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ABSTRACT 

Advanced automation promises to increase productivity, improve working condi- 
tions and assure product quality. Some computer-based systems perform tasks blindly, 
without elaborate sensor-based feedback. In many applications however visual input 
can speed up an automated system by eliminating search or the need for costly fixtures 
that maintain exact alignment of parts. In still other situations, many inspection jobs 
for example, there may be no alternative to machine vision. 

Unfortunately, image analysis turned out not to involve just a simple extension of 
some well-known subfield of computer science or optics. A long history of frustrations 
with techniques borrowed from other domains mixed with clever special case solutions 
based on ad hoc techniques has brought the field to a point where it is finally con- 
sidered worthy of serious attention. The foundations of a science of image under- 
standing are beginning to be built on the ancestral paradigms of image processing, pat- 
tern recognition and scene analysis. 

One component of this new thrust is an improved understanding of the physics of 
image formation. Understanding how the measurements obtained from the vision 
input device are determined by the lighting, shape and surface material of the objects 
being imaged helps one develop methods for "inverting" the imaging process, that is, 
exploit physical contraints to allow one to built internal symbolic descriptions of the 
scene being viewed. Another ingredient of the renewed optimism is a better under- 
standing of the computations underlying early stages of the processing of visual infor- 
mation in biological systems. Aside from providing existence proofs that certain 
aspects of a scene can be understood from an image, this also suggests computational 
architectures for performing such tasks in real time. 

A focal point of recent work is the choice of a representation for the objects being 
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viewed and their internal prototypes. The internal descriptions must be tailored to 
expedite the computations involved in spatial reasoning. This has turned out to be a 
challenging new area, with problems and methods quite different from those found in 
the more serial, linguistic kind of reasoning we can introspect about and that artificial 
intelligence research has concerned itself with in the past. 

Industrial problems, such as the visual determination of the position and orientation 
of a part in a bin provide new challenges for machine vision researchers. At the same 1 

time reductions in computational cost make some of the more complex techniques 
developed now feasible for industrial exploitation. 

WHY USE MACHINE VISION TECHNIQUES? 

Computer-based automation appears about to induce the next quantum jump in 
productivity, while also contributing to improved working conditions and higher pro- 
duct uniformity. The flexibility of the computer leads to greater complexity in systems 
and increased degrees of freedom in design. One important and difficult choice the 
designer has to face is whether or not to employ machine vision. 

Many computer-based systems perform their tasks blindly, relying on accurate 
positioning and other methods of traditional "fixed" automation. The added com- 
plexity of machine vision will often pay off in improvements in speed by eliminating 
search or costly pallets used to hold parts in precise relationships to each other and the 
tools. In some existing systems people load parts into these fixtures, employing their 
vision system to determine the position and orientation of the incoming parts. A 
boring job indeed! 

Besides, there are many cases where there is no alternative to some form of non- 
contact sensing. Many inspection tasks seem to require visual analysis of one kind or 
another for example. Sometimes a small number of sensors in strategically located 
areas will do; but more often than not an imaging system is called for together with 
the necessary electronic hardware and software for interpreting the image. The 
applications open to less sophisticated approaches appear to be limited. 

WHAT IS MACHINE VISION? 

An optical system forms an image of some three-dimensional arrangement of parts. 
The two-dimensional image is sensed and converted into machine readable format. It - 
is the purpose of the machine vision system to derive information from this image 
useful in the execution of the given task. In the simplest case the information sought 
will concern only the location and orientation of an isolated object-more commonly, - 
objects have to be recognized and their spatial relationships determined. This can be 
viewed as a process in which a description of the scene being viewed is developed from 
the raw image. The description has to be appropriate to the particular application. 
That is, irrelevant visual features should be discarded, while needed relationships 
between parts of objects must be deduced from their optical projection. 
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One of several reasons why this is non-trivial is that one dimension is lost in the 
imaging system. Depth has to be inferred from a variety of cues or determined by 
special techniques employing optical triangulation or time-of-flight measurements 
[l  - 3 ) .  Fortunately our visual world is very special and it is possible to infer a great 
deal of information about the scene being imaged from one, or a small number of 
images. This is because in most cases one is observing opaque, cohesive objects 
immersed in a transparent medium. In this situation the entities of interest are the 
surfaces of the objects and surfaces are essentially two dimensional. (If volumes were 
imaged a form of tomography based on large numbers of images would be needed.) 

* 
Much still has to be learned about what one can reasonably expect a vision system to 

derive about a three-dimensional reality from an image, and what permanent proper- 
ties of the surfaces can be calculated from the raw image intensity readings. I t  is clear 
that any attempt at recognition, matching or classification ought to be based on these 
estimates of the permanent properties rather than directly on the image intensities, 
which reflect these only indirectly. 

ROOTS OF MACHINE VISION 

Ideas from many related fields have contributed to early progress in machine vision. 
We are all familiar for example with the work on recognition of printed text. Unfor- 
tunately many methods developed in such specialized areas do not generalize smoothly 
to more complicated situations. Characters for example appear as fixed, two dimen- 
sional patterns in essentially only two values of gray. Images of machined parts on the 
other hand contain many levels of gray, call for high resolution and produce image 
intensity "patterns" that not only vary with the attitude of the part in space, but 
depend on the distribution of light-sources. Specular reflections, gloss and mutual 
illumination further complicate the picture. Nevertheless, machine vision has built, in 
part, on ideas from three related fields: image processing, pattern recognition, and 
scene analysis. 

Image processing [4 - 10) concerns itself with the production of new images from 
existing images. Usually these new images are obtained by application of a technique 
from linear systems theory and are enhanced in some fashion so as to improve their 
appearance to a human viewer. In machine vision we are more interested in the gener- 
ation of symbolic descriptions and the use of these descriptions to permit a computer 
controlled system take appropriate action. Nevertheless, some of the techniques devel- 
oped for processing raw image intensity values are of importance. 

Pattern classification [l 1 - 17) deals with the mapping of feature vectors, containing 
measurements of objects, into class numbers. Any connection with our discussion here 
seems remote until it is remembered that frequently the components of the feature 
vector represent measurements obtained from parts of an image. Useful segmentation 
methods and simple measures of shape have been developed for this purpose, although 
many apply only to patterns of an essentially two-dimensional nature. 

Scene analysis [18 - 201, finally, is largely pre-occupied with the transformation of 
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descriptions into more abstract descriptions. When faced with the problem of vision in 
a world of toy blocks for example, the transformation of a line-drawing into a descrip- 
tion in terms of three dimensional solids and how they relate spatially would be a 
typical task for a scene analysis system [21 - 281. Developing the line drawing from the 
raw image in the first place would be a job left to some other subsystem (29 - 311. 
Similar comments can be made regarding the complementary approach of region 
growing [32 - 341. The methods that were developed for manipulating descriptions and - 
relating them to known information about the world being imaged have proved 
invaluable to workers in the fields of machine vision. 

, 

DIFFICULTIES AND SUCCESSES 

Something important has been learned: vision is difficult. This is surprising because 
we find it hard to believe that something that is so immediate to us could be hard. If 
computers can interpret mass spectrograms, perform complicated manipulations on 
symbolic mathematical expressions and even perform medical diagnosis in limited 
disease domains (201, why can't they see? Many challenging problems are succumbing 
to the methods being developed in artificial intelligence, yet some have turned out to be 
surprisingly resistant to concerted attacks. While computers become expert problem 
solvers in areas such as electronic circuit analysis, less impressive progress has been 
made on the problem of common sense reasoning, for example. 

All this means is that we don't have a good idea of how difficult tasks are that we 
cannot introspect about. Vision is one such task. As we learn more about biological 
vision systems we also become more aware of the prodigous amount of computing 
power necessary. At this stage then we have to be very clever in our use of existing com- 
puter hardware or depend on ad hoc solutions applicable only in limited domains. 
Underestimation of the difficulties of vision led to many attempts, foolish in 
retrospect, to apply simple methods from other fields such as linear systems analysis, 
information theory or statistics. 

We now know that the field demands its own methodology. In view of what has been 
said, it is impressive to note that machine vision has already had a significant impact. 
Several systems incorporating machine vision techniques have progressed beyond the 
laboratory demonstration stage. Systems for positioning and orienting integrated cir- 
cuit chips are an example. The major cost component of a simple integrated circuit 
(I.C.) is the packaging, and the major component of that used to be the manual align- 
ment of each I.C. to prepare it for lead bonding. The visual alignment of these chips is 
a fatiguing, uninteresting task possibly even harmful to the operator's vision. 

As a result of pioneering work at the M.I.T. Artificial Intelligence Laboratory [35], ' 

General Motors Research Laboratory [36], Hitachi Central Research Laboratory [37] 
and Texas Instruments this task is now in many cases performed by a computer vision 
system. Curiously, these systems, developed independently, use quite different techni- 
ques for processing the raw image intensities, reflecting to some extent different target 
components, but also the richness of the storehouse of methods that is beginning to 
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develop in this field. One of these systems for example depends on a careful analysis of 
one-dimensional profiles of intensity along strategically chosen lines in the image 
plane. The requisite speed and robustness is obtained in this case without recourse to 
special-purpose, parallel hardware. Other systems inspect printed circuit cards [38], 
visually guide a machine that tightens bolts on telephone-pole molds [39] and direct 
manipulators to pick isolated objects off a conveyor belt [40]. Recently, manufac- 
turers of "industrial robots" have introduced computer-control for their products. 
This permits them to be programmed in more flexible ways. The use of global, rec- 
tangular coordinate systems made possible by this advance prepares these devices for 

' input from machine vision systems such as the ones described here. 

CURRENT TRENDS AND BASIC ISSUES 

Many aspects of machine vision are currently being explored. I can only focus on a 
few issues that seem important to me. One new approach stems from a view of the,  
machine vision system as a device for "inverting" the imaging process-that is, 
developing a description of the scene being viewed from an image. It seems 
reasonable to suppose that understanding the physics of the imaging process would be 
helpful in this endeavor, since this determines the "forward" transformation 
[41-461. What has to be understood is how the measurements obtained from the 
vision input device are determined by the lighting, shape and surface material of the 
objects being imaged. Such understanding will permit the exploitation of physical 
constraints to allow one to build internal symbolic descriptions of the scene based on 
information about the physical properties of the surfaces rather than raw image 
intensities. It is possible for example to calculate the shape of a smooth object from a 
single image if enough is known about the surface reflectance properties and the 
distribution of light-sources [41, 421. 

An extension, of interest in the case of industrial application of machine vision, 
depends on multiple images obtained from the same viewpoint under different lighting 
conditions [47-491. In certain cases this can lead to a simple look-up table computation 
of local surface orientation and surface "albedo", thus producing just theinformation 
needed to determine the attitude of a body in space. Thus these "photometric stereo" 
methods may play a role in solving the "bin-of-parts" problem [50]. Fortunately the 
task of understanding the physics of light reflection and imaging has been made 
simpler by the recent introduction of a systematic formalism for the description of the 
reflectance properties of surfaces by the National Bureau of Standards [51]. 

Progress is also being made in developing better models for biological vision systems 
[51-541. The central thrust of the new approach is the use of computers in evaluating 
competing theories with less reliance on raw neurophysiological and experimental 
psychology data. Instead the emphasis is on what information can be extracted from 
the image and what representations are appropriate for various intermediate forms of 
the symbolic descriptions. Suggestions for computer architectures to support the huge 
amounts of computation needed also may result from this work. 
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An important issue concerns the appropriate representation for objects and space. 
This is particularly important if a computer controlled manipulator is to interact with 
the objects being viewed. Representations of objects in terms of mathematical equa- 
tions defining surface patches, a common method in computer graphics, has not found 
much of a following here, where it may be necessary to reason about objects in terms 
of the space they occupy. Considerable progress has been made in developing represen- 
tations in terms of volumes [55 - 621. In fact, the whole question of spatial reasoning is . 
only now drawing attention. We are once more surprised at the computational com- 
plexities involved, since we cannot easily introspect into our own ability to think about 
objects and space. I 

A representation for surfaces of objects, that arises naturally from the form of the 
output of the photometric methods described above, is one in terms of local surface 
normals. This method of capturing the information regarding the shape of the objects 
leads to a representation that transforms more easily with rotation than more obvious 
approaches. One can think of the object as if covered with "spines". A mapping of 
these spines onto the sphere of possible directions often uniquely specifies the par- 
ticular object and may lead to methods for determining its attitude in space. A similar 
representation has been recently proposed as an intermediate form between the very 
crude symbolic description computed directly from the image and the more elaborate 
ones in terms of volumes described above [54 - 591. 

The use of prior knowledge about the objects being viewed is a thorny issue. Where 
should this knowledge be used and how should it be represented in the computer? On 
the one side one finds advocates of a "non-purposive" approach, where one com- 
putes as detailed a description as possible based on the image, independent of the 
overall task at hand. Others would prefer to use the image only to verify hypotheses 
generated by an analysis of prior knowledge about the likely arrangement of objects 
in the scene. This leads to a paradigm of "controlled hallucination". Probably, 
future systems will embody a compromise, where simple operators are applied over 
the complete image using massive pardlelism. These operations would not be 
influenced much by the current purpose of the overall system. The crude symbolic 
description computed this way would then be used by processes more goal-directed 
and more appropriate to the task at hand. 

Other recent advances have been made in the processing of multiple images of the 
same scene taken from different viewpoints [63 - 671, and the use of parallel "relaxa- 
tion" computations that process images by iteration much as numerical methods for 
solving elliptic partial differential equations [68, 691. 

b 

A SCIENCE OF IMAGE UNDERSTANDING 

A better understanding of image formation is leading to a better exploitation of 
physical constraints that allow interpretation of the two-dimensional image in terms of 
a three-dimensional reality. Simultaneously the success of special purpose systems is 
supporting a more serious interest in vision problems. The simple-minded application 
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of assorted methods borrowed from other fields has been discredited. We no longer 
underestimate the problems and are .resigned to  work hard to get solutions imple- 
mented that will be efficient enough to operate successfully on present-day hardware. 
A science of image understanding is beginning to emerge. 
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