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Abstract

We study the problem of color constancy–infering from an image the spectrum of the illu-

mination and the reflectance spectra of all the depicted surfaces. This estimation problem is un-

derdetermined: many surface and illumination spectra can be described as a linear combination

of 3 basis functions, giving 3 unknowns per pixel, plus 3 parameters for a global illumination.

A trichromatic visual system makes fewer measurements than there are unknowns.

We address this problem by writing the reflectance spectra of small groups of pixels as

a linear combination of spatio-spectral basis functions. These aggregated surface reflectance

spectra require fewer parameters to describe than the sum of the spectral parameters for the

individual surface pixels, giving us more measurements than unknown parmaeters.

We explore this problem in a Bayesian context, showing when the problem is over or

underdetermined based on analyzing the local curvature characteristics of the log-likelihood

function. We show that using the spatio-spectral basis functions gives improved reflectance

and illumination spectral estimates when applied to real image data.

1 Introduction

Color is important in our understanding of the visual world and provides an effective cue for

object detection and recognition. In general, however, the observed color of an object differs

from its true color due to factors such as lighting and orientation. Color constancy refers to

the ability to perceive the color of an object as approximately constant regardless of the color

of the light falling upon it [7]. We are able to reliably use color for a variety of vision tasks

largely because of our ability to perform color constancy well.

Inherently, the color constancy problem is underdetermined. The image formation process

consists of an illumination reflecting off of a surface, then being passed through a set of sensors.

The input to the sensors is the product of the illumination spectrum and the surface’s reflectance
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spectrum. Different combinations of illumination and reflectance spectra can produce the same

spectrum impinging on the sensor, and various sensor inputs can result in the same sensor

responses. Due to these ambiguities, it may be impossible to uniquely separate the effect

of the illumination and the surface reflectances in an image. The goal of computational color

constancy [18, 14, 4, 15, 3, 17, 10, 11, 19, 2, 6], therefore, is to determine an optimal separation

of reflectance and illumination under some metric. Given the sensor responses, we seek an

estimate of the reflectance and illumination spectra.

This would appear to involve estimating very many numbers. If we specify a 300 nm

spectrum at 10 nm intervals, even assuming a single illumination spectrum over the whole

image, we would need 30(N + 1) numbers to specify the reflectance spectra for N pixels

plus one illuminant. In order to simplify the color constancy problem, low-dimensional linear

models are used to describe illumination and reflectance spectra [13, 5, 16, 12]. A sufficiently

large portion of the energy in these spectra (typically 99%) - can be described using as low

as three-dimensional models for both surfaces and illuminants. An additional constraint used

by some approaches is that surfaces and illuminants must be physically realizable, e.g. their

spectra cannot be negative and surface reflectances must be less than 1 [10, 2, 6].

Even after these simplifications, the color constancy problem remains underdetermined

and existing approaches must make further assumptions in order to obtain a solution. Buchs-

baum’s Gray World algorithm assumes that the mean reflectance of all images is the same, and

the illumination is estimated using this mean [4]. Maloney and Wandell’s Subspace method re-

quires that a two-dimensional model describe surface reflectances for the case of trichromatic

sensors [17]. Gamut mapping methods [9, 8] exploit the observed color gamut to estimate the

illuminant spectrum, and can be combined with realizability constraints. Since a Bayesian ap-

proach [2] can incorporate the various assumptions above into its prior probabilities, Bayesian

decision theory [1] provides a principled framework which we will use for studying the color

constancy problem.

A parameter counting argument reveals the underlying problem we address in this work:

if we use a 3-dimensional model for the surface reflectance at each pixel, and a 3-dimensional

model for the illumination spectrum, for the case of trichromatic color sensors, we have more

unknowns than observations. We measure 3 numbers at each position, yet have to estimate 3

numbers at each position, plus the 3 numbers describing the illuminant. The problem is always

underdetermined, requiring, in a Bayesian solution, more reliance on the prior probabilities or

loss function than on the likelihood function to estimate the best answer. One would prefer the

situation where the data likelihood function dominated the other terms.

In this paper, we make the problem overdetermined by introducing linear basis func-

tions that describe both spectral and spatial variations in the surface reflectances. These

spatio-spectral basis functions exploit image regularities which allow us to specify surfaces

reflectances using fewer numbers, yielding more image measurements than unknown parame-
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ters.

In the next sections, we introduce the notation and linear basis function analysis, then ex-

plore the Bayesian approach. We show with simple examples that the structure of the posterior

indicates conditions under which color constancy is still undetermined by the data. We then

apply our approach to real images, verifying (using hyperspectral image data) that our surface

reflectance estimates improve through using the spatio-spectral basis functions.

2 Linear models

We assume there is one global illumination in each scene and that the light spectrum leaving

each surface is the term-by-term product of the illumination and local reflectance spectrum. For

a surface reflectance S(λ) and illumination E(λ), the response at position x of a photoreceptor

with a spectral response of Rk(λ) is:

yxk =
∑

λ

Rk(λ)E(λ)Sx(λ), (1)

The illuminant and surface spectra can be written as linear combinations of the illumination

basis functions Ei(λ) and reflectance basis functions Sj(λ), with coefficients ei and s
x
j , re-

spectively, at position x:

E(λ) =
L∑

i=1

Ei(λ)ei, (2)

Sx(λ) =
L∑

j=1

Sj(λ)sxj , (3)

where L is defined as the number of elements in the λ vector (i.e., the number of wavelength

samples). Doing so allows us to write the rendering equation as

yxk =
∑

λ

Rk(λ)
L∑

i=1

Ei(λ)ei

L∑

j=1

Sj(λ)sxj . (4)

Summing over λ, we get a bilinear form,

yxk =
L∑

i=1

L∑

j=1

eiGij,ks
x
j , (5)

where Gij,k =
∑

λRk(λ)Ei(λ)Sj(λ).

In general, we wish to approximate the true illuminant E(λ) and surface spectra Sx(λ)
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using lower dimensional linear models. Thus, we can define

Ẽ(λ) =

dE∑

i=1

Ei(λ)ei, (6)

S̃x(λ) =

dS∑

j=1

Sj(λ)sxj , (7)

where dE is the dimensionality of the illuminant approximation Ẽ(λ) and dS is the dimen-

sionality of the surface approximation S̃x(λ). In addition, we can decompose (5) as:

yxk =

dE∑

i=1

dS∑

j=1

eiGij,ks
x
j +

dE∑

i=1

L∑

j=dS+1

eiGij,ks
x
j +

L∑

i=dE+1

dS∑

j=1

eiGij,ks
x
j +

L∑

i=dE+1

L∑

j=dS+1

eiGij,ks
x
j

=

dE∑

i=1

dS∑

j=1

eiGij,ks
x
j + wx

k ,

(8)

where wx
k is a noise term representing the error due to the use of lower dimensional models. A

summary of the notation used in this paper is provided in Table 1.

Equation (8) is perhaps best understood by viewing color constancy as an estimation prob-

lem. The goal is to estimate S̃x(λ) and Ẽ(λ) given yxk . Thus, we view the “true” illuminants

as having dE degrees of freedom as defined by the first dE illuminant basis functions, with re-

maining basis functions contributing in the form of noise. Analogously for surface reflectance,

the first dS basis functions define the space of “true” reflectances and the remaining basis

functions add noise. Note that while the illumination “noise” and reflectance “noise” are or-

thogonal to the “true” illumination and reflectance, the projections of the “true” data and the

“noise” into the sensor response space are not orthogonal.

3 Bayesian Approach to Color Constancy

The Bayesian approach to color constancy utilizes a probabilistic framework to examine the

problem. This framework is based on three fundamental probability distributions - the prior,

the likelihood, and the posterior. The prior describes the probability that a certain set of pa-

rameters is the correct estimate without knowing anything about the data. This distribution is

written as P (e, s), where e and s are the global illumination weights and the surface weights for

all positions in an image. The likelihood, given by P (y|e, s), governs the relationship between

the parameters being estimated (e and s) and the observed data (in this case the set of all sensor

responses in an image, y). The posterior describes what is known about the parameters being
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Symbol Symbol Definition Symbol Symbol Definition
N number of pixels in an image m number of pixels along one dimension of

a square block being considered within
an image

λ wavelength γ index into spatio-spectral basis functions
L number of wavelength samples (length of

λ vector)
K number of sensor responses available at

any pixel
E(λ) spectral radiance of illuminant E{}(γ) spatio-spectral radiance of illumination

in m×m block
Ei(λ) ith basis function of illumination Êi(γ) ith spatio-spectral illumination basis

function
ei scalar weight of ith illumination basis

function
e
{}
i scalar weight of ith spatio-spectral illu-

mination basis function
e row vector of all ei e

{} row vector of all e
{}
i

dE dimensionality of illumination represen-
tation

d̂E dimensionality of spatio-spectral illumi-
nation representation

Ẽ(λ) approximation to illuminant from dE di-
mensional linear model

Ẽ{}(γ) approximation to spatio-spectral illumi-
nant from d̂E dimensional linear model

Sx(λ) surface reflectance at point x S{x}(γ) spatio-surface reflectance for pixel block
{x}

Sj(λ) jth basis function of surface reflectance Ŝj(γ) jth spatio-spectral surface reflectance ba-
sis function

s
x
j scalar weight of jth surface reflectance

basis function at position x
s
{x}
j weight of jth spatio-spectral surface re-

flectance basis function for pixel block
{x}

s
x column vector of s

x
j for all j s

{x} column vector of s
{x}
j for all j

s matrix whose columns are given by s
x

s
{} matrix whose columns are given by s

{x}

dS dimensionality of surface reflectance rep-
resentation

d̂S dimensionality of spatio-spectral surface
reflectance representation

S̃(λ) approximation to surface reflectance
from dS dimensional linear model

S̃{}(γ) approximation to spatio-spectral surface
reflectance from d̂S dimensional linear
model

Rk(λ) spectral sensitivity of kth sensor R̂k(γ) spatio-spectral sensitivity of kth sensor
yxk scalar response of kth sensor at x y

{x}
k scalar response of kth sensor for pixel

block x
yx vector of yxk for all k y{x} vector of y{x}k for all k
y matrix of yx vectors for all x y{} matrix of y{x} vectors for all x
Gij,k 3-d tensor relating illumination and re-

flectance weights to sensor responses
Ĝij,k 3-d tensor relating spatio-spectral illumi-

nation and reflectance weights to spatio-
spectral sensor responses

Table 1: Symbol Notation
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estimated after having observed the data and can be calculated using Bayes’ rule as

P (e, s|y) =
1

Z
P (y|e, s)P (e, s), (9)

where the normalization constant 1
Z is independent of the parameters to be estimated. (In ad-

dition to these probabilities, the Bayesian formulation requires that we specify a cost function

that defines the penalty associated with a parameter estimate of (ẽ, s̃) when the true parameter

values are (e, s). For estimating the relative surface and illumination spectra, independent of

any overall scale factor, we find that the loss function has little effect [2], so we use MAP

estimation and maximize the posterior probability.)

The underdetermined nature of the general color constancy problem implies that there

should be an infinite set of solutions which maximize the posterior.To see that this is the case,

we must examine the properties of equation (9).

Assuming independent and identically distributed Gaussian observation noise with vari-

ance σ2 in the photoreceptor responses at each patch, the posterior probability is:

P (e, s|y) =
1

Z

∏

x,k

e−(yx
k
−

∑
i,j eiGij,ks

x
j )2/(2σ2)P (e, s). (10)

If the posterior is flat along any dimension in this region, there is a family of possible solutions

to the minimization problem, whereas if the posterior is not flat along any dimensions, a finite

number of local minima must exist. Furthermore, if we assume that the prior probability

P (e, s) varies slowly over the region being considered, the structure of the posterior can be

seen by examining the local structure of the log likelihood function,

L(y|e, s) =
∑

x,k

(
yxk −

∑

i,j

eiGij,ks
x
j

)2
. (11)

3.1 Local Curvature Analysis

We explore how the structure of the posterior probability reveals whether or not the color

constancy problem is solvable.

The local structure we are interested in is the curvature of the log likelihood function, which

tells us how moving in the parameter space affects our ability to explain the observed data. We

will analyze how this structure changes when we introduce low-level spatial information into

the model, and use this analysis to motivate the use of such information for color constancy.

The curvature of the log likelihood can be obtained from an eigen decomposition of its

Hessian matrix. The Hessian is a matrix of all second order derivatives and thus, for an N-

pixel image, is a (dE + NdS)× (dE + NdS) matrix. The eigenvectors of the Hessian matrix

give principal directions of curvature and the corresponding eigenvalues give the extent of

curvature in each of these directions.
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At a maximum of the log likelihood, all eigenvalues of the Hessian must be non-negative

(meaning that error cannot decrease as we move away from the local maximum). If there are

any eigenvalues equal to zero, this implies that there are directions of zero curvature - e.g.,

there are ways we can vary the estimated parameters without affecting the likelihood of the

data. For a unique maximum, all eigenvalues of Hessian must be positive at the maximum.

Furthermore, the larger these eigenvalues are, the more robust is this solution to observation

noise or unmodelled image variations.

To help us understand the structure of the color constancy problem for real-world images,

we first examine representative special cases in toy examples. Appendix B gives a full deriva-

tion of the Hessian for the log likelihood function given by (11).

3.1.1 Underdetermined Case

We constructed a toy problem in which the sensor responses for all points in an image are

generated using equation (8) with the noise term set to zero. To perform simulations, we used

a hyperspectral data set of 28 natural scenes collected at Bristol University by Brelstaff, et.

al. as described in []. Each of these images is 256 × 256 pixels in size and contains sensor

responses to 31 spectral bands, ranging from 400 nm to 700 nm in 10 nm intervals. Each

scene also contains a Kodak greycard at a known location with a constant reflectance spectrum

of known intensity. The scene illuminant is approximated as the spectrum recorded at the

location of the greycard divided by its constant reflectance. Our dataset therefore consists of

256x256x28 reflectance spectra and 28 illumination spectra.

The first three illumination and reflectance basis functions obtained by applying principal

components analysis (PCA) to this data are plotted in Figure 1a and b, respectively. We assume,

without loss of generality, a Gaussian model for sensor responses centered at 650 (red), 550

(green), and 450 nm (blue) as shown in Figure 1c.

Generating 10 points using random illumination and reflectance weights and evaluating the

Hessian at the correct location in parameter space results in the eigenvalue spectrum shown in

Figure 2. We can see that, as expected, there are 3 directions of zero curvature. The three

associated eigenvectors give the directions of zero curvature in parameter space. Any linear

combination of these eigenvectors is also a direction of zero curvature.

It is interesting to note that there are 3 illumination weights and also three eigenvectors

with corresponding zero eigenvalues. Each of these eigenvectors is of dimension dE + NdS ,

with three of those dimensions corresponding to the illuminant weights. The three eigenvectors

span the space of the 3-dimensional illuminant space, meaning that for any set of illumination

coefficients, there exists some set of reflectance weights such that the likelihood associated

with that set of parameters is equal to the likelihood associated with the correct set of parame-

ters. In other words, this means that we can move in any direction in the 3-dimensional space

of the illuminant and still find surface reflectance values that render to the observed sensor val-
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(a) Illumination Basis Functions
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(b) Reflectance Basis Functions
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(c) Sensor Responses

Figure 1: Basis functions and sensor responses used in toy examples. Basis functions are obtained
from a hyperspectral dataset.
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ues. One example of this is a multiplicative scaling up of the illumination and a corresponding

scaling down of the surface reflectances.
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Figure 2: Eigenvalue spectrum and corresponding curvature of the log likelihood for a toy example
of the color constancy problem. The directions of zero curvature and eigenvalues at zero show that
the problem is underdetermined

3.1.2 Sufficient Sensors

If there are 4 independent photoreceptor responses available instead of 3, we would expect for

a better behaved log-likelihood function. However, there should still be one direction of zero

curvature in the Hessian, corresponding to a simple scaling of the illumination and surfaces.

The basis functions and sensor responses given in Figure 1 are used for this example as well

as a fourth sensor response which is chosen to be random (and thus independent of the other

three). We again generate 10 random points and find that the Hessian behaves as expected,

as shown in Figure 3. Not only does the Hessian have only one eigenvalue equal to zero,

the other eigenvalues have a much larger value than the eigenvalues of the Hessian in the

underdetermined case.
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Figure 3: Eigenvalue spectrum and corresponding curvature of the log likelihood for a case when
the number of sensors exceeds the dimensionality of the surface model. There is now only one
direction of zero curvature, corresponding to an unknown scale factor.
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3.2 Bayesian Color Constancy in the Underdetermined Case

Although there may be multiple degrees of ambiguity in the likelihood function, in general,

the Bayesian approach is still able to produce a unique parameter estimate, because the prior

or the loss function will favor one solution over the others [2].

In the ideal case, however, we would like for our parameter estimate to be dominated by

the effect of the likelihood function. That is, we would like for the estimate to be based on the

data itself, not on prior assumptions about the data or how much we value particular parts of

the data.

4 Spatio-spectral Basis Functions

We now introduce an alternative formulation of the finite-dimensional models presented in

Section 2 that model both spatial and spectral properties of groups of pixels in natural images.

The hypothesis is that by taking characteristic spatial variations of natural images into account,

the number of parameters necessary to describe the reflectance of an image will be reduced so

that the problem is no longer underdetermined.

Certain physical phenomena, such as interreflections, may generate characteristic spatial

and spectral signatures which allow estimation of the desired spectra from image data. Natural

images, like foliage, may exhibit characteristic spatial changes in color. The spatio-spectral

basis functions allow us to exploit these, or other, regularities in the visual world in order to

solve the color constancy problem. We expect this approach will work best in richly textured

images, and worst in flat, color Mondrian-type images [18].

4.1 Modified Linear Models

Instead of using linear models to describe the reflectance of individual pixels, we will now use

these models to describe groups of pixels. Without loss of generality, we can group pixels into

m ×m blocks and use the same basic formulation as was developed in Section 2. In order to

do so, it is necessary to convert blocks of pixels into vector format. We do this by rasterizing

the pixels within the block. The reflectance of a block of pixels is defined as a vector of length

m2L consisting of the reflectance of each pixel within the block stacked on top of each other in

raster order. The same process is used to describe the sensor response of the block as a vector

of length m2K and the illumination as a vector of length m2L.

The basis functions used to model the reflectance of blocks of pixels are now referred to

as spatio-spectral reflectance basis functions, since they describe both the spectral and spatial

characteristics of a block of pixels.

We shall denote a group of pixels by {x}, so that the illumination and reflectance of a block
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of pixels is given by:

E{}(γ) =
m2L∑

i=1

Êi(γ)e
{}
i , (12)

S{x}(γ) =

m2L∑

j=1

Ŝj(γ)s
{x}
j , (13)

where Êi(γ) and Ŝj(γ) are the spatio-spectral illumination and reflectance basis functions, e{}i
and s

{x}
j are the weights associated with these basis functions, E{}(γ) is the illumination of

all blocks in the image, and S{x}(γ) is the reflectance of the block of pixels {x}. Note that

the elements of the scene are now written as a function of γ rather than λ. This is due to the

fact that the spatio-spectral representation contains information about both the frequency and

spatial characteristics of the scene. Approximating these models with fewer dimensions, we

can define

Ẽ{}(γ) =

d̂E∑

i=1

Êi(γ)e
{}
i , (14)

S̃{x}(γ) =

d̂S∑

j=1

Ŝj(γ)s
{x}
j , (15)

where Ẽ{}(γ) is the approximate illumination of all blocks in an image, constructed using a d̂E
dimensional model, and S̃{x}(γ) is the approximated reflectance for the block {x}, constructed

using a d̂S dimensional model.

We define an m×m block of pixels as having m2K sensor outputs, with K sensor outputs

per pixel. Thus, we define the sensor responses of the group of pixels as the block diagonal

matrix

R̂(γ) =




R(λ) 0 . . . 0

0 R(λ) . . . 0
...

...
. . .

...

0 0 0 R(λ)




(16)

with m2 blocks along the diagonal, and

R = [R1(γ) R2(γ) . . . Rk(γ)].

We let R̂k(γ) refer to the kth column of the matrix R̂(γ).

Following a derivation analogous to that presented in Section 2, we can write the sensor
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output in a bilinear form with noise as:

y
{x}
k =

d̂E∑

i=1

d̂S∑

j=1

e
{}
i Ĝij,ks

{x}
j + w

{x}
k , (17)

where y{x}k is the sensor response of the block of pixels {x}, Ĝij,k is defined as

Ĝij,k =
∑

γ

R̂k(γ)Êi(γ)Ŝj(γ), (18)

and w{x}k is the noise introduced from using a lower-dimensional linear model.

4.2 The Advantage of Using Spatial Information

The advantage of incorporating spatial information into the linear models used to describe

scenes is that it provides more descriptive power using a fewer number of parameters. It is

straightforward to show that in even in the worst case, i.e. when incorporating spatial infor-

mation provides no benefit and individual pixels are independent, the spatio-spectral method

cannot do worse than the traditional method. The amount of improvement in descriptive power

provided by the new method can be tested by finding a linear reflectance basis using real im-

ages for blocks of various sizes (including m = 1, which corresponds to the traditional case

of examining each pixel independently) and calculating how much of the variance of a set of

test images is described in each case. To do this, we use the dataset of hyperspectral images

described earlier in Section 3.1.1

The amount of variance described by linear models of varying dimensionality when con-

sidering block sizes of m =1, 2, 3, and 4 is shown in Figure 4. The figure plots the number of

basis functions per pixel (the number of basis functions used to describe the m×m block di-

vided by m2) against the amount of variance described when using that many basis functions.

The linear model was obtained using approximately half of the data in the 28 scenes (selected

randomly) and tested on the entire data set.

It can be seen that using a block size of m = 2 dramatically improves performance. For

example, the data shows that the error rate obtained when describing each pixel with 3 basis

functions can be achieved by using only 1.5 basis functions per pixel when describing an image

with 2×2 blocks (i.e., 6 basis functions for the block). Increasing the block size beyond m = 2

does not show much of an improvement in reconstruction error. This is because the majority

of the advantage of using blocks is to take advantage of local flatness in an image, which is

already done when 2× 2 blocks are used. Figure 5 plots the first 12 spatio-spectral reflectance

basis functions for m = 2. These basis functions were extracted from the hyperspectral data

using the calibration gray card in each image of the dataset, in the same manner as described

in Section 3.1.1. It can be seen that the first three basis functions are essentially the same as
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Figure 4: The squared reconstruction error using linear models of varying dimensions for block
sizes of m =1, 2, 3, and 4. Using block sizes of m = 2 or larger greatly reduces the number of
coefficients needed to describe each pixel.

the standard single pixel bases repeated at all 4 pixels.

To see the advantage of using spatial information in the context of Bayesian color con-

stancy, we must once again analyze the local curvature of the posterior probability. Following

the derivations in Section 3, we once again make the assumption of a locally flat prior distribu-

tion, allowing us to simplify the problem and examine the log likelihood function, now written

as

L(y{}|e{}, s{}) =
∑

{x},k

(
y
{x}
k −

∑

i,j

e
{}
i Ĝij,ks

{x}
j

)2
. (19)

5 Experiments with Natural Images

We look at groups of 40 pixels, grouped into 10 sets of 2x2 pixel blocks. The 10 sets were

selected from randomized positions in the image.

In order to get the priors, we project our dataset of reflectances and illuminations onto the

basis functions given in Figures 1a (for illumination) and 5 (for spatio-spectral reflectance).

We fit truncated Gaussians to the data and use these as our priors.

Our goal is now to find the set of illumination and reflectance coefficients that minimize

the posterior probability. In order to do this, we need to search over the space of all possible

illumination and surface reflectance coefficients. Since the number of surface coefficients

scales with the number of pixels in the image, this quickly becomes an intractible problem.

Following [2], in order to make the problem more feasible, we limit our search to look

over the space of illumination coefficients and solve for the surfaces at each iteration using a

deterministic relationship. In the underdetermined case, where the number of sensor responses

at each pixel is equal to the number of surface coefficients at each pixel, we solve for sur-
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(b) basis functions 4, 5, and 6
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(c) basis functions 7, 8, and 9
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(d) basis functions 10, 11, and 12

Figure 5: The first 12 spatio-spectral basis functions for 2x2 pixel blocks. Each basis function is
plotted for wavelength values from 400 to 700 nm on the x-axis. The first 3 spatio-spectral basis
functions, (a), show only spectral variations and no spatial variation. The next 3 basis functions,
(b), correspond to spatial derivatives. The final 6 indicate a more complex relationship of spatial
and spectral variations, (c) and (d).
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faces that produce the sensor responses exactly given an illumination (this is done by solving

equation (8) assuming no sensor noise through a simple matrix inversion). This is equivalent

to constraining our search to locations of maximum probability in the likelihood. In the case

where we have more sensor responses than surface coefficients, we take the pseudo-inverse to

find the surface coefficients corresponding to a given illumination.

Unfortunately, applying this technique of constraining the search space to real images gives

numerical problems. In these images, the noise term in equation (8), which corresponds to the

surface and illumination components not included in a low-dimensional model, causes the

surface coefficients that maximize the likelihood term given the true illuminant to be very dif-

ferent from the true surfaces coefficients. This makes it hard to properly analyze the posterior

probability corresponding to a given illluminant.

To avoid the numerical issues mentioned above, we test our algorithm on images con-

structed by first projecting the true surface reflectances down to a number of dimensions equal

to the number of sensor responses (3 for 1 pixel at a time, 12 for 2x2 blocks), multiplying the

reflectance image by the true illuminant, and passing the result through the Gaussian sensors

shown in Figure 1. Figure ? shows that there is very little difference between the image ob-

tained using the true reflectance and the image obtained after projecting the reflectance onto the

lower-dimensional subspace. We need to be clear: these are pre-processed images, not “real”

images, although they are tantalizingly close to real images. We show the benefits of using

spatio-spectral basis functions in solving color constancy using the pre-processed images, and

expect that extensions to real images will follow in work by us or by others.

(a) Sample image from dataset (b) Image after projection

Figure 6: The effect of projecting reflectance to lower dimensions is very small.

Figure 7 shows results for our approach using spatio-spectral basis functions in a Bayesian

approach with the standard Bayesian approach and the Gray World approach. The particular

illuminant we wish to estimate is not fit well by the prior, as seen in the figure. Each algorithm

is run on 15 random groups of 40 pixels chosen from the image. Despite the low prior prob-

ability of the illuminant, the Bayesian approach using spatio-spectral basis functions allows
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us to locate the correct illuminant for each draw. This illustrates that the likelihood term does

dominates our estimate, as we would expect. The standard Bayesian approach, examining one

pixel at a time, and the Gray World approach both result in incorrect estimates.
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(a) using spatio-spectral basis functions
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(b) standard Bayesian approach
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(c) Gray World algorithm

Figure 7: Results of color constancy applied to a natural image. Each algorithm was run 15 times,
with results shown in dotted lines. The mean illmination from the prior is given in the dashed line
as reference, and the true illuminant is marked by circles.

In our experiments, we also found that the positivity constraint restricted the set of possible

illuminants more when using 2x2 blocks than when considering 1 pixel at a time, so that the

results for 2x2 blocks using 12 coefficients (underdetermined) were better than the results for

the standard underdetermined case.

6 Conclusions

We have studied the effect of using spatio-spectral surface reflectance basis functions to find a

low-dimensional estimate of surface reflectance characteristics.

These basis functions can convert the color constancy problem from an under-determined

problem to an over-determined one. We can see this in the curvature characteristics of the
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log-liklihood function at parameter local maxima.

For natural images, pre-processed to restrict the surface reflectance variations to be ex-

plained by an average of 3 basis functions per pixel, we find that using spatio-spectral basis

functions allows for very accurate estimates of the global illumination spectrum (and therefore

of surface reflectance spectra, too). For the same images, using purely spectral basis functions

results in an underdetermined problem, with much higher estimation error for the optimal

Bayesian estimate.
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APPENDIX: The Hessian of the Log Likelihood Func-
tions with Bilinear Forms
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