
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

ARTIFICIAL INTELLIGENCE LABORATORY 

Artificial Intelligence 
Memo Number 285 

July 1971 
Revised December 19 73 

The 'Binford-Horn LINE-FINDER 

Berthold K. P. Horn 

ABSTRACT 

This paper briefly describes the processing performed in the course 
of producing a line drawing from an image obtained through an image 
dissector camera. The edge-marking phase uses a non-linear 
parallel line-follower. Complicated statistical measures are not 
used. The line and vertex generating phases use a number of 
heuristics to guide the transition from edge-fragments to cleaned- 
up line-drawing. Higher-level understanding of the blocks-world is 
not used. Sample line-drawings produced by the program are 
i ncl uded. 

Work reported herein was conducted at the Artificial Intelligence 
Laboratory, a Massachusetts Institute of Technology research 
program supported in part by the Advanced Research Projects Agency 
of the Department of Defense and monitored by the Office of Naval 
Research under Contract Number N00014-70-A-0362-0005. 

Reproduction of this document, in whole or in part, is permitted 
for any purpose of the United States Government. 

* This is a revised version of Vision Flash 16 (July 1971). 









PAGE 4 

1. THE LINE-FINDER. - 

Programs able to produce line-drawings from images of single 

convex polyhedra have existed for several years. It was thought 

that it should be easy to generalize the methods used to deal with 

more complex blocks-world scenes involving obscuration, shadows and 

mutual illumination. Only recently, however, has it become 

possible to reliably produce line-drawings of images of sets of 

polyhedra. There are two main problems. Firstly, images of sets 

of polyhedra are not as simple as one might expect. Secondly, 

current scene-analysis programs demand a complete line-drawing with 

well-defined vertices. 

One might reasonably conjecture that the image of a set of 

polyhedra ought to consist of polygonal areas of more or less 

uniform intensity. These areas should be separated by step-like 

transitions in intensity at the lines corresponding to the 

projections of the edges of the objects. This is not the case 

because of mutual illumination, shadowing, scattering of 1 ight, 

surface smudges, translucency'and a number of defects in the 

imaging device [Horn 19691. Usually in fact, the variation in 

intensity within one region (corresponding to a face or the visible 

portion of a face of an object) is often larger than the difference 

between the intensity of adjacent regions. Furthermore, only the 

most obvious edges. (such as those separating the scene from the 



PAGE 5 . 

back-ground) are associated with anything like a step-like 

transition in intensity. Many transitions are instead roof-shaped 

or flat except for a small peak right on the edge [Herskovits 6 

Binford 19701. 

The most obvious image degrading effect introduced by the 

sensing device is noise. In our case this amounted to about 1. to 

2% of the signal magnitude [Horn 19691. There is little point 

trying to improve on this, since the surface visual noise is not 

much smaller even for clean, evenly painted polyhedra. One of many 

other device defects is internal scattering, which reduces the 

contrast between adjacent regions by almost a factor of two and 

produces annoying gradients within regions [Horn 19721. 

2. CLASSIFICATION 01 LINE-FINDERS. - 

Line-finders can be classified according to whether they are 

region-oriented or edge-oriented. Region-oriented line-finders 

attempt to find repions of more or less homogeneous intensity. The 

areas not conglomerated in this fashion are then thinned out and 

lines are fitted to them. Edge-oriented line-finders avoid the 

problems of inhomogeneous regions and the blending together of 

adjacent regions. They instead determine likely edge-points and 

link these up into edge-fragments. The fragments are later 

combined into 1 ines. 



PAGE 5 . 

back-ground) are associated with anything like a step-like 

transition in intensity. Many transitions are instead roof-shaped 

or flat except for a small peak right on the edge [Herskovits 6 

Binford 19701. 

The most obvious image degrading effect introduced by the 

sensing device is noise. In our case this amounted to about 1, to 

2% of the signal magnitude [Horn 19691. There is little point 

trying to improve on this, since the surface visual noise is not 

much smaller even for clean, evenly painted polyhedra. One of many 

other device defects is internal scattering, which reduces the 

contrast between adjacent regions by almost a factor of two and 

produces annoying gradients within regions [Horn 19721. 

2. CLASSIFICATION 02 LINE-FINDERS. - 

Line-finders can be classified according to whether they are 

region-oriented or edge-oriented. Region-oriented line-finders 

attempt to find regions of more or less homogeneous intensity. The 

areas not conglomerated in this fashion are then thinned out and 

lines are fitted to them. Edge-oriented line-finders avoid the 

problems of inhomogeneous regions and the blending together of 

adjacent regions. They instead determine likely edge-points and 

link these up into edge-fragments. The fragments are later 

combined into 1 ines. 



PAGE 6 

Line-finders can also be classified according to whether or 

not the filter function (also called the local predi'cate) applied 

to the image is linear. If visual noise were spatially 

independent, a case could be made for an optimal linear predicate. 

This however is not the case, since smudges, for example, have a 

distinctly non-random spatial distribution. Nan-linear methods, 

while more complex, have a clear advantage on real images. 

Line-finders can be further classified according to whether 

they use a fixed raster scan or a search pattern which follows 

lines. The first method is convenient from the point of view of 

reading intensity values asynchronously ahead of time and also for 

program simplicity. In some cases the imaging device forces the 

use of a raster scan, par'ticularly if it is an Integrating device. 

Line-followers on the other hand can be made to be more sensit'ive 

and accurate at the price of program complexity. 

3. EDGE-MARK I NG. - 

Input is obtained from a random-access image-dissector camera 

or a picture stored as a disk'file. The edge-marker is a non- 

linear parallel line-follower. That is, several lines are followed 

simultaneously, while the image is being scanned in a raster-1 ike 

fashion, thus combining the good features of raster-scan with those 

of line-following. The separation between scan-lines is larger 

than the spacing of image points sampled along a line. Three scan- 



PAGE 7 . 

lines are considered at any one time. The intensities are 

correlated with the three most common intensity tran'sitions, namely 

the step, the roof and the peak. If any correlated value exceeds e 

threshold (adjusted according to the known signal-to-noise ratio), 

a check is made for a local maximum. 

Once a likely edge-point .(also called feature-point or 

inhomogeneous point) is discovered, a subroutine checks to see if 

it could be the continuation of a line already being followed. The 

test involves a check on proximity and angle as well as such 

attributes as type, direction and size of intensity transition. If 

the edge-point cannot form the continuation of an existing line, 

yet is strong and not too close to any other line, it will be used 

as the starting point of a new line. This new line will also be 

followed on subsequent scans. 

A line that cannot be continued in this manner is retained 

only if its length exceeds some minimum. One pass over the scene 

consisting of successive horizontal lines picks up all edges within 

about fifty degrees of vertical. A second pass consisting of 

vertical lines does the same ior edges within about fifty degrees 

of horizontal. For a typical scene about a million intensity 

values are read from the image, and the whole process takes a few 

minutes. 



PAGE 8 

We end up with a number of lists of tentative edge-points. 

Some of these lists will represent more than one edge (an L-joint 

for example), while some edges will be represented by more than one. 

list (a fragmented edge for example). These lists will often not 

include points very close to vertices, except at L-joints. This is 

because lines are prevented from encroaching too closely on each 

other by the nature of the correlation process and some of the 

tests described. Each list of tentative edge-points has associated 

with it a number of attributes such as type, direction and size of 

the intensity transition and how sure the program is that the edge- 

fragments are not merely due to noise. 

Up to this stage not very many heuristics have to be invoked 

and consequently the possibility of corrupting the. data is small. 

Numerous line-finders have been developed to this stage, few 

however produce as clean a set of tentative edge-points as T. 

Binford's program. Very few line-finders have proceeded beyond 

this level to actually create the kind of useful cleaned-up line- 

drawing required by current higher-level scene-analysis programs. 

In part this is often due to inadequate edge-marking, but more 

of ten it is because unexpected difficulties are met when dealing 

with what at first sight seems a simple process: forcing the data 

into the form of a line-drawing with well-defined vertices. 



PAGE 9 

4. GENERAT I NG LINES. - 

Since some lists may contain feature points of more than one 

edge, the lists have to be segmented. This is done recursively at 

the point of maximum distance from the line connecting the end- 

points of the list of edge-points. Segmentation proceeds until the 

remaining edge-points fall within a tolerance band. Re- 

segmentation is used to cope with portions that are parallel to the 

1 ine joining the end-points. Once segmented, least-squares 1 ines 

are fitted to the lists [Horn 19721 (The partial results of this 

fit continue to be part of the data associated with the line, to 

a1 low combining 1 ines later without loss of accuracy). 

We next have to combine partial lines corresponding to the 

same edge. Overlapping lines are the first to be considered in 

this process. A number of tests are applied to avoid combining 

unrelated 1 ines. These tests include checks on proximity, relative 

orientation, perpendicular distance of the end-points from the 

potential combined line and so an. Lines more or less co-linear 

are combined in a similar manner provided the gap between them is 

reiatively small. Any short iines remaining at this stage are 

dl scarded. 

The line-drawing is fairly recognizable at this stage, lacking 

only vertices. The lines have been distorted very little in this 

process, unless unrelated, lines happened to be combined despite the 



PAGE 10 

stringent tests. The less conservative and more difficult part is 

yet to come. The data at this stage is quite compact already apd 

might profitably be handed to a program with some understanding of 

blocks-world scenes instead of the somewhat arbitrary heuristic 

program described next. 

5. GENERATING VERTICES. - 

Some of the vertices are clearly indicated by the close 

convergence of lines. A first estimate of the location of such a 

vertex is made by considering the center of gravity of the end- 

points of the lines (if there are only two lines, their 

intersection is used instead). A search is then made for all lines 

which end near this point and whose extension would pass very close 

to it. The vertex is finally declared at the point of least- 

squares perpendicular distance from these lines [Horn 19721. The 

appropriate lines are then conntcted to the vertex. 

Next, the program tries to establish T-joints. That is, it 

searches for lines that have an end-point close to another line and 

checks if it would we reasonable to extend the line to form a new 

vertex. A K-joint is similarly made where a vertex is close to a 

line. Finally, crossing lines give rise to X-joints. Numerous 

heuristics inform this process; for example, lines already 

connected at one end are treated preferentially to those still free 

at both ends. Alllvertices have now been found and an attempt is 



PAGE 11 - 

made to extend unattached lines to nearby vertices. The extension 

must be short and pass very close to the vertex to be accepted. 

Following this, vertices which are close together are 

conglomerated. Any lines not properly attached at this stage are 

discarded. The progress of these steps in the processing can be 

slowed down and viewed on a display, before the final product is 

disgorged in a convenient LISP-readable format. 

The heuristics, which developed empirically, depend on certain 

tolerances which are initially calculated in terms of the line-scan 

interval, the known resolution of the imaging device, and the 

signal-to-noise ratio. These factors could be "tuned" to improve 

performance and accuracy, but this is probably not worth the effort 

(the time would be better spent on designing new ways of directing 

the vertex creation phase). A large portion of this assembly 

language program is concerned with debugging, displaying and 

performing the required list-processing. The data-base is 

maintained in two forms: As assertions about lines (and what 

vertices they connect to) and as assertions about vertices (and 

what lines impinge on them). These two forms are kept consistent 

by demons invoked vhen assertions are added, removed or changed in 

either data-base. 

The line and vertex generating phases of the program 

frequently need to settle questions of proximity for both points 

and lines. A set of four.superimposed rectangular grids covering 



PAGE 12 

the image is used as a set of buckets for this purpose. This 

method is sometimes referred to as multi-entry coding [Horn 19721. 

Each point is entered into four buckets, and each line will appear 

in many. This makes for high speed, despite the need for a number 

of iterative applications of various heuristics to the whole data- 

structure. 

6 PERFORMANCE. - 

An idea about how to produce line-drawings from images is of 

little use until it has been demonstrated by a working program. 

The program discussed here has processed over a hundred scenes and 

produces excellent line-drawings of simple blocks-world scenes. In 

more complicated cases, a number of shortcomings can be observed. 

The simplest and easiest to deal with is the absence or 

incompleteness of some of the lines, usually due to a lack of 

contrast between adjacent faces of an object. At times extra lines 

are introduced by shadows, smudges and noise. There is a trade-off 

between these two effects, and since present scene-analysis 

programs can handle missing lines better than extra lines, the 

threshold is set to favour thd former. 

Occasionally a section of a line-drawing will be garbled, 

usually due to the combination of two unrelated vertices. This 

causes some distortion of the lines and may make the line-drawing 

locally uninterpretable. This last effect in particular is a 



PAGE 13 - 

function of the amount of detail and can be avoided by using a 

finer resolution at the cost of an increase in scan and computation 

time. This of course is only possible if the imaging device has 

sufficient resolution. 

7. COMMENTS ON THIS APPROACH. - 

Some of the ways in which images of sets of polyhedra differ 

from our intuitive model of equal intensity polygonal areas have 

important implications in other areas. Mutual illumination for 

example will prove to be a problem when one is developing a program 

that exhibits color constancy. Further, it should be noted that 

some of the edges missed by this program will also be missed by 

line-verifiers: when f0110~in~ lines one can afford to be quite 

sensitive. Fortunately the better line-proposers are very 

conservative and hardly ever propose a line were there shouldn't be 

one. One could perhaps accept their proposals without attempting 

verification. 

The only features that can be reliably determined from a 

corrupted image are those with significant spatial extension. 

Without such extension we cannot apply the integrative processes 

necessary to collect evidence for the existence of the feature. 

Vertices for this reason are perhaps not primitive elements of an 

image, but exist only as the intersection of lines. Letting the 

line-drawing program establish vertices introduces inaccuracies, 



PAGE 14 

because it may join unrelated lines. 

8. HOW TO DO BETTER. - --- 

This program has no idea what a reasonable line-drawing should 

look like when it represents an image of polyhedra. Instead it is 

very general and will find arbitrary line-drawings. Observing the 

particular way in which things sometimes go wrong, one quickly 

comes to the conclusion that higher-level understanding of the 

scene being analysed could greatly improve the line and vertex 

creating phase of this program. As things stand now this 

understanding comes only after the line-finder has done its work. 

It would be hard to embed this kind of knowledge into such a large 

assembly language program. At the same time trying to implement 

the wlow-levelw routines in a higher level language would cause 

great inefficiencies. 

9. HI STOR I CAL NOTE. - 

The line-finder described here consists of an edge-marker due 

to- T. Binford and a line-drawkr due to B. K. P. Horn. It was used as 

part of the system of vision and manipulation programs developed 

for the copy-demo by P.H. Winston, E. Freuder and B.K.P. Horn in 

the fall of 1970 [Winston 1971 6 19721. It is also the 

nhierarchicalw program referred to by Shirai [Shirai 19731. 



PAGE 15 . 

10. REFERENCES. - 

Herskovits A. and Binford T. (1970) "On Boundary Detectionw 
A. I. Memo 183 (Cambridge, Mass.: A. I. Lab, M. I. T. 1 

Horn B.K.P. (19691 "The Image Dissector 'Eyesm' A. I.Memo 178 
(Cambridge, Mass.: A. I. Lab, M. I.T. ) 

Horn B. KO P. (1972) VISMEM: A bag of 'robotics' formulaew Vision 
Flash 34 (Cambridge, Mass.: A. I. Lab, M. I.T.) 

Shirai Yo (1973) "A Context Sensitive Line Finder for Recognition 
of Polyhedra1' Artificial Intelligence, Vol 4, No 2. 

Winston P. H. (1971, 1972) Vision Flashes 7, 8, 9, 15 and 30 
(Cambridge, Mass. : . A. I. Lab, M. I. T. 

Winston P.H. (1972) !'The M. I.T. Robot1', Machine Intelligence 7 
(Edinburgh: Edinburgh University Press) 














