
Rethinking Color Cameras

Ayan Chakrabarti

Harvard University

Cambridge, MA

ayanc@eecs.harvard.edu

William T. Freeman

Massachusetts Institute of Technology

Cambridge, MA

billf@mit.edu

Todd Zickler

Harvard University

Cambridge, MA

zickler@seas.harvard.edu

Abstract

Digital color cameras make sub-sampled measurements

of color at alternating pixel locations, and then “demo-

saick” these measurements to create full color images by

up-sampling. This allows traditional cameras with re-

stricted processing hardware to produce color images from

a single shot, but it requires blocking a majority of the in-

cident light and is prone to aliasing artifacts. In this paper,

we introduce a computational approach to color photogra-

phy, where the sampling pattern and reconstruction process

are co-designed to enhance sharpness and photographic

speed. The pattern is made predominantly panchromatic,

thus avoiding excessive loss of light and aliasing of high

spatial-frequency intensity variations. Color is sampled at

a very sparse set of locations and then propagated through-

out the image with guidance from the un-aliased luminance

channel. Experimental results show that this approach often

leads to significant reductions in noise and aliasing arti-

facts, especially in low-light conditions.

1. Introduction

The standard practice for one-shot digital color photog-

raphy is to include a color filter array in front of the sensor

that samples the three color channels in a dense alternat-

ing mosaic. The most common alternating mosaic is the

Bayer pattern [1] shown in the top of Fig. 1. Full color

images are then reconstructed from these samples through

an up-sampling process known as demosaicking. In general,

this approach is quite functional, and with support from ad-

vances in demosaicking algorithms [16], Bayer-like color

cameras have certainly stood the test of time.

By adopting this approach to color imaging, photogra-

phers have accepted the fact that color cameras are sub-

stantially slower and blurrier than grayscale cameras of

the same resolution. This is because any camera that is

Bayer-like—in the sense of densely sampling all three color

channels—is subject to two fundamental limitations. First,

since every color filter blocks roughly two-thirds of the inci-

Figure 1. A computational color camera. Top: Most digital color

cameras use the Bayer pattern (or something like it) to sub-sample

color alternatingly; and then they demosaick these samples to

create full-color images by up-sampling. Bottom: We propose

an alternative that samples color very sparsely and is otherwise

panchromatic. Full color images are reconstructed by filling

missed luminance values and propagating color with guidance

from the luminance channel. This approach is much more light-

efficient, and it reduces aliasing.

dent light, and since every element of the array is occupied

by a color filter, the color camera is roughly three times

slower than its grayscale counterpart. This inefficiency lim-

its the ability to trade-off noise, exposure time and aperture

size; and improving it would enable color cameras that are

more compact, have larger depth of field, support higher

frame rates, and capture higher-quality indoor images with-

out a flash. Motivated by this, researchers have explored

changes to the mosaic pattern and color-filters that can im-

prove light-efficiency to a certain degree, such as includ-
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ing isolated panchromatic elements in each repeating color

block [6], but there is still substantial loss of light.

The second limitation relates to aliasing and sharpness.

When all of the colors are alternated densely, every color

channel is under-sampled, and this induces aliasing arti-

facts in the reconstruction. Advances in demosaicking al-

gorithms can reduce these artifacts significantly [16], but

color cameras still rely on optical blur to avoid them com-

pletely, and this makes color cameras much less sharp than

grayscale cameras of the same resolution.

We propose an alternative approach to color imag-

ing, one that is well-suited to computational cameras that

are freed from the restrictions of traditional digital signal

processor-based architectures. As depicted in the bottom

of Fig. 1, our filter array leaves the majority of pixels

unaltered, and therefore measures luminance without sub-

sampling. Color is sampled only sparsely, by placing copies

of the standard 2 × 2 Bayer block (or something like it) on

a relatively coarse grid. This sort of sparse color sampling

has been previously considered in the context of recognition

and military surveillance, where the goal is to improve lu-

minance resolution at the expense of color fidelity [11]. In

contrast, we show here that with an appropriate computa-

tional reconstruction process, high color fidelity need not be

sacrificed with this arrangement. In fact, the resulting sys-

tem is often preferable to a Bayer-like approach for general

color photography, because it has direct measurements of

high-frequency spatial information in the luminance chan-

nel; and spectral information (hue and saturation), while

measured sparsely, is easier to reconstruct given these mea-

surements and an appropriate image prior.

Our computational reconstruction process is depicted

in the bottom of Fig. 1. We use a two-step process in

which: 1) missed luminance samples are inferred by hole-

filling; and 2) chromaticity is propagated by colorization

with a spatio-spectral image model. This approach simulta-

neously provides luminance images and color images that

have fewer aliasing artifacts than Bayer-like approaches,

because sequential hole-filling and colorization are often

more reliable than trivariate up-sampling. At the same time,

the filter array is significantly more light-efficient, because

most pixels collect measurements without attenuation. The

result is a color camera that is both faster and sharper.

2. Related Work

The Bayer pattern was introduced in 1976 [1] and it

has persisted almost universally during the four decades

since. By including twice as many green samples as red

or blue samples, it provides a good balance between sen-

sitivity and color fidelity, and the associated demosaicking

process can be implemented using low-power digital sig-

nal processors. Subsequent research and development of

color imaging with dense alternating mosaics has explored

modifications to both filter patterns and demosaicking algo-

rithms, and we discuss each in turn.

Demosaicking. Reconstruction algorithms are designed to

up-sample color measurements from the sensor’s dense al-

ternating mosaic, and rely on local correlations between

color channels [2, 5, 10, 12, 16, 19]. In particular, it is

common to define luminance as the spectral mean of lo-

cal color samples—or for convenience, simply as the green

channel—and chrominance as the difference between each

color sample and its luminance, and then to jointly up-

sample by assuming that chrominance channels have lower

spatial frequency content than luminance (e.g., [10]).

While working from the assumption of chrominance be-

ing relatively “low-pass” may be a good strategy when up-

sampling from a dense alternating mosaic, is not entirely ac-

curate from a physical point of view. Empirical analyses of

image statistics [4] have shown that chrominance channels

have the same energy distribution across spatial frequencies

as the luminance channel. Moreover, while analyzing color

in terms of luminance and chrominance can provide bet-

ter decorrelation than linear color space, the luminance and

chrominance channels are not statistically independent, be-

cause large changes in luminance often coincide with large

changes in chrominance.

The natural presence of high-frequency chrominance

variation and correlations between luminance and chromi-

nance often leads to images that contain disturbing aliasing

artifacts near edges in an image. Modern demosaicking

algorithms seek to reduce these artifacts, for example, by

explicitly allowing for large chrominance changes across

edges [12, 19], or by using more sophisticated image mod-

els [2, 5]. However, these methods have all been designed

for dense alternating mosaics like the Bayer pattern, and

they are therefore subject to the fundamental limitations of

light-inefficiency and under-sampling.

Color filter arrays. While the Bayer pattern remains ubiq-

uitous in commercially-available digital color cameras, re-

searchers have explored many other patterns that can make

color cameras more light-efficient. Notable examples in-

clude interspersing unfiltered pixels among the standard

red, green and blue ones [6], and employing broadband

filters whose spectral responses still span the RGB color

space [13]. These patterns and others like them seem to

have been conceived within the context of digital signal

processors, where the space of possible patterns is restricted

to repetitions of small blocks that each act separately to re-

cover full color. Consequently, they have offered relatively

modest improvements to light efficiency.

An interesting exception to this trend is the pattern pro-

posed by Heim et al. [11] for visible-plus-infrared cameras

used in recognition and military surveillance applications.

Like us, their filter array samples color at only a sparse set



of locations, allowing the remaining sensor elements to col-

lect high-quality, un-aliased measurements of visible-plus-

infrared luminance in low-light conditions. Since high-

fidelity color is not required for these applications, Heim

et al. simply create crude color channels by naive interpola-

tion. In the following sections, we will show that an appro-

priate computational process can infer high-fidelity color

from such sparse color samples, thereby opening the door to

greater sharpness and speed in general color photography.

Computational photography. Our reconstruction ap-

proach is inspired by the success of computer vision and

graphics techniques for in-painting and colorization. In-

painting techniques use generic image models and/or ex-

emplar patches from elsewhere in the image to fill in pixels

that are missing, for example, because a large region has

been manually cut out [7, 17, 20]. Colorization methods

use spatio-spectral image models to add color to a grayscale

image based on a small number of colored scribbles pro-

vided by a user [15]. Our reconstruction process contains

these ideas, but implemented in ways that are appropriate

for regular patterns and a much finer spatial scale.

3. Computational Color Imaging

Like traditional color cameras, our sensor design and

reconstruction algorithms are based on multiplexing color

filters spatially, and then reconstructing from these samples

by exploiting redundancies in the spatio-spectral content of

natural images. A key difference is the model we use for

these spatio-spectral redundancies.

We begin by observing that material boundaries occur

sparsely in a natural scene, and therefore give rise to images

that contain many small, contiguous regions, each corre-

sponding to the same physical material. Within each region,

variations in color are primarily due to shading, and this

manifests as a spatially-varying scalar factor that multiplies

all color channels equally, causing all color three-vectors to

be more or less equal up to scale. This implies that the lumi-

nance values within each region will vary—as will, in fact,

chrominance values—but the chromaticities, or relative ra-

tios between different channels, will stay nearly constant.

At the boundaries between regions, both the luminance and

chromaticities will change abruptly, but since these bound-

aries are rare, we expect that a local image patch will feature

only a small number of distinct chromaticities.

According to this simple model of the world, every

color channel, and any linear combination thereof (includ-

ing chrominance), can and will exhibit high-frequency spa-

tial variation. They will all be affected by aliasing if sub-

sampled. To avoid this as much as possible, our measure-

ment strategy is as follows (see Fig. 1). We leave a majority

of sensor elements unfiltered to measure luminance, and at

a coarse grid of locations, we embed 2 × 2 Bayer blocks

that are separated by K pixels in the horizontal and vertical

directions (K = 6 in the figure).

This design ensures that at least one color channel,

the luminance channel, is measured (almost) without sub-

sampling, and can therefore be reconstructed with minimal

aliasing. A full color image requires estimating chromatic-

ities as well, and for this we rely on our simple model of

the world, according to which a sparse set of color mea-

surements are sufficient for identifying the chromaticity in

each small material region. As long as the Bayer blocks are

dense enough to include at least one chromaticity sample

per material region, they can be properly propagated under

the guidance of the (minimally-aliased) luminance channel.

Intuitively, the reconstruction process requires estimat-

ing the missing luminance values at the Bayer block sites,

collating the measurements at these sites to compute a

chromaticity vector for each block, and then propagat-

ing these chromaticities across the image plane. These

steps are described in detail next. A reference implemen-

tation is available at http://vision.seas.harvard.

edu/colorsensor/.

3.1. Recovering Luminance

The first step in the reconstruction process is recover-

ing the missing luminance values at the sites that sample

color. There are a number of in-painting algorithms to con-

sider for this task, but experimentally we find that a sim-

ple wavelet-based approach suffices (similar to that of Se-

lesnick et al. [17]), since the “holes” are small 2×2 blocks,

surrounded by enough valid samples for spatial context.

Let m[n] denote the sensor measurements where n ∈ Ω
indexes pixel location, and let ΩL correspond to the sub-

set of locations where luminance is directly measured. We

reconstruct the luminance values l[n] everywhere as:

l = argmin
l

∑

i

|(fi ∗ l)[n]|TV
, (1)

such that l[n] = m[n], ∀n ∈ ΩL. Here, ∗ denotes con-

volution, {fi}i are high-pass wavelet decomposition filters,

and | · |TV corresponds to a total-variations norm on wavelet

coefficients in local spatial neighborhoods defined in terms

of a kernel k:

|ω[n]|
TV
=

∑

n∈Ω

[

(k ∗ ω2)[n]
]

1

2 . (2)

The minimization in (1) is implemented using an itera-

tive approach based on variable splitting. At each iteration

t, we update the current estimate lt[n] of l[n] as:

lt+1[n] =

{

m[n], if n ∈ ΩL,
l∗t [n], otherwise,

(3)



where,

l∗t [n] = argmin
l∗

∑

n

(lt[n]−l∗[n])2+βt
∑

i

|(fi ∗ l
∗)[n]|

TV
.

(4)

This can be interpreted as denoising luminance estimate lt

based on the model (1), with a decreasing value of noise

variance defined by βt, β < 1. The minimization in (4) can

be carried out in closed form by: computing a wavelet de-

composition of lt[n] to obtain coefficients ωi,t[n]; shrinking

these coefficients according to

ω∗
i,t[n] =





max
(

0,
[

(k ∗ ω2
i,t)[n]

]
1

2 − βt
)

[

(k ∗ ω2
i,t)[n]

]
1

2



ωi,t[n]; (5)

and then reconstructing l∗t from the coefficients ω∗
i,t[n].

In our implementation, we use a single-level, undeci-

mated Daubechies-2 wavelet decomposition and a 3 × 3
box filter as the neighborhood kernel k, and execute fifty

iterations with β = 2−1/4, initialized with l0[n] = m[n].
As we shall see in Sec. 4, this process yields a high-quality

reconstruction of scene luminance.

3.2. Estimating Chromaticities at Bayer Blocks

Our next step is to estimate the red, green, and blue chro-

maticities at each of the four sites within every 2× 2 Bayer

block, where chromaticity is defined as the ratio between

a color channel value and the luminance value at the same

pixel. We use notation r[n], g[n], b[n] for the (yet unknown)

red, green, and blue (RGB) color channel values at each

pixel,1 and cr[n], cg[n], cb[n] for the associated chromatici-

ties (e.g., cr[n] = r[n]/l[n]).
We reconstruct the chromaticities within each Bayer

block independently and, at first, we assume that the Bayer

block does not span a material boundary. This means

that our task is to estimate a single chromaticity vector

that is shared by all four sites within a block. Let n ∈
{nr, nb, ng1 , ng2} be the sites corresponding to the red,

blue, and two green filters within a Bayer block. According

to our definition of chromaticity we have

m[nr] = crl[nr], m[nb] = cbl[nb],

m[ng1 ] = cgl[ng1 ], m[ng2 ] = cgl[ng2 ], (6)

where cr, cg, cb are the desired RGB chromaticities of the

material at that block. We also assume that the color and

luminance channels are related as:

γrr[n] + γgg[n] + γbb[n] = l[n], (7)

1Without loss of generality, we use terms red, green, and blue to refer

to the colors being measured by the spectral filters within the Bayer block.

Since there are fabrication constraints on spectral filters, they may differ

from the matching functions of standard RGB, and a 3×3 linear transform

will be required to correct for this difference. Such transforms should be

applied to the output of our reconstruction algorithm.

where γr, γg, γb are determined by calibrating the spectral

filter and sensor responses.

Accordingly, we compute a regularized least-squares es-

timate for the chromaticities as:

ci = argmin
ci

(l[ni]ci −m[ni])
2 + σ2

z(ci − γ̄)2, (8)

for i ∈ {r, b}, and

cg = argmin
cg

(l[ng1 ]ci −m[ng1 ])
2 + (l[ng2 ]cg −m[ng2 ])

2

+ σ2
z(cg − γ̄)2, (9)

subject to
∑

i γici = 1 as per (7). Here, σ2
z is the observa-

tion noise variance, and γ̄ = (
∑

i γi)
−1. This regularization

can be interpreted as biasing the chromaticity estimates at

dark pixels toward “gray”, or cr = cg = cb.

This is an equality-constrained least-squares problem

and can be solved in closed form to yield a chromaticity

vector at each Bayer block. We then apply a post-processing

step to remove isolated mis-estimates, which typically oc-

cur in dark regions or where significant luminance varia-

tion exists within a Bayer block. For this we use median

filtering, which is common in removing color-interpolation

outliers (e.g., [8, 12]). Since the Bayer blocks are arranged

on a coarse grid of points, we interpret the spatial collection

of estimated chromaticities as a low-resolution chromaticity

image that is about K2 times smaller than the sensor reso-

lution. We apply 5-tap, one-dimensional median-filters on

this coarse image at multiple orientations to generate multi-

ple proposals for the filtered result at each site, and then we

choose from these proposals the value that is most similar

to the pre-filtered value at that site. This process has the

benefit of eliminating isolated errors while preserving thin

structures, and we apply it multiple times till convergence.

3.3. Propagating Chromaticities

The final step in the reconstruction process involves

propagating the chromaticity information from the Bayer

block locations to all sites, based on features in the lu-

minance channel that are likely to correspond to material

boundaries. We do this in two steps. First, we obtain an

initial estimate of the chromaticity at each site by comput-

ing a convex combination of the four chromaticities at its

neighboring Bayer blocks, with the convex weights deter-

mined by local luminance features. This step is efficient

and highly parallelized. In the second step, we refine these

initial estimates through non-local filtering.

To begin, we partition the image into K × K patches

such that the four corners of each patch include one site

from a Bayer block (see Fig. 2). Let a, b, c, d index the

four corners, with na, nb, nc, nd being the corresponding

corner pixel locations, and ci,a, . . . ci,d, i ∈ {r, g, b} the



Figure 2. Propagating chromaticity with material affinities. Left:

Chromaticities at pixels within each K × K patch are computed

as convex combinations of chromaticities measured by the Bayer

blocks at its corners. The combination weights are determined by

four affinity maps αj [n], one from each corner Bayer block j, that

encode luminance edge information. Right: Affinity map showing

regions of pixels with highest affinity to each block (marked in

green), super-imposed on the corresponding luminance image.

chromaticities as recovered in Sec. 3.2. The chromaticities

within the patch are then computed as:

ci[n] = κa[n]ci,a+κb[n]ci,b+κc[n]ci,c+κd[n]ci,d, (10)

where κa[n], . . . κd[n] are scalar combination weights.

To compute these weights, we introduce the intermediate

concept of material affinity affinity maps that encode the

affinity αj [n] ∈ [0, 1] between the Bayer block j and the

sites n that surround it. The maps are computed indepen-

dently within overlapping (2K + 1) × (2K + 1) regions

centered at the Bayer blocks (see Fig. 2) as:

αj [n] = argmin
α

∑

n

∑

n′∈N1(n)

c[n, n′](α[n]−α[n])2, (11)

with the constraint that αj [n] = 1 at the four sites in the

Bayer block j, and 0 at the sites in the remaining eight

Bayer blocks in the region, and N1(n) corresponds to a 3×3
neighborhood around site n. The scalar weights c[n, n′]
come from edges in the luminance image. For example,

when n, n′ are horizontal neighbors, we define c[n, n′] as:

c[n, n′] = exp (−max(eh[n], eh[n
′])) , (12)

where

eh[n] =

∑

s

∣

∣(Gh
s ∗ l)[n]

∣

∣

2

∑

n†

∑

s |(G
h
s ∗ l)[n†]|

2 , (13)

is the normalized sum of horizontal gradient magnitudes of

l[n]—computed across multiple scales s using horizontal

derivative of Gaussian filters Gh
s . The summation on n† in

the denominator is over the K ×K patch that contains n.

The minimization in (11) can be carried out efficiently

using the conjugate-gradient method. Moreover, due to the

symmetry of the cost function and the constraints, we need

only solve (11) for three-quarters of the sub-regions j. This

is because each site n has four maps αj associated with it,

one for each of the four nearest Bayer blocks. The values of

these maps must sum to one at every site n, so by indexing

the (2K + 1) × (2K + 1) sub-regions appropriately, we

need only compute three maps out of every four. Figure 2

illustrates an affinity map computed using this approach.

Having computed the affinity maps αj [n], we set the

combination weights in (10) as:

κj [n] ∝ α2
j [n] l[nj ], j ∈ {a, b, c, d}, (14)

with κa[n]+ . . .+κd[n] = 1. Note that the weights are also

proportional to l[n]. This is to promote contributions from

brighter blocks when the affinities αj are roughly equal—as

is the case in homogeneous regions without edges.

This process gives us an initial estimate of chromaticities

at each pixel. We then apply a non-local kernel to further

refine these chromaticity estimates as:

c+i [n] =
∑

n′∈N2(n)

w[n, n′]ci[n], i ∈ {r, g, b}, (15)

where w[n, n′] are positive scalar weights computed by

matching luminance patches centered at n and n′:

w[n, n′] =
1

Z[n]
exp






−

∥

∥

∥G ∗ (l[n′]− l[n])
2
∥

∥

∥

2

2h2






l[n′],

Z[n] =
∑

n′∈N2(n)

exp






−

∥

∥

∥G ∗ (l[n′]− l[n])
2
∥

∥

∥

2

2h2






l[n′],

(16)

where G is a Gaussian filter with standard deviation K/8,

and h = λσz is set proportional to the standard deviation of

observation noise (with λ = 40 in our implementation).

An important decision here is choosing the neighbor-

hood N2 within which to look for matching patches in (15).

A larger neighborhood has the obvious benefit of averaging

over a broader set of candidate chromaticities. However in

addition to an increase in computational cost, larger neigh-

borhoods also make it more likely that candidate patches

will be mis-classified as a match. This is because our ap-

proach differs from standard non-local means [3] in one key

aspect—since our goal is to estimate chromaticities and not

denoising, we compute the weights w[n, n′] using the lumi-

nance channel, but use them to only update chromaticities.

As a compromise, we restrict N2(n) to a (K + 1) ×
(K + 1) window centered at n, but apply the update in

(15) multiple times. Therefore while we effectively average

chromaticities across a larger region, at each update, we

only borrow estimates from pixels in a restricted neighbor-

hood defined by the color sampling rate. Note that since the

updates do not affect the luminance channel, the weights

w[n, n′] need only be computed once.



The final output RGB image is then simply given by the

product of the chromaticity and luminance estimates:

r[n] = cr[n] l[n], g[n] = cg[n] l[n], b[n] = cb[n] l[n].
(17)

4. Experimental Results

We evaluate our approach by simulating sensor mea-

surements using ten captured images of indoor and outdoor

scenes from the database of Gehler et al. [9]. We use the lin-

ear version of this database generated by Shi and Funt [18],

who replaced every 2×2 Bayer block in the original camera

measurements with a single trichromatic pixel. Since there

was no up-sampling during their replacement, these are full-

color, low-noise, alias-free images at half the resolution (2.7

megapixels) of the original camera measurements; and they

are representative of the spatio-spectral statistics that digital

cameras are likely to encounter.

We treat these full-color images as ground truth, and we

evaluate our approach by sampling these images according

to our filter pattern, simulating noise, and then reconstruct-

ing an approximation to the ground truth as described in

the previous section. Performance is measured by the dif-

ference between the ground truth full-color image and the

approximated reconstruction. As a baseline for compari-

son, we repeat the protocol using a standard Bayer pattern

and a state-of-the-art demosaicking algorithm [19]. For

the elements of our pattern that are panchromatic, we sim-

ulate samples simply by summing the three color values

at the corresponding pixel in the ground-truth image, i.e.,

l[n] = r[n]+g[n]+b[n]. This corresponds to measurements

from a hypothetical spectral filter that is the sum of the

camera’s native RGB filters, and is a conservative estimate

of the light-efficiency of unfiltered measurements taken by

the underlying sensor [14].

The choice of the color-sampling frequency K in our

pattern involves a trade-off between light-efficiency and

sharpness on one hand, and the ability to detect fine vari-

ations in chromaticity (material boundaries) on the other.

Based on experiments with test images, we set K = 6 be-

cause it provides a reasonable balance between efficiency,

sharpness, and accurate color reconstruction.

We generate measurements with different levels of ad-

ditive Gaussian noise, where higher values of noise vari-

ance simulate low-SNR measurements corresponding to

low-light capture. Figure 3 summarizes the performance of

our approach and the baseline Bayer approach across noise

levels in terms of PSNR—defined as 10 log10(1/MSE) for

intensities in the range [0, 1], where MSE is the mean square

error between the ground truth and reconstructed intensities.

We show quantiles of this metric computed over all overlap-

ping 10× 10 patches from all ten images (avoiding patches

within 15 pixels of the image boundary), which is about

2.7 × 107 patches in total. We plot PSNR values for errors

summed over all color channels, as well as in luminance and

chrominance channels separately.

We see that even in the noiseless case, when light-

efficiency is not a factor, our computational approach yields

more accurate reconstructions. For this case, the perfor-

mance gain is primarily in the luminance channel, which

is measured directly by our sensor and reconstructed with-

out aliasing. With increasing amounts of noise (i.e., lower

light levels), the difference in the two approaches becomes

more significant, and we see that our design offers substan-

tially improved estimates of both chrominance and lumi-

nance. The improvements in chrominance are due to the

fact that our sparse and noisy (i.e., Bayer-block attenuated)

measurements of chromaticity are multiplied by high-SNR,

un-aliased luminance values during propagation, which is

better than everywhere collecting color measurements that

are aliased and higher in noise.

Figure 4 contains examples of reconstructed image re-

gions by both methods for different noise levels (please see

the supplementary material for more reconstruction results).

The benefits at low light levels are apparent, and we readily

find that our design produces reasonable reconstructions at

higher noise-levels where traditional demosaicked images

would become dominated by noise. With low-noise too,

our approach generally offers better reconstructions with

fewer aliasing artifacts and high color-fidelity. However,

it is worth noting that we occasionally incorrectly estimate

the hue of very fine image structures, when they fall within

the gaps of our color sampling sites (e.g., fourth row in

Fig. 4). Therefore, our design differs from Bayer-based

demosaicking in the way it reacts to high-frequency spatial

variation in color. While the latter is susceptible to aliasing

at all boundaries, our design is only affected when changes

in chromaticity happen at a rate than the color sampling

frequency K. And even in these regions, we recover edges

and textures accurately but fail to detect changes in hue.

Our reference implementation is implemented in MAT-

LAB and C and optimized to be distributed across up to

three processor cores, and requires roughly one hundred

seconds to reconstruct each 2.7 megapixel test image.

5. Discussion

Material boundaries in natural scenes are relatively rare,

so sparse samples of color can be sufficient for recovering

color information. This allows direct measurement of high-

frequency spatial information without attenuation, thereby

enabling faster capture with fewer aliasing artifacts. This

approach is suitable for modern cameras that have access to

general computational resources for reconstruction.

Our reconstruction process is designed to demonstrate

that high-quality reconstruction is possible from sparse

color measurements, but it provides only one example of



Figure 3. Quantitative performance of proposed method over traditional Bayer-based demosaicking. Shown here are quantiles (25%,

median, 75%) of PSNR computed over all overlapping 10 × 10 patches in our ten test images, for different levels of noise, and for the

entire reconstructed RGB image as well as for the luminance channel and chrominance channels separately. We see that our method

outperforms traditional Bayer demosaicking even in the noiseless case (largely due to more accurate reconstruction of the luminance

channel), but the degree of improvement increases dramatically as we start considering higher noise levels (i.e., low-light capture).

such a process, and it should be interpreted as just one

point in the space of trade-offs between computational com-

plexity and reconstruction quality. Based on the compu-

tational hardware available and intended application, one

could choose to replace the different steps of our algo-

rithm with counterparts that are either more or less expen-

sive computationally. For example, one could use a more

sophisticated dictionary-based algorithm for luminance in-

painting, or omit the non-local filter-based refinement step

for chromaticity propagation. Indeed, it may be desirable

to have a cheaper on-camera reconstruction algorithm to

generate image previews, while retaining the original sensor

measurements for more sophisticated offline processing.

Our use of Bayer blocks at the sparse color sampling

sites is also just one of many possible choices. Previous

work on designing broadband, light-efficient spectral fil-

ters [13] is complimentary to the proposed approach, and

our design’s light-efficiency can likely be improved further

by using such filters at the color sampling sites. Another

direction for future work is to consider hyperspectral imag-

ing with similarly sparse spatial multiplexing. The free-

dom to sample color sparsely suggests that we may be able

to make additional spectrally-independent measurements at

each sampling site, without incurring the loss in spatial res-

olution associated with traditional alternating mosaics.
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Figure 4. Sample reconstructions. Shown here are regions (of various sizes) cropped from images reconstructed from traditional Bayer-

based demosaicking and our approach, at different noise levels—increasing from left to right, with the first pair corresponding to the

noiseless case. The results from our algorithm usually have fewer aliasing artifacts in the noiseless case, and are reasonable at noise levels

where traditional demosaicking outputs are significantly degraded. Please zoom in for a detailed view of reconstruction quality.




