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1 Abstract

In low-level vision, the representation of scene properties such as shape, albedo, etc., are very high dimensional as they have
to describe complicated structures. The approach proposed here is to let the image itself bear as much of the representational
burden as possible. In many situations, scene and image are closely related and it is possible to find a functional relationship
between them. The scene information can be represented in reference to the image where the functional specifies how to
translate the image into the associated scene. We illustrate the use of this representation for encoding shape information.
We show how this representation has appealing properties such as locality and slow variation across space and scale. These
properties provide a way of improving shape estimates coming from other sources of information like stereo. 1

1This work was supported in part by a grant from NTT.
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1. Introduction
The visual world offers a tremendous amount of data that
the human visual sytem processes quickly and continuously.
People can quickly infer low-level scene properties such
as shape, motion, lightness and occlusion boundaries. We
would like to design machines to do similar processing. The
scene quantities can be very high dimensional, driven by the
rich complexity of the visual world. Such high-dimensional
quantities can be difficult to estimate quickly. We pro-
pose not to estimate directly the high-dimensional scenes
of interest, but instead to estimate a low-dimensional func-
tion that transforms the incoming image data into the scene
quantities of interest. For the examples considered in this
paper, we study simple formulas to convert image data into
shape data; we call these shape recipes.

The shape recipes are not general purpose shape-from-
shading algorithms: they are faster and weaker. They need
to be suitable for online conversion of image data into
shape, and therefore they need to be very fast to compute,
and only require a local neighborhood of image data as in-
put1. This approach to shape estimation separates the com-
plexity of the shape to be estimated into two parts, (a) that
described by the image data itself, and (b) that described
by the shape recipes, which operate on the image to pro-
duce shape. Since we know the image and don’t need to
estimate it, this separation lets us focus our resources on
the lower-dimensional problem of finding the shape recipes.
The recipes implicitly encode local lighting and material
properties that apply over a given region of a given image.

The low-dimensional shape recipe should be easier to es-
timate and store than a conventional 3-d shape estimate. It
may change slowly over time, even though the image infor-
mation itself may be changing quite quickly with time. The
shape recipe may also change slowly over spatial scale, a
point we discuss below and exploit for shape estimation.

Gilchrist [5] and Adelson [1] have proposed the notion
of local “atmospheres” to describe simple formulas which
transform from the image intensity domain to the perceived
lightness domain. In the context of scene recipes, we would
call those formulas “lightness recipes”. Our learning-based
approach relates to Leung and Malik’s learning 3-d textons
[6], and builds on Pentland’s linear shading work [8].

In our first report about shape recipes [9], we described
linear shape recipes, using a different multi-scale represen-
tation. In this paper, we present a range of shape recipes,
and show applications. First, we show a simple example of
a shape recipe. Then we discuss how to achieve the locality
property of shape recipes. In Section 2, we build up a reper-
toire of shape recipes, from linear, to non-linear, to color. In
Section 4, we discuss where these methods break down. We
then show their application for improving shape estimates:
we use an initial low-resolution shape estimate to learn a
shape recipe, then use those learned recipes to improve the
shape estimate (by applying the recipe at high-resolution).
We show methods for applying these methods in practice:

1In order to meet the locality requirement, we will only compute esti-
mates of bandpassed shape.

(a) Image (b) Stereo shape (c) Stereo Shape (surface plot)

(d) Image
Gaussian Pyramid

(e) Shape
steerable pyramid

(f) Recipes (g) Relighting
from recipes

(h) Shape from recipes
(surface plot)

Figure 1: Example of shape recipes and its use in represent-
ing and improving shape estimates. (c) shows the shape es-
timate by a stereo algorithm. (h) shows the shape improved
by the shape recipes (f). The new shape allows relighting
(g) the original image (a).

dealing with paint and occlusion.

2 Shape recipe algorithms

Figure 1 shows an example of a shape recipe. (a) is an
image, one of a stereo pair. Using a downloadable stereo
algorithm [14], we computed a range map, (b), from the
stereo pair. From our experience, we expect that the stereo
shape will be accurate at the low spatial frequencies, but in-
accurate at the high frequencies. Using linear regression,
we learn a convolution kernel that, when applied to the
low-resolution image data, yields the low-resolution stereo
bandpass filtered data (the coefficients of a steerable pyra-
mid [11]). These kernels are the shape recipies, instructions
for how to transform image data into bandpassed shape
data that applies for this particular material under these par-
ticular lighting conditions. In general, shape recipes vary
slowly across scale (Sect. 3.1). We can improve the shape
reconstruction of the stereo by learning the shape recipes
at a low-resolution, assuming the recipes are constant over
scale, and applying the learned recipes at the high resolu-
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(a) Image (b) Shape

(c) Image gaussian
pyramid

(d) Shape steerable
pyramid

Figure 2: The dependency of the shape (b) with respect to
the image (a) is non-local. When decomposing the shape in
a bandpass pyramide (d), local shape variations are related
to local image properties at each scale (c).

tion pyramid levels to reconstruct improved high resolution
shape estimates, shown in Figure 1 (h). Note the improve-
ment over the initial shape estimate from stereo.

2.1 Bandpass shapes and local recipes

The linear shading [8] approximation holds well for Lam-
bertian surfaces under oblique illumination, or for extended
light sources. These conditions are simple to analyze math-
ematically, yet provide insight to more general problems.

Under linear shading, the relationship between image, i,
and shape is given by: i � 1 + l1p + l2q where, p = dz/dx
and q = dz/dy and z is the range data. Without taking spe-
cial care, the relationship between shape and image cannot
be a local one. This is illustrated in Fig. 2. Fig. 2 (a) shows
the image obtained by rendering the shape of Fig. 2 (b).
When inferring the shape from the image, the shape values
depend on non-local image values: the same local image
intensities can give very different shape values, a function
of image data far away. However, it is possible to have a
local relationship between local image data and a bandpass
version of the shape. In 1D, a bandpass filtered shape is ob-
tained as zb = z ∗ b where b is a compact wavelet of zero
mean. Therefore, zb = (

∫
i dx) ∗ b = i ∗ (

∫
b dx) = i ∗ rb,

with rb =
∫

b dx. Bandpass shape can be obtained by ap-
plying a local linear filter to the image, rb. As shown in
Fig. 2 (c-d), local image variations are in correspondence
with local bandpass shape variations at different scales.
Here, the 2D image is decomposed with a gaussian pyra-
mid and the shape with a steerable pyramid [11].

Under some non-generic conditions, even under the ap-
proximation of linear shading, we can encounter shape
changes that do not produce contrast changes in the image
[4], leading to non-local shape recipes. We treat such spe-

cial cases in Section 5.2.

2.2. Linear recipes
The simplest shape recipe is a linear filter. In 2D, for each
scale k and each orientation n, the shape subband zk,n can
be estimated by linear filtering:

ẑk,n = ik ∗ rk,n (1)

where ẑk,n is the approximation of the shape subband zk,n,
ik is the k band of the gaussian pyramid [2] of the image and
rk,n is the local regression kernel. These regression ker-
nels are shape recipes, local formulas that specify how to
translate image information into each shape subband. We
can represent the shape in reference to the image by en-
coding the recipes rk,n together with the image. This pro-
vides a compact way of encoding all the complexities of the
shape variations by letting the image itself describe the var-
ious details of the shape. Assuming that shape and image
are available, then the recipes are obtained by minimizing∑

x(zk,n− ẑk,n)2. We discuss later how to learn the recipes
when only a coarse approximation of the shape is available
(for instance, given by a stereo algorithm).

2.3. Non-linear recipes
Linear shape recipes can represent a surprisingly large
range of illuminations and material properties. However,
under more general conditions, for instance in presence of
strong specularities, we need to introduce a non-linear re-
lationship between local image data and the local shape
subbands. More general shape recipes than the linear ones
can be obtained by using Volterra filters [7]. For instance,
a second order Volterra filter can be written as ẑk,n =∑

m,l rk,n(m, l)ik(x + m)ik(x + l), but this approxima-
tion results in a large number of parameters that need to be
learned. We propose to use a simpler non-linear model, ap-
plying first a point-wise non-linearity to the image and then
a linear kernel:

ẑk,n = fk,n(ik;wk,n)∗rk,n =

(∑
m

wk,n,mfm(ik)

)
∗rk,n

(2)
where the non-linearity for each shape subband is parame-
terized by wk,n. The non-linear function is obtained by a
linear combination of a basis of functions. We use here the
functions fm(x) = xm with m = 0, ...,M . Eq. (1) and (2)
are special cases of the Volterra filter.

In order to learn the recipes from image and shape data,
we can rewrite ẑk,n as a bilinear equation: ẑk,n(x) =
wT

k,nFxrk,n. We want the recipes (parameters of the
non-linearity and linear kernel) that minimize

∑
x(zk,n −

wT
k,nFxrk,n)2. The minimization is done by iteratively

solving linear equations for each of the two variables of the
bilinear form, until the error does not decrease. Fig. 3 show
the results of the iterations for real image data. The object
has a strong specular component. The iteration begins with
a linear recipe (c). Fig. 3 (g) shows the desired shape sub-
band (after removing occlusion edges, see Sect. 5.2). With
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(a) (b)

(c) (d) (e) (f) (g) (h)

fk(ik)

ik

Non-linearity: fk,n

Linear kernel: rk,n

Figure 3: Learning the non-linear shape recipes for one sub-
band. (a) and (b) are the image and shape at one scale. The
object has some specular reflections. Figures (c) to (f) show
the results at iterations 1, 2, 4 and 8. Figure (g) shows the
desired output. Occlusion edges (black pixels in (h)) in the
shape have been removed from the shape data (b) to give
(g), as they cannot be inferred from the image in this case.
The shape was obtained from a laser scan of the object.

subsequent iterations, the function fk,n becomes a compres-
sive non-linearity in order to reduce the effect of the specu-
lar reflection (top of the images).

To test the range of illumination and material conditions
that can be represented using these simple models, we use
synthetic shapes rendered using a simplified Phong model
in which image intensity corresponds to i = R(lT n)α with
n = (1, p, q)/

√
1 + p2 + q2, l = (cos θ, sin θ, 0), and

R(x) = x for x > 0 and R(x) = 0 for x < 0. Fig. 4
shows spheres rendered under this model. The angle θ con-
trols the elevation of the light source, from lateral (in which
a large part of the surface is not illuminated) to frontal illu-
mination. The parameter α controls the specularity of the
material. This simplified Phong model, in which only the
specular component is included, enhances the effects of the
non-linearities and provides a worst-case scenario for test-
ing the recipes. Fig. 4 shows the region of the rendering
space for which linear (dashed line) and non-linear recipes
(solid line) can represent at least 75% of the energy of the
shape contained in the pyramid subbands. Despite these re-
strictions, the range of renderable conditions is large.

2.4. Shape recipes for color images
The use of color provides additional information to remove
non-linear effects in the relationship between image and
shape. Including color, the Phong model of a material can
be written as:

i(R,G,B) = L[Ka + Kd(lT n) + Ks(hT n)α] (3)

where, L is a 3x3 diagonal matrix. The elements of the di-
agonal represent the chromaticity of the illumination. The
vectors Ka, Kd and Ks are the ambient, diffuse and spec-
ular chromatic reflectance of the surface.
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Figure 4: The figure illustrates the range of illumination di-
rections and specularities that allow representing more than
75% of the energy of the shape using the linear (dashed line)
and non-linear (solid line) recipes. The meaning of each lo-
cation in the parameter space is illustrated by an image of a
hemisphere rendered under those material and lighting con-
ditions.

If the specular and diffuse components have different
chromaticities, then by properly combining the three color
channels of the image, we can cancel the non-linear effect
of the specular component. Therefore, we can build shape
recipes as:

zk,n = (ak,nRk + bk,nGk + ck,nBk) ∗ rk,n (4)

when the recipe parameters vector (a, b, c)k,n is orthogonal
to the vector LKs the relation between shape and the com-
bination of image color channels becomes linear. In such a
situation, the color recipes have the same performances as
the non-linear recipes for representing the shape.

If the diffuse component is zero or if there is no dif-
ference in chromaticity between diffuse and specular com-
ponents, then we need to use the non-linear recipes pro-
posed in the precedent section. For learning the color shape
recipes we can use the same technique as with the non-
linear recipes by writing again the relation between shape
subband and image using the bilinear equation.

3. Regularities of shape recipes

Until now we have assumed that both shape and image were
available and we have studied the material and illumination
conditions that can be represented using the shape recipes
proposed here. But in general, shape will not be available.
We argue here that shape recipes have very appealing prop-
erties that make them interesting for estimation. We illus-
trate this in the next section in which we show how the use
of shape recipes allows improving poor shape estimates that
come from sources of information as stereo.
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(a) R(p,q) (b) R(p,q)

(c) Shape (d) Image (e) Image

Figure 5: Examples of illumination maps that cannot be
represented by the recipes proposed here. The images (d)
and (e) are produced by rendering the shape (c) using the
R(p, q) maps shown in (a) and (b). (a) corresponds to
frontal illumination of a lambertian material. (b) corre-
sponds to a complex illumination for a mirror like mate-
rial. The recipes can account for 25% of the energy of the
bandpass shape with frontal illumination. In (b), despite the
complexity, the recipes still can represent 60% of the energy
of the subbands of the shape.

3.1. Scale invariance of shape recipes
In the 1D linear lambertian case, i = dz/dx. At the scale
k, where ik and zk are the image and shape subsampled by
a factor of 2k, we have ik = 2−kd(zk)/dx (assuming that
there is no alliasing when subsampling the signals). Then,
the output of a shape subband is obtained by filtering the
subsampled shape zk with a wavelet b: zk,b = zk ∗ b,
where b is a compact kernel of zero mean. Therefore,
zk,b = (

∫
2kik dx) ∗ b = ik ∗ (2k

∫
b dx) = ik ∗ rk where

the recipes are rk = 2k
∫

b dx. The recipes are also compact
with a support equal or smaller that the one of the kernel b.
They are constant across scale with only an amplitude fac-
tor. Therefore, in this case, we only need to store the shape
recipes computed at one level of the pyramid and then prop-
agate the kernel, with the amplitude factor, to recover the
shape at the other resolutions. This is interesting because,
in general, stereo shape estimates provide a good approxi-
mation to the shape at low spatial frequencies but it is noisy
at the high spatial frequencies [3].

We expect that under more general illumination and ma-
terial conditions than the lambertian or Phong model, the
shape recipes will vary slowly across scales.

3.2. Constant across space
Even when a shape may have complex variations like the
cloth example in fig. 1 (a), the relationship between im-
age and shape remains constant across large image re-
gions. This is interesting because it allows to learn the
recipes in a region of the image were shape is known ac-
curately and then use them to recover shape information

(a) Image (b) Real shape (c) Shape from stereo

(d) Recipes (e) Shape from
recipes

(f) Re-illuminating
recipes

(g) Re-illuminating
recipes

(h) Re-illuminating
the stereo

(i) Re-illuminating
real shape

Figure 6: Experiments with a synthetic shape. Stereo has
an error of 9% of the energy of the real shape. Using the
recipes the error goes down to 1.5%. When rendering the
stereo estimate, it produces a very poor image (h) compared
to the recipes (g).

in regions were shape is poorly known. Within each sub-
band, we can write the shape zk as a mixture of recipes:
ẑk =

∑N
n=1 wn fk,n(ik). The weights wn, which will be

a function of location, will specify which recipe has to be
used within each region and, therefore, will provide a seg-
mentation of the image [9].

4. Limitations of shape recipes

There are situations in which shape recipes breakdown. In
the case of frontal illumination (fig. 5.a), the image is given
by i � 1/

√
1 + p2 + q2. Both concavities and convexities

produce the same image. The recipes proposed here cannot
solve this ambiguity. In the example shown in fig. 5 (d), the
recipes can only represent 25% of the energy of the pyramid
subbands of the shape (c). This is also illustrated in fig. 4 in
which is shown that both linear and non-linear fail to repre-
sent the shape in reference to the image for materials under
frontal illumination.

The lambertian and Phong models are particular cases
of illumination and material models. In general, the image
may be a complex function of the shape derivatives p, and q.
For instance, fig. 5 (b) shows a complex reflectance map and
the image (e) produced by rendering the shape (c) under that
map. The resulting image looks like a mirror like material
under a complex pattern of illumination.
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(a) Image (b) Stereo shape (c) Recipes

(d) Stereo Shape
(surface plot)

(e) Shape from recipes
(surface plot)

(f) Re-illuminating
stereo from right

(g) Re-illuminating
recipes from right

(h) Re-illuminating
recipes from above

Figure 7: Example of real image and the improvement in
the shape estimate using the shape recipes. (a) shows one
image of the stereo pair and (b) shows the shape obtained
by the stereo algorithm. (c) shows the recipes leant at the
lowest resolution of the pyramids.

5. Application: improving shape esti-
mates

In this section we discuss the application of shape recipes to
improve shape estimates. We focus on stereo estimates but
the same technique could be applied to other sources like
the visual hull.

5.1. Experiments with stereo
We generated a synthetic shape as a fractal surface (fig.
6 (b)). From the shape we generated a stereo pair of im-
ages rendered using a lambertian function. Fig. 6 (a) shows
the left image of the stereo pair. First we run the stereo algo-
rithm by Zitnick and Kanade [14] to have an estimate of the
shape (c). The shape (c) has the overall correct structure at
low spatial frequencies but appears noisy at the high spatial
frequencies (the error was of 9% of the energy of the shape).
We learnt the recipes by decomposing the image and the
shape using a gaussian and a steerable pyramid respectively
with 4 scales. We learnt the recipes at the lowest resolution
(we used linear recipes, with a kernel size of 9x9 pixels).
By applying the scale invariance of the recipes, we apply
the same recipes at the levels of the pyramid with higher

resolution for which the shape information was noisy. A
new shape is obtained by collapsing the new shape steer-
able pyramid. The obtained shape is shown in fig. 6 (e).
The new shape reduced significantly the error in the shape
estimation to 1.5%.

Fig. 6 (f) shows the image produced by rendering the
estimated shape (e) using the same lighting conditions than
in (a). The resulting image looks very close to the original
one. Figs. 6 (g), h and i show the shape illuminated from
a direction different than the one used for the training. The
stereo shape provides a very poor rendering.

Figures 1, 7 and 10 show examples of real surfaces and
the shapes obtained by applying the shape recipes in order
to improve the stereo estimates.

5.2. Occlusions
When learning the relationship between image and shape,
special attention has to be paid to occlusions and paint
boundaries. Not all image and shape variations are directly
related. For instance, an image can be decomposed into
paint and shade variations [12]. Shade variations are di-
rectly produced by the shape, however, the paint will be
related to changes in the reflectance function of the material
and not directly related to the shape. In the same vein, the
shape can be decomposed into undulations that will gener-
ate image variations (due to lighting) and occlusions with
may or not render into the image (consider the extreme case
of a random dot stereogram in which the shape boundary
does not produce an edge in the image). Shape recipes, as
presented here, learn the relationship between undulations
in the shape and the shade image.

Although edges in the image and the location of edges
in the shape are not independent (occlusion correlate with
changes of material and therefore with changes in paint),
some occlusion boundaries may not render in the image.
For instance, some of the occlusions in fig 10 (b) or in fig
11 do not produce sharp discontinuities in the image. In
such cases, shape recipes will tend to provide smooth shape
variations were an occlusion edge is expected. This dif-
ficulty can be circumvented by encoding occlusion edges
by a separate mechanism. In this section, we propose a
statistical framework for combining the shape given by the
recipes with the occlusion edges detected by a stereo algo-
rithm [14].

Within a shape subband, considering that stereo sk and
image intensity ik are conditionally independent with re-
spect to the real shape zk, we can write:

p(sk, ik|zk) � p(sk|zk)p(ik|zk) (5)

sk, zk and ik refer to the outputs of the subband k.
The distributions p(sk|zk) and p(ik|zk) will depend on

the noise models for the depth from stereo and for the shape
recipes respectively. Assuming that the stereo algorithm
is able to correctly detect most of the occlusion edges, we
model the error as having a gaussian distribution:

p(sk|zk) = ps(zk − sk) =
e−|zk−sk|2/σ2

s

(2π)1/2σs
(6)

7



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Distribution of the error before (d) and after (h)
removing occlusion edges for one of the subbands of the
shape shown in fig 10. The distributions are plot on a semi-
logarithmic axis. Superimposed with the error distribution
is shown the best gaussian fit.
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Figure 9: Least square estimate for the shape subband zk

given both stereo sk and shape recipes fk(ik). The graph
(a) shows the final shape estimate as a function of the shape
estimated by stereo. When the sk is close to the value
given by the recipes fk(ik), then, the final shape zk does
not vary with variations in the stereo estimation. The graph
(b) shows zk as a function of fk(ik) for a fix value of sk.
zk is equal to fk(ik) only when both recipes and stereo give
similar estimations.

However, this model of noise is not appropriate for the
shape estimated by the shape recipes. Fig. 8 (d) shows the
distribution of the difference between the shape subband
estimated by the recipes (c) and the shape estimated from
stereo (b). The shape recipe fails to represent some of the
edges. As the subband shown correspond to low spatial res-
olution we assume that zk � sk. The distribution of the
error sk − fk(ik) is better fit by a Laplacian distribution:

p(ik|zk) = p(zk − fk(ik)) =
e−|zk−fk(ik)|λ/σλ

i

2σi/λΓ(1/λ)
(7)

with λ � 1. Fig 8.b shows the shape subband given by
stereo and 8.c the subband estimated by the linear recipe
(8.a).

The least square estimate for the shape subband zk given
both stereo and image data, is: ẑk =

∫
zkp(zk|sk, ik) dzk.

When λ = 2, then the LSE estimation is a weighted lin-
ear combination of the shape from stereo and shape recipes.

(b) Stereo shape

(c) Shape from recipes (d) Recipes and occlusions

(a) Image

Figure 10: Direct application of shape recipe across occlu-
sion boundary misses the shape discontinuity. Stereo algo-
rithm catches that discontinuity, but misses other shape de-
tails. Probabilistic combination of the two shape estimates
captures the desirable details of both.

However, with λ � 1 this problem is similar to the one of
image denoising [10] providing a non-linear combination of
stereo and shape recipes (fig. 9).

Note that as suggested by the laplacian model of eq. (7)
the recipes should be learn by minimizing the sum of ab-
solute differences instead of a least square error. We use a
different procedure, we look for the recipes that minimize
the weighted least squares:∑

x

ux

(
zk,n − wT

k,nFxrk,n

)2
(8)

where ux are the weights. We set ux = 0 in the image
regions in which the error is large as it might contain an
occlusion edge and we set ux = 1 in the rest of the image.
Fig. 8 (f) shows the stereo shape sk with the regions with
large difference with fk(ik) suppressed. Fig 8 (g) shows
the shape estimated by the recipes fk(ik). Now the recipe
is trying to follow the variations responsible for the shade
image instead of being affected by the occlusions. The new
recipe (fig. 8 (e)) differs from fig. 8 (a). In fig. 8 (h) we
show that once the occlusion boundaries are removed, the
error follows more closely a gaussian distribution.

Figure 10 shows the final result when applying the same
procedure to all the subbands. The surface plot shows the
shapes estimated using only stereo (b), and using the shape
recipes (c) and both (d). The stereo captures the occlusion
boundaries but fails in estimating the shape of the details
in the image. On the other hand, shape recipes capture the
shape variations correlated with image details, but the oc-
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clusion boundaries are smoothed. The combination (d) has
the details captured by the recipes and the occlusion edges
captured by the stereo.

6. Conclusion
We introduced shape recipes, a method to represent scene
properties through local, fast operations on image data. The
shape and its rendered image can be very complex. We let
the image itself describe that complexity and focus on esti-
mating the transformation functions that convert image val-
ues into bandpassed shape. We call these functions shape
recipes.

Under conditions of low specularity, linear regression
fits well We can learn a low-order polynomial point-wise
non-linearity to apply to the image intensities for non-linear
shape recipies.

We showed, for the two approaches, the range of appli-
cability over a set of material and illumination conditions.
For backlit shapes or very specular materials, these models
are not appropriate. We generalized to color images.

The application we explored was to use shape recipes
to improve initial shape estimates gathered by other means.
The idea is to learn the shape recipes at a low-resolution
scale, where the initial shape estimates are accurate. We
then extrapolated the shape recipes across scale to form
high-resolution shape estimates from the high-resolution
image data and the shape recipes. In this way, we im-
proved the shape estimates derived from stereo and laser
rangefinder point range estimates.

Shape recipes may be useful for general shape estimation
algorithms: estimating the shape recipes may be easier than
estimating shape. The general approach may apply to the
estimation of other scene properties in addition to shape.
Then low-level vision becomes an image labelling task–
assigning the appropriate labels or transformation functions
(recipes) to apply to the different parts of the incoming vi-
sual stream.
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(a) image

(b) Shape data (c) Shape from recipes

(d) Non-linear shape recipes
(point non-linearity and

convolution kernel for each orientation)

Figure 11: The shape data (b) has been obtained from a laser scan of the object shown in (a). We use the shape recipes to add
details to the shape not captured in the original data. We use the non-linear recipes (d) due to the strong specularities.
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