s,

VVMASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Artificial Intelligence - ' July 1971
Memo Number 285 ‘ , Revised December 1973

The Binford-Horn LINE-FINDER #
"~ Berthold K. P. Horn

ABSTRACT

This paper briefly describes the processing performed in the course
of producing a line drawing from an image obtained through an image
dissector camera. The edge-marking phase uses & non-linear
parallel line-follower.. Complicated statistical measures are not -
used. The line and vertex generating phases use a number of
heuristics to guide the transition from edge-fragments to cleaned-
up line-drawing. Higher-level understanding of the blocks-world is
not used. Sample line-drawings produced by the program are
included. ' '

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research
program supported in part by the Advanced Research Projects Agency
of the Department of Defense and monitored by the Office of Naval
Research under Contract Number N00014-70-A-0362-0005.

ARepfoduction of this document, in whole or in part, is pefmitted

for any purpose of the United States Government.

This is a revised version of Vision Flash 16 (July 1971).

i 3

PAGE 4

1. THE LINE-FINDER.

Programs able to produce line-drawings ffom images of single
conveX'polyhedra have existed for several years. It was thought
that it should be easy to generalize the methods used to deal with
more complex blocks-world scenes involving,obscuration, shadows and

mutual illumination. Only recently, however, has it become

>possib1e to reliably produce line- drawings of images of sets of

polyhedra. There are two main problens. Firstly, images of sets

of polyhedra are not as simple as one might expect. Secondly,

'current scene-analysis prograns demand a complete line-drawing with =

well-defined vertices.

One might reasonably conjecture that the image ofra set ofv'
polyhedra ought to consist of polygonel areas of more or less 7
uniform intensity. These areas should be separated by step like
transitions in intensity at the lines corresponding to the

projections of the edges of the objects. This is not the case

because of mutual illumination, shadowing, scattering of light,
- surface smudges, tfanSIUCency and a number of defects in'the
imaging devicer[Horn'1969]. Usually in fact, the variation in

Aintensity within one region (corresponding to a face or the visible

portion of a face of an obJect) is often lerger than the difference

'between the intensity of adjacent regions. -Furthermore,. only the

"most obvious edges (such as those separating the scene from the

N

PAGE 5

back-ground) are associated with anything like a step-like
transitioﬁ in inténéity. Many transitions are 1nstead roof-shapéd
or flat except for a small peak right on the edge [Herskovits §
Binford 1970).

The most obvious image degrading effect introduced by the .
sensingbdevice is noise. In our‘casevthis amounted to about 1 to
2% of the signal magnitude [Horn 196%9). There is little point
trying to improve on this, since the surface visual noise is not

much smaller even for clean, evenly paintéd polyhedra. One of many

other device defects is internal scattering, which reduces the

contrast between adjacent regions by almost a factor of two and

pfoduces annoying gradients within regions [Horn 1972].

2. CLASSIFICATION OF LINE-FINDERS.

Line-finders can be classified according to whether they are
region-oriented or edge-oriented. Region-oriented line-finders

attempt to find regions of more or less homogeneous intensity. The

- areas not conglomerated'in this fashion are then thinned out and

’llines are»fitted to thém.- Edge-oriented line-finders avoid the = _
problems_of_inhomogenedus regions and the blending togethef of_

~adjacent regions.r They instead determine likely edge-points and

-link these up into edge—fragments;,'The'fragments are later

combined into lines.

A,

PAGE 6

Line-finders can also be classified according to whether or

- 'not the filter function (also called the local predicate) applied

to the image is linear. If visual noise were spatially 7
independent, a case could be made fdr an optimal linear predicate.
This howeverris not the case, since smudges, for example, have.a |
diStinctly non-random spatial diétribution. an-linear methods,

while more complex, have a clear advantage on real images.

Line-finders can be further classified according to whether

they use a fixed raster scan or a search pattern which follows

iines. The first method is»convenient from the point of view of

reading intensity values asynchronously ahead of time and also for
program simplicity. In some casés the_imaging device forces the

use of a raster scan, pafticularly if it is an integrating device.

. Line-followers on the other hand can be made'to be more sensitive

‘and accurate at the price of program complexity.

3. EDGE-MARKING.

: fnput is obtained from a random-access image-diséector'cémera B
or a picture stored as a disk-file. The edge-marker is a non-
linear parallel line-follower. That is, several lines are‘followed

simultaneously, while the image is being scanned in a raster-like

rfashion; thus tombining the good features of’raster-scan'withfthose

o of line-following. The sepgration bétween scan-lines is larger

than the spacing of 1mage pdints sampled along & line. Three scan-

e

PAGE 7

lines are considered at any one time. The intensities are
correlated with the three most common>intensity transitions, namely
thé'step, the roof and the peak. If any Correlated vmlue exceeds a
threshold (adjusted according to the known signal -to- noise ratio),

a check is made for a local maximum.

Once a likely edge-point (also called feature—point or

.inhomogeneous point) is discovered, a subroutine checks to see if
it could be the continuation of a line already being followed. The

test involves a check on proximity and angle as well as such

attributes as type, direction and size of intensity transition. 1If

the edge-point cannot form the continuation of an existing line,

yet is strong and not too qlosé to. any other line, it will be msed

as the starting point of a new line. This new line will also be

‘followed on subsequent scans. .

A line'that cannot be continued in this manner is retained

6n1y if its length exceeds some minimum. One pass over the scene

' VconSisting of successive hdrizontal lines picks up all edges within
abOUt fifty degrees of vertical. A second pass consisting of

.?ertical lines does. the same for edges within about fifty degrees

of horizontal. For a typical scene abomt a million intensity

values are read from the image, and the whole process’ takes a few

'.minutes.

Sy,

b,

PAGE 8

We end up with a numbér of lists of tentative édge—points.
Some of these liéts will représent more than one edge (an L-joint
for example), while some edges‘will be repfesented by more than one
list (a fragmented edge for example). These lists wiil often not
include points very close to vertices, except at L-joints. This is
beéause lines are pfevented from encroaching too ciosely dn each
other by the nature of the correlation process énd some of the

tests described. Each list of tentatiie edge-points has associated

with it a number of attributes such as type, direction and size of

the intensity transition and how sure therprogram is that'the edge-

fragments'are not merely due to noise.

o Up to this stage not very many heuristics have to be invoked
and consequently the possibility of corrupting the data is small.

Numefous line-finders have been developed to this stage, few

however produce as clean a set of tentative edge-points as T.

Bihford's program(_Very few line-finders have proceeded beyond

~ this level to actually create the kind of useful cleaned-up line-

drawing required by current'higher—level scene-ahalysiS'progfams.

~In part this is often due to inadequate edge-marking, but more

often it is because unexpected difficulties are met when dealing
with what at first sight seems a simple process: forcing the data

into the form of a line-drawing with well-defined vertices.

PAGE 9

4. GENERATING LINES.

SinceAsome lists may contain feature points of more than one
edge, the lists have to be segmented. This is done recursively at

the pdint of maximum distance from the line éonnecting,the end- 7
points of the list of’edge—points. Segmentatiqn proceeds until the
‘remaining edge-points fall within a tolerance band. Re- V
segmentation is used to cope with portions that are parallel to the
~line joiniﬁg theAend—points. Oncé segmented, least-squares lines
are fifted to fherlists [Horn 1972] (The partial results of this
Cfit ﬁontinde to be part of the datérassociated with the line,Atb

allow combining lines later without loss of accuracy).

We next have to.combine partial lines corresponding to the
same edge.' Oveflapping lines are the first to be considered in
this process. A numberrof tests are applied to avoid combihiﬁg
unrelated lines. These tests include checks on proximity, relative
ofient&tioh; perpendicular distance of the end-points from the |
pbtehtial combiﬁedAline and so on. Lines moré or less éo—iinear
:are”ﬁombined in aisimilar manner provided the gap between them is
relatively small."Any:short lines'remaining af this stage.été |

discarded.

'_Th6>line-drawing is fairly recognizable at this stage, lacking
oniyAvertices; The lines have been distorted very little in this

process, unléss»unrelated lines happened to be combined despite the.

PAGE 10

sfringeht tests. The less conservative and mbre difficult part is
yet to come. The data at this Stagéris quite compact already and

might profitably be handed to a program with some understandihg of
_ blocks-world scenes instead of the somewhat afbitrary heuristic

program described next.

.§L GENERATING VERTICES.

Some of the vertices'are'clearly indicated by the close
convergence of lines. A first estimate of the location of such a
,verfex_is made by considefihg the centér of gfavity of the end-
:boints of the lines (if there are only fwo lines, their |
intefsection is used instead). A search is then made for all lines
which_end near this point and whose éxtension would pass very close
~to it. The vertex is finally declared at the point of least-

- squares berpendicular distance from these lines [Horn-1972]. The

~'appropriaté lines are then connected to the vertex.

Next, the program tries to establish T—joints. That‘is; it
searches for lines that have an end-point close to another line and
checks if it would we reasonable to extend the line to form a ne&
vertex. A K—joint'is similarly made where a vertex is close to a
' 711ne. Finéily,rcrossing'lines give rise to X—joints; Numerdus
heuristics inform fhis process; for example, lihes already
. connected atvone end are treated breferentially to those still free

at both ends. All vertices have now been found and an attempt is

PAGE 11

made to exfend unattached lines to nearby vertices. The extension
must be short and pass very closerto_the vertex to be accepted..
Following this, yertices which are close together are
conglomerated. Any lines not properly attached at this stage are
discarded. The progress of these steps in the processing canrbe
slowed dewn and viewed on a display, before the final preduct 15

disgorged in a convenient LISP-readable format.

The heuristics, which developed enpirically, depend on certain
tolerances which are initialiy calculaﬁed'in terms of the line-scan :
interval, the known resolution of the imaging device, and the
signal-to-noise ratio. These factors could be "tuned" to improre
_performance and accuracy, bﬁt this is probably nof worth the effort
- (the fime wonld be better spent on designing new ways of directing -
the vertex creation phase). A lerge portien of this assembly
language progran is concerned with debugging, displaying and
prerforming the required list—proceeeing. The déta-baee is
_ mainrained in two forms: As assertions aboutvlines (and what
. vertices they connect to) and es-assertions about‘vertices (and
what lines impinge on'then). These two forms are kept consistenf
-bY demons invoked when assertions are added, renoved or»changed:in

~either data-base.

- The line and vertex generating phases. of the program
frequently need to settle questionsvof proximity for both points

and lines. A set of four superimposed rectangular grids covering

i

.

PAGE 12

1the image is used as a set of buckets for this purpose. . This

' method is sometimes referred to as multi-entry coding [Horn 1972];--

Each point 1s entered into four buckets, and each line will appear.
in many. This makes for high speed, despite the need for a number
of iterative applications of various heuristics to the whole data-

structure.

6. PERFORMANCE.

“An idea’about how to produce 1ine—dréwings"from images is of
little use until it has been demonstrated by a working program.

The program dlscussed here has processed over a hundred scenes and

produces excellent line-drawings of simple blocks-world scenes. In

more complicated oases, a number of shortcomings can be observed.
The simplest and easiest to deal with is;the absence or

incompleteness of some of the lines, usually due to a lack of

contrast between adjacent fdces of an object. At times,extra lines

are introduced by shadows, smudges and noise. There is a trade-off -
between~these two effects, and since present scene-analysis
programs can handle missing lines better than extra 11nes, the

threshold is set to favour the: former.

Occaéionally a section of a line-drawing will be garbled,
usually due to the combination of two unrelated vertices. This
causes some distortion of the iines'and may make the line-drawing

locally uninterpretable. This last effect in particular is a

PAGE 13

function of the amount of detail and can be avoided by using a
finer resolution at the cost of an increase in scan and computation
timé. This of course is only possible if the imaging device has

sufficient reéolution;

7. COMMENTS ON THIS APPROACH.

Some'of the ways in which images of setsrof polyhedra differ
froﬁ our.intuitive model of equal intensity.poiygongl aréas have
important implications in other areas. Mﬁtﬁal i}lﬁmination for
example will prdve to be a problem when one is-developing a program
that exhibits color constancy. Further, it should be noted that
some- of thé edges missed by this program willAalso be missed by
liﬁe-verifiers: .when following lines one can afford to.be quite -

sensitive. Fortunately the better line-proposers are very

.conservative and hardly ever propbse a line were there shodldn't be

one. One could perhaps accept their proposals without attempting ‘

_Verification..

The only features that can be reliably determined from a.

- corrupted image afé those with significant spatial extension.

Without suéhvextensiqn we cannot appiy the integrative prOCesses

necessary to collect evidence for the'existence of the feature.

“Vertices for this reason are perhaps not’priﬁitive elements of an

image, but exist only as the interseétion of lines. Letting,the'

.liné—dfawing'program establish vertices introduées inaccuraties,\r

e,

PAGE 14

because it may join unrelated lines.

8. HOW TO DO BETTER.

'This program has no 1dea_wﬁat a reasonable line-drawing should

look like when it represents an image of polyhedra. Insteédrit'is

very general and will find arbitrary line-drawings. Observing the
particular way in which things sometimes go wrong, one quickly
comes to thebconclusion that higher-level understanding of the
scene being'analysed could greatly imprdvertﬁe line and vertex

creating phase of this program. As things stand now this

~understanding comes only after the line-finder has done its work.

'It would be hard to embed this kind of knowledge into such a large

assenbly language program. At the same time trying to implement

- the "low-level" routines in a higher level language would cause

great inefficiencies.

9. HISTORICAL NOTE.

The line-finder described here consists of an edge-markér due

_to T;‘Binford,and a line-drawer due to B.K.P. Horn.i It was used as

part of the systemrof vision and'manipulatioh programs developed
for the copy-demo by P.H. winstbn, E. Freuder and B.X.P.. Horn in
the fall of 1970 [Winston 1971 § 1972). It is also the

'"hierar;hicalﬁ programfreferréd to by Shirai [Shirai 1973].

s

PAGE 15

10. REFERENCES.

Herskovits A. and Binford T. (1970) "On Boundafy Detection"

A.I.Memo 183 (Cambridge, Mass.: A.I.Lab, M. I.T.)

~ Horn B.K.P. (1969) "The Image Dissector 'Eyes'" A.I.Memo 178

(Cambridge, Mass.: A.I. Lab, M.1.T.)

" Horn B.K.PQ (1972) "VISMEM: A bag of 'robotics' formulae'" Vision

Flash 34 (Cambridge, Mass.: A.I. Lab, M.1.T.)

Shirai Y. (1973) "A Context Sensitive Line Finder for Recognition
of Polyhedra" Artificial Intelligence, Vol 4, No 2.

Winston P.H. (1971, 1972) Vision Flashes 7, 8, 9, 15 and 30
(Cambridge, Mass.: A.I. Lab, M.I.T.)

Winston P.H. (1972) "The M.I.T. Robot"™, Machine Intelligence 7
(Edinburgh: Edinburgh University Press)

R 3 =] ﬁ
.
@ﬁ@ %

‘.- Wy
li;" l'-

& *
&
v n ‘
l & §

= ﬂ.l.‘
FTRE N _‘ >

