
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

Artificial Intelligence July 1971
Memo Number 285 Revised December 1973

The Binford-Horn LINE-FINDER *
Berthold K. P. Horn I I

ABSTRACT

This paper briefly describes the processing performed in the course
of producing a line drawing from an image obtained through an image
dissector camera. The edge-marking phase uses a non-linear
parallel line-follower. Complicated statistical measures are not
used. The line and vertex generating phases use a number of
heuristics to guide the transition from edge-fragments to cleaned-
up line-drawing. Higher-level understanding of the blocks-world is
not used. Sample line-drawings produced by the program are
included.

Work reported herein was conducted at the Artificial Intelligence
Laboratory, a Massachusetts Institute of Technology research
program supported in part by the Advanced Research Projects Agency
of the Department of Defense and monitored by the Office of Naval

. Research under Contract Number N00014-70-A-0362-0005.

Reproduction of this document, in whole or in part, is permitted
for any purpose of the United States Government.

t

- I mo..~ ,,-... - - -(DM r- I maws
a - -- I- I na1a4 (*.re* - * r'l.rU1m

,-
i
1

Q)
C
d-'

d-'

'd cd Q)

s 4 + s
X O C ,
C,
-,-I C C
m 0 Q) z s :
C , & W

a , .
a c ,

r o w
& I) +
O C Q)

E G ..
C

8 n c d
a t n u
3 4 f - 4
+ C I)

PAGE 6
1

1

" * Line-finders can also be classified according to whether or

not the filter function (also called the local predicate) applied

to the image is linear. If visual noise were spatially

independent, a case could be made for an optimal linear predicate.

This however is not the case, since smudges, for example, have a

distinctly non-random spatial distribution. Non-linear methods,

while more complex, have a clear advantage on real images.

Line-finders can be further classified according to whether

they use a fixed raster scan or a search pattern which follows

lines. The first method is convenient from the point of view of

reading intensity values asynchronously ahead of time and also for

program simplicity. In some cases the imaging device forces the

use of a raster scan, particularly if it is an integrating device.

Line-followers on the other hand can be made to be more sensitive

and accurate at the price of program complexity.

3. EDGE-MARKING. -

Input is obtained from a random-access image-dissector camera

or a picture stored as a disk-file. The edge-marker is a non-

linear parallel line-follower. That is, several lines are followed

simultaneously, while the image is being scanned in a raster-like

fashion, thus combining the good features of raster-scan with those

of line-following. The separation between scan-lines is larger

than the spacing of image points sampled along a line. Three scan-

U1
Q)
a,
k

w w x
o Q) C ,

a 4
M V)
C X C
d u o
C , w C ,
W d C

-rc w d

r) C,
4 M

2 V) C
C d

4 x
" X U
0) w
3 d C

V) cd
m C
c d Q) w

C , O
Q) C
d d C
w 0
C w d
a o + '
a 3
C N C
(d d .,-I

m C,
X C
r a o
4 C U
R a
d Q)
% C C
O O C ,
& d
a u R

U &
C Q) O
O & W

-d

I-4
0

s w
0
Q) M
C C
fJ d

0)
Q) P
C
d X
w a
3 cd
0 0
& I-.
P .-I
3 cd
m

Q)

2

I-.
3
w
cd
Q)
w

. r : - .

d .-I
a , c d
I-. 0
0 0
U 4
0 C,

C , W C
O C Q)
C d 3

0 w
a a z
C
at W D

W 5 2
C C,
0 C k 2 0
t' C,
a r n a

Q)
V) Q)
d . c %

w rc
w I-4
a , a o
h cd w

PAGE 8

-* We end up with a number of lists of tentative edge-points.

Some of these lists will represent more than one edge (an L-joint

for example), while some edges will be represented by more than one.

list (a fragmented edge for example). These lists will often not

include points very close to vertices, except at L-joints. This is

because lines are prevented from encroaching too closely on each

other by the nature of the correlation process and some of the

tests described. Each list of tentative edge-points has associated

with it a number of attributes such as type, direction and size of

the intensity transition and how sure the program is that the edge-

fragments are not merely due to noise.

Up to this stage not very many heuristics have to be invoked

-'%

and consequently the possibility of corrupting the.data is small.

Numerous line-finders have been developed to this stage, few

however produce as clean a set of tentative edge-points as T.

Binfordts program. Very few line-finders have proceeded beyond

this level to actually create the kind of useful cleaned-up line-

drawing required by current higher-level scene-analysis programs.

In part this is often due to inadequate edge-marking, but more

often it is because unexpected difficulties are met when dealing

with what at first sight seems a simple process: forcing the data

into the form of a line-drawing with well-defined vertices.

Q)
C
C,

4
d
C,

5
cn
a
Q)
Q)
r)
0
k
a
C
0
d
C,
cd
C,
C
0
a
M
Q)

LA

w
C,
C
d
0
a
1
0
00
a
Q)

ccc
0

C,
V)
d
4

Q)
C
C,

V.r
0

(A
C,
C
d
0
a

PAGE 10

- -. stringent tests. The less conservative and more difficult part is

yet to come. The data at this stage is quite compact already apd

might profitably be handed to a program with some understanding of
i

blocks-world scenes instead of the somewhat arbitrary heuristic

program described next.

5. GENERATING VERTICES. -

Some of the vertices are clearly indicated by the close

convergence of lines. A first estimate of the location of such a

vertex is made by considering the center of gravity of the end-

points of the lines (if there are only two lines, their

intersection is used instead). A search is then made for all lines

- which end near this point and whose extension would pass very close

to it. The vertex is finally declared at the point of least-

squares perpendicular distance from these lines [Horn 19721. The

appropriate lines are then connected to the vertex.

Next, the program tries to establish T-joints. That is, it

searches for lines that have an end-point close to another line and

checks if it would we reasonable to extend the line to form a new

vertex. A K-joint is similarly made where a vertex is close to a

line. Finally, crossing lines give rise to X-joints. Numerous

- heuristics inform this process; for example, lines already

connected at one end are treated preferentially to those still free

at both ends. All vertices have now been found and an attempt is

PAGE 11

__I* made to extend unattached lines to nearby vertices. The extension

must be short and pass very close to the vertex to be accepted.

Following this, vertices which are close together are

conglomerated. Any lines not properly attached at this stage are

discarded. The progress of these steps in the processing can be

slowed down and viewed on a display, before the final product is

disgorged in a convenient LISP-readable format.

The heuristics, which developed empirically, depend on certain

- tolerances which are initially calculated in terms of the line-scan

interval, the known resolution of the imaging device, and the

signal-to-noise ratio. These factors could be "tunedw to improve

performance and accuracy, but this is probably not worth the effort

(the time would be better spent on designing new ways of directing

the vertex creation phase). A large portion of this assembly

language program is concerned with debugging, displaying and
/

performing the required list-processing. The data-base is

maintained in two forms: As assertions about lines (and what

vertices they connect to) and as assertions about vertices (and

what lines impinge on them). These two forms are kept consistent

by demons invoked vhen assertions are added, removed or changed in

either data-base.

The line and vertex generating phases of the program

frequently need to settle questions of proximity for both points

and lines. A set of four superimposed rectangular grids covering

PAGE 12

A* the image is used as a set of buckets for this purpose. This

method is sometimes referred to as multi-entry coding [Horn 19721.

Each point is entered into four buckets, and each line will appear

in many. This makes for high speed, despite the need for a number

of iterative applications of various heuristics to the whole data-

structure.

6. PERFORMANCE. -

An idea about how to produce line-drawings from images is of

little use until it has been demonstrated by a working program.

The program discussed here has processed over a hundred scenes and

produces excellent line-drawings of simple blocks-world scenes. In

more complicated cases, a number of shortcomings can be observed.

The simplest and easiest to deal with is the absence or

incompleteness of some of the lines, usually due to a lack of

contrast between adjacent faces of an object. At times extra lines

are introduced by shadows, smudges and noise. There is a trade-off

between these two effects, and since present scene-analysis

programs can handle missing lines better than extra lines, the

threshold is set to favour the former,

locally uninterpretable. This

Occasionally a section of a line-drawing will be garbled,

usually due to the combination of two unrelated vertices. This

causes some distortion of the lines and may make the line-drawing

last effect in particular

PAGE 13

function of the amount of detail and can be avoided by using a

finer resolution at the cost of an increase in scan and computation

time. This of course is only possible if the imaging device has

sufficient resolution.

7. COMMENTS 9EJ THIS APPROACH. -

Some of the ways in which images of sets of polyhedra differ

from our intuitive model of equal intensity polygonal areas have

important implications in other areas. Mutual illumination for

example will prove to be a problem when one is developing a program

that exhibits color constancy. Further, it should be noted that

some of the edges missed by this program will also be missed by

line-verifiers: when following lines one can afford to be quite

sensitive. Fortunately

conservative and hardly

one. One could perhaps

the better line-proposers are very

ever propose a line were there shouldn't be

accept their proposals without attempting

verification.

The only features that can be reliably determined from a

corrupted image are those with significant spatial extension.

Without such extension we cannot apply the integrative processes

necessary to collect evidence for the existence of the feature.

Vertices for this reason are perhaps not primitive elements of an

image, but exist only as the intersection of lines. Letting the

line-drawing program establish vertices introduces inaccuracies,

PAGE 14

because it may join unrelated lines.

8. HOW TO DO BETTER. - ---

This program has no idea what a reasonable line-drawing should

look like when it represents an image of polyhedra. Instead it is

very general and will find arbitrary line-drawings. Observing the

particular way in which things sometimes go wrong, one quickly I

i

comes to the conclusion that higher-level understanding of the

scene being analysed could greatly improve the line and vertex

creating phase of this program. As things stand now this

understanding comes only after the line-finder has done its work.

It would be hard to embed this kind of knowledge into such a large

assembly language program. At the same time trying to implement

the wlow-levelw routines in a higher level language would cause

great inefficiencies.

9. HISTORICAL NOTE. -

The line-finder described here consists of an edge-marker due

to T. Binford and a line-drawer due to B. K. P, Horn. It was used as

part of the system of vision and manipulation programs developed

for the copy-demo by P. H. Winston, E, Freuder and B. K. P. Horn in

the fall of 1970 [Winston 1971 6 19721. It is also the

"hierarchicalu program referred to by Shirai [Shirai 19731.

PAGE 15

10. REFERENCES. -

Herskovits A. and Binford T. (1970) "On Boundary Detectionw
A. I. Memo 183 (Cambridge, Mass. : A. I. Lab, M. I. T. 1

Horn B. K. P. (1969) "The Image Dissector Eyeswt A. I. Memo 178
(Cambridge, Mass.: A. I, Lab, M. I.T.)

Horn B. K. P. (1972) VISMEM: A bag of 'roboticst formulaet1 Vision
Flash 34 (Cambridge, Mass.: A. I. Lab, M. I. T.)

Shirai Y. (1973) "A Context Sensitive Line Finder for Recognition
of Polyhedrav Artificial Intelligence, Vol 4, No 2.

Winston P. H. (1971, 1972) Vision Flashes 7, 8, 9, 15 and 30
(Cambridge, Mass.: A. I. Lab, M. I.T.

Winston P. H. (1972) "The M, I. T. Robot", Machine Intelligence 7
(Edinburgh: Edinburgh University Press)

