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The intensity at a point in an image is the product of the
reflectance at the corresponding object point and the intensity of
illumination at that point. We are able to perceive |ightness, a
quantity closely correlated with reflectance. How then do we eliminate
the component due to illumination from the image on our retina? The two
components of image intensity differ in their spatial distribution. A
method is presented here which takes advantage of this to compute
lightness from image intensity in a layered, parallel fashion.

The method is developed for a restricted class of images first used
by Land in presenting his retinex theory of color. In this theory the
problem of color perception is reduced to one of judging black and white
lightness on three images taken in different parts of the visual
spectrum. The method described hare fills the need for a lightness
judging process.

The theory has implications for potential special purpose harduare
in image sensing devices. It should also be of interest to cogni tive
Psychologists since it can explain certain effects cbserved in .the human
visual system as well as predict new ones. Further, the theory provides
neuro-physiologists with suggestions about the function of certain
structures in the primate retina.
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Laboratory of the Massachusetts Institute of Technology. Support
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LIGHTNESS: Definition

The relative degree to which an object reflects light.

The Random House Dictionary

The attribute of object colors by which the object appears to reflect or

transmit more or less of the incident |ight.

Webster's Seventh New Collegiate Dictionary

Previeu

Part 1 is a review of the relevant information relating to color
vision and lightness. This includes a discussion of the Land retinex
mode! in a form suitable for the developments of the next part.

In part 2, Land’s one-dimensional operation will be extended to
two-dimensional images. The method depends on a layered, parallel
computation suggestive of both biological and artificial
implementations. . '

In part 3 some of the implications are explored and the information
on the new image processing technique is summarized.
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1. Revieu.
1.1 Theories of Color Perception.

There has always been great interest in how we perceive colors and
numerous explanations have been forwarded {Newton 1784, Goethe 1818,
Young 1828, Naxueil 1856, Helmholtz 1867, Hehing 1875}. The human
perceptual apparatus is remarkably succesful in coping with large
variations in the illumination. The colors we perceive are closely
correlated with the surface colours of the objects vieued; despite large
temporal and spatial differences in color and intensity of the incident
light. This is surprising since we cannot sense reflectance directly.

The light intensity at a point in the image is the product of the
reflectance at the corresponding object point and the intensity of
illumination at that point - aside from a constant factor that depends
on the optical arrangment. There must then be some difference between
these two components of image intensity which allous us to discount the
effect of one. The two components differ in their spatial distribution.
Incident light intensity will usually vary smoothly, with no
discontinﬁities. while reflectance will have sharp discontinuities at
edges where objects adjoin. The reflectance being relatively constant

between such edges.



'ON LIGHTNESS 4

1.1.1 Tri-Stimulus Theory.

Some facts about how we see color are fairlgvuell established. It
appears that we have three kinds of sensors operating in bright
illumination, Wwith peak sensitivities in different parts of the visible
spectrum. This is uhy it takes exactly three colors in additive
mixture to match an unknown color. While it is a bit tricky to measure

~ the sensitivity curves of the three sensors directly, a linear transform

. of these curves has been knoun accurately for some time {Brindley 1960} .

These curves, called the standard observer curves, are sufficient to
al]ou one to predict color matches made by subjects Qith-normal colour
vision {Hardy 1936}.

The simplest theory of color perception then amounts to locally
comparing the outputs of three such sensors and assigning colour on this
basis {Young 1828, Helmholtz 1867}. This however totally fails to
explain the observed colof contancy. Perceived color does not depend
directiy on the relative amounts of light measured by the three sensors

{Land 1959, Lettvin 1967}.
1.1.2 Color Conversion;

A number of attempts have been made to batch up this theory under
the rubrics of "discounting of the illuminant", "contrast effect
adjustment" and "adaptation". The more complicated theories are based

on models with large numbers of parameters which are adjusted according
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to empirical data {Helson 1938 & 1948, Judd 1948 & 1952, Richards 1971}.
These theories are at least partially effective in predicting human.
color perception when applied to simple arrangements of stimuli similar
to those used in determining the parameters.

‘The parameters depend strongly on the data and slight experimental‘
variations will produce large fluctuations in them. This is a phenomena
familiar to numerical analysts fitting curves to data when the number of
parameters is large. These theories are lacking in parsimony and
convincing physiological counter-parts. Lettvin has demonstrated the
hopelessness of trying to find fixed transformations from locally

compared output of sensors to perceived color {Lettvin 1967}.

1.2 Land’s Retinex Theory.

Another theory of color perception is embodied in Land’s retinex
model {Land 1859, 1964 & 1971}. Land proposes that the three sets of
sensors are not connected locally, but instead are treated as if they
represent points on three separate images. Pfocesaing is performed on
each such image separately to remove the component of intensity due to
illumination gradient. Such processing is not merely an added frill but

is indispensible to color perception in the face of the variability of

" the illumination.
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1.2.1 Lightness Judging.

In essence a judge of lightness processes each image. Lightness is
the perceptual quaﬁtitg closely correlated uith surface reflectance.
Only after thie process can the three images be compared to reliably
determine colors locally. It remains to mechanize this process;

It would appeel to intuition if this process could be carried out
in‘a,parallel fashion that does not depend on previous knouledge of the
scene viewed. This is because-colors‘are so immediate, and seldom
depend on ene’s interpretation of the scene. Colors will be seen even
when the picture makesvno sense in terms of previous experience. Also,

color is seen at every point in an image.
1.2.2 Mini-world of Mondrians.

In developing and explaining his theory Land needed to postpone
dealing with the full complexity of arbitrary scenes. He selected a
particular class of objects as inputs, modelled after the paintinge of
the turn-of-the-century Dutch artist Pieter Cornelis Mondrian. These
scenes are flat areas divided into sub-regions of uniform matte color.v
Problems such as those occasioned by shadows and specular reflectien are
avoided in this way. One also avoids shading; that is, the variation in
reflectance With the orientation of the surface in respect to the sensor
and the |ight-source. For Mondrians, lightness is considered to be a

function of reflectance.
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Mondrians are usual ly made of polygonal regions with straight sides
~ = for the development here however the edges may be curved. In the
world of Mondrians one finds that the reflectance has sharp
discontinuities wherever regions meet, being constant inside each

region. The illumination, on the other hand, varies smoothly over the

image.
1.3 Why Study the One-dimensional Case?

fmages are two-dimensional and usually sampled at discrete points.
For historic reasons and intuitive simplicity the results will first be
developed in one dimension, that is with functions of one variable.
Similarly, continous functions Will be used at first since they allonw a
cleaner separation of the two components of imagé intensity and
illustrate more clearly the concepts involved.

Use will be made of analogies between the one-dimensional‘and tuwo-
dimeneional.cases as well as the continous and discrete ones. The final
Process discussed for processing image intensities is two-dimensional
and discrete. A number of physical implementations for this scheme are
suggested.

The process will be looked at from a number of points of views
partial differential equations, |inear systems, fourier transforms and
convolutions, difference equations, iterative solutions, feed—bapk

schemes and physical models.




ON LIGHTNESS 8

1.3.1 Notation.

The following notation will be used:
8’ Intensity of incident illumination at a point on the object.
r’ Reflectance at a point of the object.

p’ Intensity at an image point. Product of 8’ and r’.
s, r, p: Logarithms of 8’, r’ and p’ respectively.

d Result of‘appluing foruard or differencing operator to p.
t Result of applying threshold operator to d.

| Result of applying inverse or summing operator to t.

D Simple derivative operator in one dimension.

T Continous threshold operator, discards finite part.

I Simple integration operator in one dimension.

L Laplacian operator‘- sum of second partial derivatives.

G Inverse of the Laplacian, convolution with (1/2 7 ) logz(llr).
D%, Tw, I%, L% and Gw: Discrete analogues of D, T, I, L and G.
The output |, will not be called lightnese since there is probably

hot yet a generally acceptable definition of this term. It is houever

intended to be monotonically related to lightness. Note that | is
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related to the logarithm of reflectance, while the perceptual quantity

is perhaps more closely related to the square-root of reflectance.
1.4 One-Dimensional Method - Continous Case.

Land invented a simple method for separating the image components
in one dimension. First one takes logarithms to convert the product
into a sum. This is folloued by differentiation. The derivative will
be the sum of the derivatives of the two components. The edges will
produce sharp pulses of area proportional to the intensity steps between
regions - while the spatial variation of illumination will produce only
finite values everywhere. Now if one discards all finite values, one is
left with the pulses and hence the derivative of lightness. Finally one

undoes the differentiation by simple integration.
1.4.1 One-Dimensional Continous Method: Details.

We have the following: Let r’'(x) be the reflectance of the object
at the point corresponding to the image point x. Let 8’ (x) be the
intensity at this object point. Let p’(x) be their product, that is,
the intensity recorded in the image at point x. Note that s’ (x) and

r’(x) are positive.

P’ (x) = 8°(x) % r’(x)



L

- 1(x)

FIGURE 1: Processing steps in the one-dimensional continous case.
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Now let p(x) be the logarithm of p’ (x) and so on:
pix) = 8(x) + r(x)

Note that s(x) is continous and that r (x) has some finite

discontinuities. Let D represent differentiation with respect to x.
d(x) = D(p(x)) = D(six)) + D(r(x))

Now, D(s(x)) will be finite everywhere, while D(r(x)) will be zero aside
from a number of bulses - which carry all the information. Each pulse
Will correspond to an edge betueen regions and have area proportional to
the intensity step. If now one "thresholds" and discards all finite

parts, one gets:
t(x) = T(D(p(x))) = D(r(x))

To obtain r(x) one only has to invert the differentiation, that is,

-1
integrate. Let I represent integration with respect to x, then (I) -

D and:
1(x) = I(TMD(p(x))) = r(x) + ¢

One can give a convolutional interpretation to the above, since

differentiation corresponds to conveclution with a pulse-pair, one
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negative and one positive, each of unit area. Integration corresponds

to convolution uWith the unit step function.
~1.4.2 Normalization.

The resuit is not unique because of the constant introduced by the
integration. The zero (spatial) frequency term has been lost in the
differentiation, so cannot be reconstructed. This is related to the
. fact that one does not knou the ovefall level of illumination and hence
cannot tell whether an object appears dark because it is grey or because
the level of illumination is lou.

One can normalize the result if one assumes that there are no light
sources in the field of view and ho flourescent colors or specular
reflections. This is certainly the case for the Mondrians. Perhaps
the best way of normalising the result ié to eimplg_aésume that the
highest value of iightness corresponds to white, or total reflectance in
the Lambertian sense. This normalization will lead one astray if the
image does not contain a region corresponding to a white patch in the
scene, but this is the best one can do. Other normalization techniques
might involve adjusting weighted local averages, but this would then no

lpnger amount to reconstruction of reflectance.
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1.5 One-Dimensional Method - Discrete Case.

So far we have assumed that the image intensity was a continous
function. In retinas found in animals or artificial ones constructed
out of discrete components, images are only sampled at discrete points.
So one has to find discrete analogues for the operations we have been
using. Perhaps the simplest are first differences and summation as
analogues of differentiation and integration respectively. This is not
to say that other approximations could not be used equally well.

To use the new operators one goes through essentially the same
process as before, except that now all values in the differenced imagé
are finite. This has the effect of forcing one to choose a threshold
for the thresholding function. Both components of image intensity
produce finite values after the differencing operation. The component
due to the edges in the reflectance is hopefully quite large compared to
that due to illumination gradient. One has to find a level that will
Suppress the illumination gradient inside regions, while permitting the

effects due to edges to remain.
1.5.1 One-Dimensional Discrete Method: Details.

Let r; be the reflectance of the object at the point corresponding
to the image point i. Let 8} be the incident light intensity at this
object point. Let p} be their product, that is the intensity in the

image at point i.
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~FIGURE 2: Processing steps in the one-dimensiona] discreté case.




ON LIGHTNESS 15
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pi-si*ri

Nouw let pP; be the log of P; and so on. Let D% and Ix be the operatofa

corresponding to taking first differences and summation reapectivelg;
Note that (I%) ™' = Ds.

Pi = a:"' r"
d, = Piy— P (d = Dv(p))

t.=d; if [d;l <e, else @

I; = z t, (1 = Ia(t)

k=0

1.5.2 Selecting the Threshold.

What determines the threshold? It must be smaller than the
smallest intensity step between regions. It must on the other hand he
larger than values produced by first differencing the maximum

illumination gradients. Real images are noisy and the threshold should

be large enough to eliminate this noise inside regions.

The spacing of the sensor cells must also be taken into account.
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As this spacing becomes smaller, the contribution due to illumination
gradients decreases, uﬁilevthe component due to the edges remains
constant. Alimit is reéched when the component due to illumination
gradients falls belou that due to noise or when the optical propefties
- of the imaging system begin to'have a deliterious effect. In all
imaging systems an edge is spread over a finite distance due to
diffraction and uncorrected abberations. The spacing of sensors should
no} be much smaller than this distance to avoid reducing the component
due to edges in the differenced image.

Let u be the radius of the point-spread-function of the optical
sgstém and h the spacing of the sensor cells. Let g’ be the smallest
step in the logarithm of reflectance in the scene. Then define the

effective minimum step as:
g=g9g" % min(l, h/2u)

Let o be the largest slohe due to illumination gradient and o the root-
mean-square hoise-amplitude. The noise will exceed a value 3 ¢ only .3%

of the time. Choose the threshold e as folldus:

e < g
e > a % h_

e >3vV2 o
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1.5.3 Accuracy of the Reconstruction.

In the continous case one can exactly reconstruct the reflectance,
aside from a constant. MWe are not so fortunate here, even if we aélect
a threshold according to‘the above criteria. This is because the values
at the edges contain small contributions due to illumination gradient
and noise. A slight inaccuracy in the reconstruction will result. This
error is minimized by making the sensor cell spacing very fine,
optimally of a size commensurate with the optical resolution of the
deviée. The effect of noise can also be minimized by integrating over
time.

Note that the reconstruction is more accurate when there are few
edges, since it is at the edges that the error effects appear. With

many edges the illumination gradient begins to "show through".

1.5.4 Generalizations.

So far we have dealt with constant sensor spacing. Clearly as long
" as the same spacing is used for both th§ differencing and the summing,
. the cell spacing can be arbitrary and has little effect on the
reconstruction since it does not enter into the equations;

‘ Similarly we have chosen first differences as the discrete ana(ogué
for differentiation. We could have chosen some other Heighted
difference and developed a suitable inverse for it. This Inverse of

course would no longer be summation but can be read! iy obtained using
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techniques developed for dealing with difference equations {Richtmeuer

1957, Garabedien 1964} .
~ 1.5.5 Physical Models of the One-Dimensional Discrete Process.

One can invent a number of physical models of the aboveboperations.
A simple resistive netuork uill do for the summation process for
exémple. Land has implemented a small éircular."rétina" with about 16
sensors. This mode! employs electronic components to perform the
operations of taking logarithms, d:fferencing, thresholiding and summing.

Land has tried to extend his ono—dimensionaf'mothod to images, by '
covering the image with paths produced'bg a random uafk procedure and
applging methods |ike the above to each of these paths. While this
producea results, it seems unsatisfactory from the point of vieuw of
suggesting possible neuro-bhusiological structures: neither does it
lend itself to efficient Implemenfation.

Methods depending on non-linear processing of the gradient along
paths in the image fail to smoothly generalize to fup dimensions, and
cannot predict the appearance of images in which different paths result

in different |ightnesses.
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2."Lightness in Two Dimensional Images.
2.1’Tuo-Dimeneional Method - Continous Case.

We need to extend our ideas to two dimenéiona in order to deal with
actual images. There are a number of ways of arriving at the process to
be described here, we shall follow the simplest {Horn 1968}. We need to
find two-dimensional analogues to differentiation and integration. VThe
first partial derivatives are directional and thus unsuitable since they
Wwill for example completely eliminate evidehce of edges running in a
directéon parallel to their direction of differentiation. Exploring the
partial derivatives and their |inear combinations one finds that the
Laplacian operator is the lowest order combination that is isotropic, or

rotationally symmetric. The Laplacian operator is of course the sum of

the second partial derivatives.
2.1.1 Applying the Laplacian to a Mondrian.

Before investigating the invertibility of this operator; Ieﬁ us see
what happens when one applies it to the image of a Mondrian. Inside any
region one will obtain a finite valus due to the variation in
illumination intensity. At each edge one wWill get a pulse pair, one

positive and one negative. The area of each pulse will be equal to the

intensity step.




FIGURE 3: Applying the laplacian operator to the image-of a
Mondrian figuref '

#
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This can best be seen by considering the first derivative of a
step, namely a single pulse. If this is differentiated again one
obtains a doubled pulse as described. Since this puise will extend
along the edge, one may think of it as a pulse-wall. So each edge
separating regions Will produce a doubled puise wall. It is clear thaf
one can once again separate the component due to reflectance and

illumination simply by discarding all finite parts.
2.1.2 Inverse of the Laplacian Operator.
To complete the task at hand one then has to find a process for
undoing the effect of applying the Laplacian. Again there are a number
. of approaches to this problem, we will use the shortest {Horn 1968} . In
essence one has to solve for pix,y) in a partial differential equation
of the form:

Lip(x,y)) = dix,y)

This is Poisson’s equation and it is usually solved inside a bounded

region using Green’s function {Garabedien 1964} :

plx,y) = /[G(E.‘q; %) % d(§,n) df dy
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The form of Green's function G, depends on the shape of the region
boundary. Nou if the retina is infinite all points are treated
similarly and Green’s functi‘on depends only on two parameters, (E - x)
and (v - y).. This positional independence implies that the above
integral simply becomes a convolution. It can be'»shoim that Green's
function for this case ist

G(E.n s xu) = (1/2 7 ) log (1/r)

Where rre (E- %) + (n- NN

So p(x,y) -//(1/2*) log (1/r) % d(f,,'l) d'g dn

Thus the inverse of the Laplacian operators is simply co_hv‘blution with

(172 =) Iogt(llr). To be precise one has:

(i—»+ é':-) (/72 =) log (1/r) d(E.q) dgd = dix,y)
X" oy £ : l

This is the two-dimensional analogue of:
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X
-_— f(t) dt = f(x)
X

-~

2.1.3 Why one can use the Convolutional Inverse.

If the retina is considered infinite oné can express the inverse as
a simple convolution. If the retina is finite on the other hand one has
to use the more complicated Green’s function formulation.

Now consider a scene on a uniform background whose image is totally
contained on the retina. The result of applying the forward tranaform’
and thresholding will be zero in the area of the uniform background.

The convolutional inverse will therefore receive no contribution from
outside the retina. As a result one can use the convolutional form of
the inverse provided the image of the scene is total ly contained within

the retina.
2.1.4 Normalization.

Once again one finds that the reconstructed hefléctance is not
unique. That is, any non-singular solution of L(p(x.g)) - B can be
added to the input without affecting the result. On the infinife plane
such solutions have the form p(x,y) = (awx + bwy + c). If the scene
only occupies a finite region of space it can be further shown that the

solution Will be unique up to a constant and that one does not have to
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Qorrg about possibie siopes. To be specific: the background around the
scene will be constant in the reconstruction. So one has here exactly
the same normalization problem as in the one-dimensional case.

Assigning white to the region with highest numerical value in the

reconstructed output appears to be & reasonable method.
2.1.5 Tuo-Dimensional Continous Method: Details.

Let r’ (x,y) be the reflectance of the object at the point
corresponding to the image point (x,y). Let 8’ (x,y) be the source
intensity at that object point. Let p’(x,y) be their product, that is
the intensity at the image point (x,y). Note that r’'(x,y) and s’ (x,y)
are positive. |

h’(x,g) = 8" (x,y) % r’(x,y)
Let p(x,y) be the logarithm of p’(x,y) and so on.
pix,y) = six,y) + rix,y)
Nou assume that s(x,y) and its first partial derivatives are continous -

a reasonable assumption to make for the distribution of illumination on

the object. Let L be the Laplacian operator.
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dx,y) = L{p(x,u)) = Lis(x,y)) + Lir(x,y))
Now L(s(x,y)) will be finitebeverguhere, while L(r(x,y)) will be zero
except at each edge separating regions, where one will find a double
pulse wall as described. Now discard all finite partss

t06,y) = T(Liplx,u))) = Lirix,y))

Let G be the operator corresponding to convolution by (1/2=) log (1/r).
Note that ()™ = L.

1(x,y) = G(T(L(p(x,y))) = rix,y) + ¢
2.2 Tuo-Dimensional Method - Discrete Case.

Once again we turn from a continous image to one sampled at
discrete points. First we will have to decide on a tesselation of the
image plane.

2.2.1 Tesselation of the Image Plane.

For regular tesselations the choice is betusen triangular, square

- and hexagonal unit cells. In much past work on image procossihg. square

tesselations have been used for the obvious reasons. This particular

tesselation of the image has a number of diaadvantages. Each cell has
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tuo kinds of neighbors, four adjoining the sides, four on the cornera;
This results in a’number of asymmetries. It makes it difficult to find
convenient difference schemes approximating the Laplacian operator uith
low error term. » |

Triangular unit cells are even worse in that they have thrqe kinds
of neighbors, compounded these drawbacks. Note also that near-circular
objects pack tightest in a pattern with hexagonal celis. For these
reasons we Will use a hexagonal unit cell. It shoufd be kept in mind
however that it is easy to deyelop equivalent results uajng different

tesselations.
2.2.2 Discrete Anaiogda of the Laplacian.

Having decided on the tesselation we need now to find a discrete
analogue of the Laplacian operator. Convolutibn with a central positive
value and a rotationally symmetric negative surround of equal weight is
one possibility. Aside from a negative séale factor, this will approach
application of the Laplacian in the limit as the cell size tends to
zero. |

If one were to use complicated surrounds, the trade-offs betueen
accubacg and resolution would suggest using a negative surround thaﬁ
decreases rapidly outward. For the ;éka of simplicity we will choose
convolution uifh a central cell of weight 1, surrounded bg six cells of
weight -1/6. This function is convenient, symmetric and has a gmall

error term. It Is equal to - ( h/4 L + h/64 L* ) plus eixth and higher



FIGURE 4a: A diScrete analogue of

: | Figure 4b: Delta function minus
“the laplacian operator.

this discrete analogue.
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order derivatives {Richtmeyer 1957}. It should again be pointed out

- that similar results can be developed fbr different functions.
2.2.3 Inverse of the Discrete Operator.

The foruward differencing operator has the form:

dij = Py "z ;“K-"s\-j * Pyy

Where pﬁ is the logarithm of image intensity, Wij are weights, which in
our case are 1/8, and the sum is taken over the 8ix immediate neighbors.
We now have to determine the inverse operation that recovers Pij

from d;: . One approach is to try and solve the difference equation of

the form:

pq- E "Kdgﬂpk"dts

Or in matrix forms W B = d. Note that W ie spérao. having 1’s on the
diagonal and —1/8'3 scattered around. For a finite retina with n sensor
cells one has to introduce boundary conditions to ensure that one has as

many equations as there are unknowns. One then simply inverts the
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matrix W and gets: p = W~ d.
N ~ ~o
This is entirely analogous to the solution in the continous case
for a finite retina. Nﬁl corresponds to the Green’s function. Much as
Green’s function has a large "support", that is, is non-zero over a

large area, so W= is not sparse. This implies that a lot of

computation is needed to perform the inverse operation.
2.2.4 Computational Effort and Simplification.

Solving the difference equations for a given image by simple Gauss-
Jordan elimination requires of the order of n3/2 arithmetic operations.
Another apbroach is to invert W once and for all for a given retina.

For each image then one needs only about n> arithmetic operations. Note
that the other operations, such as foruard differencing, require only
about 6%n arithmetic operations.

What in effect is happening is that each point in the output
depends on each point in the differenced image. Both have n points, so
n? operations are involved. Not only does one have to do a lot of
co&putation. but must also store up the matrix N-‘of size n*. This is
quite prohibitive for even a small retina. |

This latter probiem can be avoided if one remembers the
simplification attendant to the use of an infinite retina in the
continous case. There we found that the integral uith Green’s function
simplified into a convolution. Similarly, if one assumes an infinite

retina here, one finds that W and its inverse become very regular. The
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rous in W are then all the same and the same is true of N-\. Each value
in the output then depends in the same way on the neighboring points in
the differenced image. One need only store up the dependence of one
point on its neighbors for this simple convolutional operafion.

The only remaining difficulty is that W is nou infinite and one can
no longer invert it numerically - one has to find an analytical
expression for the inverse. [ have not been able to find this inverse
exactly. A good first approximation is Iog‘(rolr) - except for r =8,
.when one uses 1 + Ioge(r;). Here r is the distance from the origin and
r

o is arbitrary. The remainder left over when one applies the foruard

difference scheme to this approximation |ies betueen Ioge(l + r°®) and

-6 -6'

Iogﬁ(l -r This error term is of the order of r
In practice oﬁe does not have an infinite retina, but as has been
explained for the continous case one can use the convolutional method
described above for a finite retina, provided that the image of the
scene is wholly contained inside the boundaries of the retina. It is

possible to find an accurate inverse of this kind valid for a limited

retinal size by numerical means.
2.2.5 Tuwo-Dimensional Discrete Method: Details.

Let r% be the reflectance at the object point corresponding to the

image point (i,j). Let 523 be the intensity of the incident light at

this object point. Let p% be the intensity in the image at point

Gi,j).
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:J - 3‘3 % l"i'j
Let p;j be the logarithm of p".i and so on. Let Lv be the operator that

corresponds to convolution with the analogue of the Laplacian. Let G

be its inverse.

P;J‘

- 8‘-5 + rij

dij = paj -E uk;."_ss'c Py (d=Lelp) )

The weigths “iS are 1/6 in this case, and the sum is taken over the six

immediate neighbors.

t.. =d.. ifld
j

i : > e, alse B

i

b -E Yeigtyt gl (1 = Gwlt) )

Here the sum extends over the whole retina and Vij is the convolutional

inverse found numerically as explained above.
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2.2.6 Simplicity of the Inverse.

The forward transform, involving only a simple subtraction of

" immediate neighbors, is clearly a rapid, local operation. The inverse
on the other hand is global, since each point in the output depends on
each point in the differenced image. Computationally this makes thé
inverse slow. The inverse is simple in one sense however: The
difference‘aquations being solved by the inverse have the same form as
the equations used for the forward transform and are thus local. The
‘ problem is that the output here feeds baék into the system and effects
can propagate across the retina. The apparent global nature of the
inverse is thus of a rather special kind and, as we uill see later,
gives rise to very simple implementations involving only local

connections.
2.2.7 Iterative Nethods of Solution.

There are of course other methods for solving large sets of
equations. The fact that W is sparse and has large diagonal elements,
suggests trying something |ike Gauss-Seidel iteration. Each iteration

takes about Bwn arithmetic operations. For effects to propagate across

the retina one requires at Ieast\ﬁﬁ*n‘ - 1)/3 iterations. This is
becausé a hexagonal retina of width m has (3xm® + 1)/4 cells. The above
suggests that one might be able to get away with less than n* arlthmetic

operations. In practice it is found that effects propagate very slouly
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and many more iterations are needed to stabilize the solution, One does
not have to store W, since it is easily generated as one goes along.
Iterative schemes correspond to adding a time-derivative to the
Poisson equation and so turning it into a heat-equation. As one
continues to iterate the steady-state solution is approached. This

intuitive model gives some insight into how the process will converge.
2.2.8 Convergence of Iterative and Feed-back Schemes.

It is not immediately clear that iterative schemes of solving the
difference equations will converge. If they do, they will converge to
the correct solution. Let § be the delta function, that is, one at the
Brigin. zero elsewhere. It can be shoun that if the forward
convolutional operator is W, the convergence of iterative schemes
depends on the behaviour of the error term, (6 - w” , as n becomes
large. Raising a convolutional operator to an integer power is
intended to signify convolution with itself.

In our case, W is one at the origin, with six values of -1/6 around
ite. So (6 - w) Qill be zero at the origin with six values of 1/6 around
it. Now while (8- " wWill always have a total area of one, it does
spread out and its value tends to zero at every point as n tends to
infinity. So this iterative scheme converges: similar results could bév

derived for other negative surrounds.
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2.2.9 Setting the Threshold.

In the discrete case a finite threshold must be selected. As
before, let g’ be the smallest step in the Iogarithﬁ of reflectance jn
the scene, h the sensor spacing and u the radius of the point-spread
function of the optical system. Then we define the effective minimum

step as:
g=2¢g" v min(l, h/2u)

There are some minor differences in what follows depending on whether
one considers the sensor outputs to be intensitg samples at cell-centers
or averages over the cell area. The smallastvoutbut due to an edge will
be about g/6. This is produced when the edge is oriented to cover just
one cell of the neighborhood of six. Let 8 be the maximum of the
intensity gradieht - that is the Laplacian of intensity in this case.

Choose the threshold e as follous:

e < g/6
e > f% h*

e > 347/6 ¢
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2.2.18 Some Notes on This Method.

Notice that an illumination gradient that varies as some power of
distance across the imag§4becomes a linear slope after taking logarithms
and thus produces no comhonent after the differencing operations. Such
simple gradients are suppressed even without the thresholding operation.

In practice the parameters used in choosing the threshold may not
be knouwn or may be variable. In this case one can look at a histogram
of the differenced image. It will contain values both positive and
hegative corresponding to edges and also a large numbgr of values
clustered around zero due to illumination gradients, noise. and so on.
The threshold can be conveniently choosen to contain this central blob.

Noise and illumination gradients have an effect similar to that in
the one-dimensional case. MWith finite céll spacing one cannot precisely
separate the two components of the image intensity and at each edge the
information will be corrupted slightly by noise and illumination
gradient. As the density bf edges per cell area goes up the affect of
this becomes more apparent. In highly textuted scenes the illumination
gradient is hard fo eliminate. |

Once again one has to decide on a normalization‘scheme. Thq;beot
method probably is to let the highest numerical value in the

reconstructed output correspond to uwhite.
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2.2.11 Dynamic Rahge Reduction.

Applying the retinex operation to an image considerable reduces the
range of values. This is because the output, being related to
reflectance, will only have a range of one to two orders of magnitude,
while the input will also have illumination gradients. This will make
such processing useful for picture recording andvtranamiesion {Horn

1968} .
2.2.12 A Frequency Domain Interpretation.

1t may be of interest to look at this method from yet another point
of vied. What one does is to exentuate the high-frequency components, |
threshold and then attenuate the high-frequency components. To see
this, consider first the forward operation. The foufieritransform of
the convolutional operator corresponding to differentiation is i w.
Similarly the two-dimensional fourier transform of the convolutibnél
operator corresponding to the Laplacian is - o”. Here p>ia the radius
in a polar coordinate system of the two-dimensional frequency space. In
" either case one is multiplying the fourier transform by some function
that increases With frequency. Nbu consider the reverse operation. The
fourier transform of the convolutional operation corresponding to |
integration is 1l/iw. Simflarlg the fourier transform of (1/21:)‘logt
(1/r) is -1/p>. So in the inverse step one undoes exactly the emphasis

given to high frequency components in the forward opefation.
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In both the one-dimensional and the two-dimensional case one loses

the zero frequency component. This is uwhy the result has to be

normal ized.
2.3 Physical Models.

There are numerous coﬁtinous physical models to illuatrate‘the
inverse transformation. Anything that satisfies Poissbn'e equation will
do. Such physical models help one visualize what the invgrss of a given
function migﬁt be. Exampies in two dimensions are: perfact'fluid-flou;
steady diffusion, steady heat-flou, deformation of an elastic membranq,
electro-statics anﬁ current flow in a resistive sheet. In the last
model| for example, the input is the distribution of current flowing inta
the resistive sheet normal to its surface, the output is the
distribution of electrical potential over the surface.

In addition to helping one visualize solutions, these continous
models also suggest discrete models. These can be arrived at simply by
éutting up the two-dimensional space in a pattern corresponding to the
interconnection of neighboring cells. That is, the remaining parts form

a pattern dual to that of the sensor cell pattern. UWe uill discuss only

one such discrete model.
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2.3.1 A Discrete Physical Model.

Consider the resistive sheet described, cut up in the dual pattern
of the hexagonal unit cell pattern. MWhat will be left is an
interconnection of resistors in a triangular pattern. The inputs to
this system will be currents injected at the nodes, the potential at the
nodes being the output. This then provides a very simp|elanalog
7mpiementétion of the tedious inverse computation.

It is perhaps at first surprising to see thét each cell is not
connected to every other in a direct fashion. Une would expect this
from the form of the computational inverse. Each cell in thé output
does of course have a connection via the other cells to each of thé_
inputs. Paths aEe shared however in a way that makes the result bofh
simple and planar.. '

Consider for the moment just one node. The potential at the node
is the average of the potential of the six nodes connected to it plus -
the current injected times R/6, where R is the resistance of each
resistor. The economy of connection is due to the fact that the
outputs of this system are fed back into it. It alsd illustrates that
this model locally solves exactly the same difference equation as that
used in the forward transform, only now in reverse.

This immediately suggests an important property of thfe model: By
simply changing the interconnections one can make an inverse for other
foruward transforms. Simplest of all are other image plane tesselations,

both regular and irregular. One simply connects the resistors in the




FIGURE 5: Resistive model of the inverse computation.
The inputs are the currents injected at the nodes.
The outputs are the potentials at the nodes.

L)
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same pattern as are the cells in the input.
More complicated weighted surrounds can be handled by using
resistors with resistances inversely proportional to fhe ueighte. The

network of resistors will then no longer be planar.
2.3.2 A Feed-back Scheme for the Inverse.

Both the comment about outputs feeding back fnto the resistive
model and the earlier notes about iterative schemes suggest yet another
interesting model for the inverse using linear éumming devices.
Operational amplifiers can serve this purpose. One simply connects the
summing element so that they solve the difference equation implied by
- the forward transform. Once again it is clear that such a scheme can be
- generalized to arbitrary tesselations and weighted negative surrounds
simply by changing the interconnections and attenuations on each input.'
Sohe questions of stability arise With esoteric interconnections. For
the simple ones stability is assured.

A little thought will shou that the resistive model described
earlier is in fact a more economical implementation of juat this scheme
uith‘the difference that there the inputs are currents, while here they

arebpotentials.
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2.4 Limitations of the Simple Scheme Presented.

The method presented here Will not correctly calculate reflectance
if uaed‘unmodified on general scenes. [t may however calculate |
Iightne%s fairly well. As the method sténds nou.for example, a sharp
shadow edge uwill not be distinguished from a real edge in the scene and
the two regions so formed will produce différent outputs, while their
reflectances are the same. It may be that this is reasonable
hevertheless,'since we perceive a difference in apparent |ightness.

Smooth gradations of reflecténce on a surface due either to shading
or variations in surface reflectance will be eliminated bg the
thresholding operafions except as far as they affect the intensity at
thé borders of the region. This may imply that we need additional
channels in our visual system to complement the ones carrying the
retinexed information since we do utilize shading as a depth-cue.

The simple normalization scheme described will also be aensitive.to
- specular refleétiona, flourescent paints and light-sources in the field
of view. Large depth-discontinuities present anotﬁer problem. One
cannot assume that the illumination is equal on both sides of the
obscuring edge. In this case the illuminating component does not vary

smoothly over the retina, having instead some sharp edges.
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2.5 Computer Simulation of the Discrete Method.

A computer program uas used to simulate the retinex ﬁrocésa
described on a small retina with both artificial and raal'imagesbeeeﬁ
through an image dissector camera. The hex;gonai_unif cell is used in
this program and the retina itself is also hexagonal. The retina -
contadins 1027‘cellé in a pattern 36 cells across. This is a compromise
dictated by the need to limit the number of érlthmetic operations in the
inverse transform.' In this case one needs about a million and this
takes about a minute of central processor time on our PDP-18.

Both the artificial and the real Mondrians consist of regions
bounded by curved outlines tq eﬁphasize that this method does not
require straight-line edges or boundary exfraction and description.
Yarious distributions of incident illumination can be selecfed for the
artificial scenes. In each case the processing satisfactorily rémoves
the gradient.

For the real scenes it is hard to produce really iargé illumination
gradients by positioning the light-sources. The reconstruction does
eliminate the gradient well, but often minor flaﬁé will appear in the
output due to noise in the input and a number of problems With this kind
of input device such as a very considerable scattef. It is not easy to
predict what effects such imaging device defects Wwill have.

‘ The output is displayed on a DEC 348 display uhich'has a mere eight
gregflevele. It would be interesting to experiment with larger retinas

and better image input- and output-devices.
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2.5.1 Form of Inverse used in the Computer Simulation.

The convolutional form of the inverse was used for speed and |ou
storage requirement. This neccesitated solving the difference equations
once, given a pulse as input. The symmetry of the hexagonal pattern
allous one to identify symmetrically placed cells and only 324 unknowns
needed to be found for a convolutional inverse sufficient for the size
of retina described. As mentioned before, this function is closely
approximated by loge(r,/r) for large r. This can be used to establish

boundary conditions.




FIGURE 8: The method applied to an FIGURE 9: The method applied to a
artificial image. real image

FIGURE 10: The method applied to FIGURE 11: Apparent lightness predicted
Craik's figure. for incomplete figure.

The subfigures in the above have the following interpretation:

A Input - logarithm of image intensity p1.j
B Differenced image dij
C Thresholded difference tij
D Output - computed lightness ]ij

)

E Illumination distribution (pij']ij Sij
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3. Implications and Conclusions.
3.1 Parallel Image Processing Harduare.

The methods described here for foruard transforming, thresholding
and inverse transforming immediately tempt one to think in terme of
electronic components arranged in paralliel layers. Enough has been said
about different models to make it clear how one might connect such
components. Large scale integrated circuit technology may be useful,
provided the signals are either converted from analog. to digital form or
better still, good linear circuits are available in this form.

Construction of such devices would be premature until further
experimentation is performed to decide on optimal tesselations, optimal
negative surrounds, thresholding operations and normélization schemes.

These decisions are best guided by computer simulation.
3.2 Cognitive Psychology.

One of the artificial scenes was created to illustrate Craik’'s

illusion {Brindley 1968, Cornsueet 1978}. Here a sharp edge is bordered

by second-order ‘gradients. As one might expect the smooth gradlenta are

lost in the thresholding and reconstruction producee tuo regions each of
uni form brightness. The difference in brightness between the regions is
equal to the original intensity step at the edge.

The fact that the process presented here falls prey to this
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illusion is of course no proof that humans use the same mechanism. It
is interesting that this technique allows one to predict for example the
appearance of pictures containihg incompletely cloéadvcurves with

second-order gradients on either side.

3.3 Neuro-physioclogy.

The method described here for obtaining |ightness from image
intensifg suggests functions for a number of structures in the primate
retina. The horizontal cells appear to be invoived in the foruard
transformation, while some of the amacrines may be involved in the
inverse transformation. For details see the paper by David Marr {Marr

1974}, in uhich he uses this hypothesis to explain an astonishing number

of facts about the retina.
3.4 Conclusion.

A simple layered, paralliel technique for coﬁputlng lightness from
image intensity has been presented. The method does not invoive an
ability to describe or understand the scene, relying instead on the
spatial differences in the distribution of reflectance:anq illumination.
The foruard step involves accentuating thevedges between regions. The
output of this step is then thresholded to remove illdmination gradients

and noise. The inverse step merely undoes the accentuation of the

~edges.;
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Physical models have been given which can perform this computation
' efficiently in parallel layers of simple networks. The method has been
» éimulated and applied to a number of images. The method grew out of an
attempt to extend Land’s method to two dimensions and fills the ngad for
a lightness judging process in his retinex theory of color perception.
The possibility of processing an imége in such a parallel, simple
fashion without higher-le?el understanding of the scene reinforces my
belief that such low-level processing is of importance in dealing with a
number of features of images. Amongst these are shading, stereo
disparity, focus, edge detection, scene segmentation and motion
paral lax. Some of this kind of processing may actuaflg'ﬁappen in the .
primate retina and visual cortex. The implications for image analysis
hre that it may uwell be that a number of such pre-proceeaing operations
should be performed automatically for the whole image to accentuate or
extract certain attributes before one brings to bear the more powerful,

but tedious and slou sequential goal-directed methods.
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