

et al. [12] showed that, for non-Gaussian additive noise and

dynamics obeying a linear ARMA (auto-regressive moving

average) model, the noise added at some point of time is in-

dependent of the past values of the time series, but not of the

future values. This allows us to determine the direction of

time by independence testing, and Peters et al. [12] used it

to successfully analyze the direction of time for EEG data.

Intuitively, this insight formalizes our intuition that changes

(noise) added to a process at some point of time influences

the future, but not the past.

Here we consider the special case of AR models (i.e. no

moving average part); however, we deal with vector-valued

0 50 100 150 200
−1

−0.5

0

0.5

Frame

forward velocity

foward noise

0 50 100 150 200
−0.5

0

0.5

1

Frame

backward velocity

backward noise

Figure 7. Overview of the AR method. Top: tracked points from a

sequence, and an example track. Bottom: Forward-time (left) and

backward-time (right) vertical trajectory components, and the cor-

responding model residuals. Trajectories should be independent

from model residuals (noise) in the forward-time direction only.

For the example track shown, p-values for the forward and back-

ward directions are 0.5237 and 0.0159 respectively, indicating that

forwards time is more likely.

time series, which strictly speaking goes beyond the validity

of the theoretical analysis of Peters et al. [12]. We found

that an order of two worked well in our setting. In a nutshell,

we model the time series’ next value as a linear function of

the past two values plus additive independent noise.

The assumption that some image motions will be mod-

eled as AR models with additive non-Gaussian noise leads

to a simple algorithm for measuring the direction of time in

a video: track the velocities of moving points, fit those ve-

locities with an ARmodel and perform an independence test

between the velocities and model residuals (errors). This

process is illustrated in Figure 7.

The independence testing follows the work of [12], and

is based on an estimate of the Hilbert-Schmidt norm of the

cross-covariance operator between two reproducing kernel

Hilbert spaces associated with the two variables whose in-

dependence we are testing. The norm provides us with a

test statistic, and this in turn allows us to estimate a p-value

for the null hypothesis of independence. If the p-value is

small, the observed value of the norm is very unlikely under

the null hypothesis and the latter should be rejected. Ideally,

we would hope that the p-value should be small in the back-

ward direction, and large (i.e. significantly bigger than 0) in

the forward direction.

Implementation outline: We analyze the motion of a set

of feature points extracted by KLT trackers [11, 20], running

tracking in both forward and backward directions. For each

tracked point, velocities are extracted, and a 2D AR model

is fitted. We then test the independence between the noise

and velocity to determine Time’s Arrow at the trajectory

level.

Inferring causal direction of AR process is only possible

when the noise is non-Gaussian, and when noise in only one

p−value min gap

m
in

 #
 o

f
v
a
lid

 t
ra

j.

0 0.1 0.2 0.3 0.4 0.5

10

20

30

0.4

0.6

0.8

p−value min gap

m
in

 #
 o

f
v
a
lid

 t
ra

j.

0 0.1 0.2 0.3 0.4 0.5

10

20

30

20
40
60
80
100
120
140

Figure 8. Left: Accuracy of AR model classifications over the 2D

parameter space. Right: number of videos accepted. The AR

model is particularly effective for small numbers of videos; as we

force it to classify more, the performance falls to near chance level.

temporal direction is independent. We define a valid tra-

jectory to be one which spans at least 50 frames, for which

noise in at least one direction is non-Gaussian as determined

by a normality test, and for which the p-value test in one

time-direction gives p < 0.05 whereas in the other it gives

p > 0.05 + δ for some minimal gap δ (i.e. exactly one di-

rection fails the null hypothesis test).

All valid trajectories are classified as forward or back-

ward according to their p-value scores. Ideally, all valid

trajectories for one video should imply the same direction

of time, but in practice, tracking can be noisy in a way that

violates the time-series model assumption. For this, we re-

ject the videos with fewer than N valid trajectories, where

N ≥ 1. We classify the accepted videos by a majority vote

among the valid trajectories. We thus get a binary classi-

fier (with the possibility of rejection) at video level. While

hypothesis testing is used to classify single trajectories, the

overall procedure is not a hypothesis test, and thus issues

of multiple testing do not arise. The hypothesis testing

based trajectory classifiers can be seen as weak classifiers

for video and the voting makes a strong classifier.

Experimental results: The desirability of using a large

gap δ in the p-value test, and requiring many valid tra-

jectories per video must be traded off against the need

not to reject excessively many videos. For large values

(δ,N) = (0.24, 13), only 5 videos are accepted, but 4

are classified correctly (80%). For lower parameter values,

(δ,N) = (0.15, 4), 101 videos are accepted, of which 58

are correctly classified (58%). Figure 8 shows more of this

trade-off of between accuracy and number of videos classi-

fied.

6. Discussion

We have addressed a new and very fundamental prob-

lem of telling which direction time is flowing in a video,

and presented three complementary methods for determin-

ing this direction. Our results indicate that the statistics of

natural videos are not symmetric under time reversal: for if

they were, then for each video, there would be an equally

likely video where time is reversed, so there would be no

way to solve the classification problem better than chance

(assuming our training sample is unbiased / representative

of the prior).

Of course, each method can be improved. For exam-

ple, the flow word method performed well above chance on

this video set, but its performance can doubtlessly be im-

proved by extensions to use multi-resolution in both space

and time. State of the art features developed for other tasks

with a temporal dimension, such as actions and activity

recognition, could also be employed [8, 23].

The causality method captures an essential aspect of go-

ing forward in time, and can be extended to longer temporal

intervals – for example to capture events that are causal but

delayed, e.g. a tree branch oscillating some time after a per-

son has brushed past it.

Similarly, the AR method as applied in our experiments

is based on rather specific assumptions (2nd order linear AR

model with independent non-Gaussian noise). If these as-

sumptions hold true for a given video, we can expect a large

p-value in the forward direction and a small one backward,

and thus a big difference in p-values. This case turns out

to be rare in our videos, but if it occurs, the method works

rather well. If not, then both p-values should be small, and

their difference is also small. Our method will reject such

cases – rightly so, for if it is forced to decide these cases,

then we find performance to be almost at chance level.

More generally, we have deliberately concentrated on

low-level statistics in this work, but priors and classifiers

can also be developed for high-level semantic information

(like the fact that animals move head-forwards) to comple-

ment the low-level analysis.

Acknowledgements. This work was supported in the UK

by ERC grant VisRec no. 228180, in China by 973 Pro-

gram (2013CB329503), NSFC Grant no. 91120301, and in

the US by ONR MURI grant N00014-09-1-1051 and NSF

CGV-1111415.

References

[1] C. Ballester, V. Caselles, J. Verdera, M. Bertalmo, and

G. Sapiro. A variational model for filling-in gray level and

color images. In ICCV, 2001. 2

[2] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In ECCV. Springer-Verlag, 2004. 4

[3] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a

compact image code. IEEE Trans. Comput., 31(4), 1983. 1

[4] T. Dekel Basha, Y. Moses, and S. Avidan. Photo sequencing.

In ECCV, 2012. 2

[5] K. G. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes.

Dynamic scene understanding: The role of orientation fea-

tures in space and time in scene classification. In CVPR,

2012. 3

[6] D. J. Field. Wavelets, vision and the statistics of natural

scenes. Phil. Trans. R. Soc. Lond. A, 357, 1999. 2

[7] J. Fiser and R. N. Aslin. Statistical learning of higher-order

temporal structure from visual shape sequences. Journal of

Experimental Psychology: Learning, Memory, and Cogni-

tion, 28(3), 2002. 2

[8] A. Gaidon, Z. Harchaoui, and C. Schmid. Temporal Local-

ization of Actions with Actoms. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 35(11), Mar. 2013.

8

[9] R. Kemp, G. Pike, P. White, and A. Musselman. Perception

and recognition of normal and negative faces: the role of

shape from shading and pigmentation cues. Perception, 25,

1996. 1

[10] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld.

Learning realistic human actions from movies. In CVPR,

2008. 4

[11] B. D. Lucas and T. Kanade. An iterative image registration

technique with an application to stereo vision. In IJCAI, vol-

ume 81, 1981. 7

[12] J. Peters, D. Janzing, A. Gretton, and B. Schölkopf. Detect-

ing the direction of causal time series. In ICML. ACM Press,

2009. 6, 7

[13] J. Portilla and E. P. Simoncelli. A parametric texture model

based on joint statistics of complex wavelet coefficients.

IJCV, 40, 2000. 2

[14] H. Price. Time’s Arrow and Archimedes’ Point: New Direc-

tions for the Physics of Time. Oxford University Press, 2007.

1

[15] V. S. Ramachandran. The Perceptual World, chapter Perceiv-

ing shape from shading. W. H. Freeman, 1990. 1

[16] H. Reichenbach. The Direction of Time. Dover Books on

Physics, 1971. 1

[17] S. Roth and M. J. Black. Fields of experts: A framework for

learning image priors. In CVPR, 2005. 2

[18] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang,

and J. Mooij. On causal and anticausal learning. In ICML,

New York, NY, USA, 2012. Omnipress. 2

[19] J. H. Searcy and J. C. Bartlett. Inversion and processing of

component and spatial-relational information of faces. Jour-

nal of Experimental Psychology: Human Perception and

Performance, 22, 1996. 1

[20] C. Tomasi and T. Kanade. Detection and tracking of point

features. Technical Report CMU-CS-91-132, School of

Computer Science, Carnegie Mellon University, 1991. 7

[21] P. Tuisku, T. K. Pernu, and A. Annila. In the light of time.

Proc. R. Soc. A, (465), 2009. 2

[22] A. Vedaldi and B. Fulkerson. VLFeat - an open and portable

library of computer vision algorithms. In ACM International

Conference on Multimedia, 2010. 4

[23] H. Wang, A. Kläser, C. Schmid, and C. Liu. Action Recog-

nition by Dense Trajectories. In CVPR, 2011. 4, 8

[24] Y. Wexler, E. Shechtman, and M. Irani. Space-time video

completion. In CVPR, 2004. 2

[25] D. Zoran and Y. Weiss. From learning models of natural

image patches to whole image restoration. In ICCV, 2011. 2

