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A b s t r a c t :  In this paper, we derive a closed form solution 
for recovering the motion of an observer relative to  a planar 
surface directly from image brightness derivatives. We do 
not compute the optical flow as an intermediate step, only 
the spatial and temporal intensit); gradients a t  a minimum 
of 8 points. We solve a linear matrix equation for the 
elements of a 3x3 matrix. The  eigenvalue decomposition 
of its symmetric part is then used to compute the motion 
parameters and the plane orientation. 

1. I n t r o d u c t i o n  

The  problem of determining rigid body motion and sur- 
face structure from image data  has been the topic of many 
research papers in the area of machine vision 11-22]. Many 
approaches based on tracking feature points [5,11,19,20] 
or contours 191, using optical flow 11,3,4,10,12,16,17,21,22], 
texture 121, or image intensity gradients j14,15] have been 
proposed in the literat,ure. 

In the feature point matching schemes, information 
about a finite number of well-separated points is used to 
recover the motion (general 8-point 2-frame algorithms of 
Longuet-Higgins i l l ] ,  Tsai and Huang [20), Buxton et  al. 
[ ~ j ,  and the algorithm of Tsai, Huang and Zhu 1191 for 
planar surfaces). These methods require identifying and 
matching feature points in a sequence of images. The min- 
imum number of points required depends on the number 
of image frames. With 2 frames, in most cases, a minimum 
of 5 points results in a unique solution from a set of non- 
linear equations. However, using 8 points, as  in algorithms 
cited above, one only solves linear equations. Here, it is 
assumed that the more difficult problem of establishing 
point correspondence has already been solved. In general, 
this involves determining corners along contours using iter- 
ative searches. For images of smooth objects, it is difficult 
to  find good features or corners. 

For the smooth surfaces, Longuet-Higgins and Prazdny 
j l l j  suggested a method that  uses the optical flow and its 
first and second derivatives at  a single point. Later, Wax- 
man and Ullman j21! developed this into an algorithm for 
recovering the structure and motion parameters from a 
set of nonlinear equations. Subbarao and Waxman 1171 
recently found a closed form solution to the original for- 

mulation in 1211 for planar surfaces. These methods, while 
mathematically elegant, are very sensitive t o  errors in the 
optical flow data  since second order derivatives of noisy 
da ta  are used. 

At the expense of more computation, more robrlst algo- 
rithms have been suggested using the optical flow a t  every 
image point 11:3,4]. Longuet-Higgins 1121 has presented a 
closed form solution for planar surfaces, very similar to 
ours, using the coefficients of the second order optical flow 
equations. However, it is assumed that both components 
of the flow field have already been computed for a mini- 
mum of 5 image points. 

By representing a planar surface in the form of a closed 
contour, Kanatani 191 has shown that  the surface and mo- 
tion parameters can be computed by measuring "diame- 
ters" of the contour using line and surface integrals. Here, 
no point correspondence is required. Assuming that the 
planar surface has a uniform texture density, Aloimonos 
and Chou j2] have presented a procedure for computing 
the motion and surface orientation from texture. 

In much of the research work in recovering surface struc- 
ture and motion from the optical flow field, it is assumed 
that  a reasonable estimate of the full optical flow field is 
available. In general, the computation of the local flow field 
exploits a constraint equation between the local intensity 
ch%nges and the two components of the optical flow. How- 
ever, this only gives the component of the flow in the di- 
rection of the intensity gradient. To compute the full flow 
field, one needs additional constraints such as the heuris- 
tic assumption that the flow field is locally smooth [7,8]. 
This, in many cases, leads to  optical flow fields that  are 
not consistent with the true motion field. 

In an earlier paper, we presented an ilerative scheme 
for recovering the motion of an observer relative to  a pla- 
nar surface directly from the image brightness derivatives, 
without the need to compute the local flow field 114,151. 
Further, using a compact vector notation, we showed that,  
a t  most, two interpretations are possible for planar sur- 
faces and derived the relationship between them. Here, we 
present a closed form solution to the same problem. We 
first solve a linear matrix equation for the elements of a 
3x3 matrix using intensity derivatives a t  a minimum of 8 
points. The special structure of this matrix allows us t o  
compute the motion and structure parameters very easily. 
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2. P r e l i m i n a r i e s  

We first recall some details about perspective projection, 
the motion field, the brightness change constraint equa- 
tion, rigid body motion and planar surfaces. This we do 
using vector notation in order to keep the resulting equa- 
tions as compact as possible. 

2.1. Perspec t ive  P r o j e c t i o n  

Let the center of projection be a t  the origin of a Cartesian 
coordinate system. Without loss of generality we assume 
that the effective focal length is unity. The image is formed 
on the plane a = 1, parallel t o  the zy-plane, that  is, the 
optical axis lies along the z-axis. Let R be a point in the 
scene. Its projection in the image is r ,  where 

The z-component of r is clearly equal to one, i.e., r .i = 1. 

2.2. M o t i o n  F ie ld  a n d  O p t i c a l  F low 

The motion field is the vector field induced in the image 
plane by the relative motion of the observer with respect t o  
the environment. The  optical flow is the apparent motion 
of brightness patterns. Under favourable circumstances 
the optical flow is identical t o  the motion field (Moving 
shadows or uniform objects in motion could create dis- 
crepancies between the motion field and the optical flow. 
Here, we assume that  the motion flow field and the optical 
flow are the same). The  velocity of the image r of a point 
R is given by 

For convenience, we introduce the notation rf and Rt for 
the time derivatives of r and R, respectively. We then have 

that can also be written in the compact form 

since a x ( b  x c )  = (c . a ) b  - ( a  . b)c. The vector rr lies 
in the image plane, and so (rt . i )  = 0. Further, rl = 0 ,  if 
Rf ( 1  R, as expected. 

Finally, noting that  R = ( R  . i ) r ,  we obtain 

1 
rt = -(i x ( R t  x r ) ) .  

R . 2  

2.3. R i g i d  B o d y  M o t i o n  

In the case of the observer moving relative to a rigid envi- 
ronment with translational velocity t and rotational veloc- 
ity w, we find that the motion of a point in the environment 

relative to the observer is given by 

Since R = ( R  . i ) r ,  we can write this as 

Substituting for RL in the formula derived above for r t ,  we 
obtain 

I t  is important t o  remember that  there is an inherent am- 
biguity here, since the same motion field results when dis- 
tance and the translational velocity are multiplied by an 
arbitrary constant. This can be seen easily from the above 
equation since the same image plane velocity is obtained 
if one multiplies both R and t by some constant. 

2.4. B r i g h t n e s s  C h a n g e  E q u a t i o n  

The brightness of the image of a particular patch of a sur- 
face depends on many factors. It may for example vary 
with the orientation of the patch. In many cases, however, 
it remains a t  least approximately constant as  the surface 
moves in the environment. lf we assume that the image 
brightness of a patch remains constant, we have 

where aEjar = ( a E j a z ,  a ~ j a ~ , ~ ) ~  is the image bright- 
ness gradient. It  is convenient to use the notation E, for 
this quantity and Et for the time derivative of the bright- 
ness. Then we can write the brightness change equation in 
the simple form 

E, . rt + El = 0. 

Substituting for rl we obtain 

Now 

E, . (i x (r  x t ) )  = (E, x i) . ( r  x t) = ((E, x i )  x r)  . t ,  

and by similar reasoning 

E, (i x (r x (r x w))) = (((E, x i )  x r) x r) - w, 

so we have 

To make this constraint equation more compact, let us 
define c = El ,  s = (E, x i) x r ,  and v = -s x r ;  then, 
finally, 



1 contain all the informatior~ about the planar surface an. 
c + v . w + - - - s . t  = O .  

R. . i motion parameters. The above constraint equation is lin. -. - 

This is the brightness change equation in  the  case of rigid ear in the elements of P .  Several such equations, for dif- 

body motion. ferent image points, can be used to solve for these param- 
eters. We will show how the special structure of P can be 

2.5. P l a n a r  S u r f a c e  
exploited to recover the motion and plane parameters very 
easily. 

A particularly impoverished scene is one consisting of a Note that the essential parameters are not independent. 
single planar surface. The equation for such a surface is This is because P is not an arbitary 3x3 matrix. It has 

a special structure as a result of the fact that it is the 
R . n  = 1, sum of a skew-symmetric matrix and a dyadic product. It  

takes three parameters to specify w (and hence n ) ,  three to  
where n /  In1 is a unit normal to the plane, and 1/  In1 is the 

specify n ,  and another three for t .  The matrix P ,  however, 
perpendicular distance of the plane from the origin. Since 

is unchanged if we replace n by kn and t by ( l / k ) t  for any 
R = ( R  . i ) r ,  we can write this as 

nonzero k. Thus, there are actually only eight degrees of 
1 r . n  = - 

R . i '  

so the constraint equation becomes 

This is the brightness change equation for a planar sur- 
face. Note again the inherent ambiguity in the constraint 
equation. It is satisfied equally well by two planes with the 
same orientation but a t  different distances provided that 
the translational velocities are in the same proportions. 

2.6. Essen t ia l  P a r a m e t e r s  f o r  P l a n a r  Sur faces  

The brightness change equation can be written as 

Using the identity ( r  x s )  . w = r . ( s  x w), we obtain 

We now use the isomorphism between vectors and skew- 
symmetric matrices. Let us define 

then, n s  = (w x s ) ,  and we conclude that 

If we define 

P = p4 p5 Po = - n + n t T ,  i:: :: :: ) 
we can finally write 

freedom, not nine. 
Equivalently, we can say that there is one constraint on 

P .  Since aT = - n ,  it follows that 

A dyadic product has rank one, or less. The sum of two 
dyadic products has a t  most rank two. So we conclude 
that  

d e t ( P  + p T )  = 0. 

This constraint can be expressed in terms of the essential 
parameters as 

We can use this equation, for example, to solve for pg given 
pl,p2, . . . ,pa.  It is difficult to use this equation directly 
when one attempts to find P from image brightness mea- 
surements. 

There is a simple way around this problem, however. 
Note that rTs  = 0, because s = ((E, x i )  x r ) .  So rT1s = 0, 
and 

c + r T ( p  $ 1 1 ) ~  = 0,  

for arbitrary 1. If we let P' = P + 11, we can write 

and conclude that we cannot recover P from image bright- 
ness measurements alone. To find P ,  we must impose 
the constraint d e t ( P  + p T )  = 0. To avoid dealing di- 
rectly with the resulting non-linear relation between the 
essential parameters, we first find any Pi that satisfies the 
above brightness change constaint equation for all image 
points being considered, and then determine 1 such that 
P = P' - 11 satisfies 

Now, 

c + r T p s  = 0. so that 21 must be an eigenvalue of the real symmetric 

We will refer to { p , )  as the essential parameters (in agree- matrix 

ment with Tsai and Huang 1201) since these parameters P" = P' + p r .  



It will become apparent, in the next section, that we ought 
to choose the middle one of the three real eigenvalues of 
P" for 21. 

In summary, the overall plan is to find any matrix P I  

that  satisfies the image brightness constraint equation, 

a t  a suitable number of image points and consequently 
determine P" . We can then solve for the middle eigenvalue 
of PI' (which is 21) so as to construct the singular matrix 
P = P' - 11, and from that we finally determine n and t 
as well as Cl (and hence w )  using the relationship 

3. Recover ing  Essen t ia l  P a r a m e t e r s  

We are looking for a matrix P' that satisfies the brightness 
change equation, 

c + rTP's = 0, 

a t  a chosen number of image points. Now, 

rTpls = ~ r a c e { ( s r ~ ) ~ ' ) ,  

where F la t (M)  is the vector obtained from the matrix M 
by adjoining its rows. So we can write the brightness 
change equation in the form 

where 
I l l  1 T p " ( Y , , P ~ ,  ...?Ps) , 

We first consider finding p' from the inlagc bsightncss 
derivatives a t  the nlininlum number of points necessary. 
Later, we consider instead a least-squares procedure that 
takes into account informat~on in a whole image region. 

From the derivatives of the brightness at the it" image 
point considered. \\re can construct the vector a,  such that 

T 1 -  a, p - -c,.  

As discussed abovc, there are rcally only eight independent 
degrees of freedom. So we can arbitrarily fix one of the 
components of th r  vector p'. This means that \ve can solve 
for the other eight uslng constraint equations derived from 
eight image points. 

Lct p' : (p' , ,pi, . . . ,pk,~)T denote the solution obtained 
by setting the last elcment equal to zero. I f  we define 

then the above constraint equation reduces to 

Using eight independent points, we can solve the following 
linear matrix equation: 

where 

The solution of the above equation is 

Image int.ensity values are corrupted with sensor noise 
and quantization. These inaccuracies are further accentu- 
ated by methods used for estimating the brightness gradi- 
ent. Thus it is not advisable to  base a method on mea- 
surements a t  just a few points. Instead we propose t . ~  
minimize the error in the brightness constraint equation 
over the whole region I in the image plane. So we choose 
the vector 6' that minimizes 

The solution, in this case: is given by 

In either case, we construct p' by adjoining a zero 1.0 the 
vector c l .  The result immediately gives us thc matrix PI. 
M'e determine the eigenvalues of P" so that. wc car1 con- 
struct P '  by subtracting the identity mat.ris tirnes twice 
the middle eigenvalue from PI'. We can also tlet.er~nine P 
by subtracting the identity matrix times t.he middle eigen- 
value from PI. At this point, we are ready to recover t ,  2: 
and n .  

Kotc that  we d o  not have to repeat the cigenvalue- 
eigenvector analysis, since P' has the same eigenvectors as 
P " ,  and its eigenvalues arc mercly shifted so as to make 
the middle one equal to zero. This follows from the fact 
that i f  u and X are an eigenvector-eigenvalur pair of PI'. 

that is, 
PI' u = Xu: 

then u and ( A  - 21) are an eigenvcctor-eigenvalue pair of 
P ' ,  since 

P'u = ( P I '  - 21I)u = (A - 21)u. 

4. Recover ing  M o t i o n  a n d  S t r u c t u r e  

We now show how to compute the parameters of the trans- 
lational motion and the plane orientation from the essential 
parameters. When we have done this, we will be able to 
also find the rotational parameters using 

As we saw before 



since is skew-symmetric. Let us use the notation o = 
(n i  / t l ,  and r = fi . i ,  where 

n t 
d = -  and t = - ,  

Inl' It1 

are unit vectors in the directions of the  surface normal and 
the translation vector, respectively. Then, 

It turns out  that  fi and i can be easily recovered from the 
eigenvectors of the matrix P ' .  In the following lemma, we 
show that  the eigenvectors of P' are combinations of the 
sought after vectors d and i. 

Lemma 1: Let Po  = U A U ~  be the eigenvalue decom- 
position of P' = ( t n T  + ntT).  If n is not parallel to  t. 
Then, 

A = Diag o ( r  - 1 )  . 0 , o ( r  + 1 ) ) ,  ( 
and, 

i - f i  i x h  i + h  

2(1 - 7) JI-;T \'To I' = [\r- 
P r o o f :  Note that  

P' = o(ifiT + h i T ) .  

Now (i x fi) is the eigenvector with eigenvalue zero since 

Since P' is real symmetric, it has 3 ~r t~hogona l  eigenvec- 
tors. The other two eigenvectors must, therefore, be in the 
plane containing i and fi. Let u = ai + 4ii and X de- 
note an eigenvector-eigenvalue pair for some a- and ( to  
be determined). Then, 

that  becomes 

a[a(i . fi) + p(f i .  fi)]i  + u [ a ( i .  i )  + p(i .fi)]fi = Xai + Xpfi. 

Since (i . fi) = r ,  we can write 

a o r - X  

For this pair of homogeneous equations to  have a non- 
trivial solution for a and 4 ,  the determinant of the 2x2 
coefficient matrix must be zero, that is, 

Substit.uting for X into the earlier equations, we obtain 

Note that o ( r  - 1) < 0 and U ( T  + 1) > 0 because Irl < 1, as 
it is the cosine of the angle between h  and i. So one eigen- 
value is negative and one is positive (This is why we choose 
to make the middle eigenvalue zero when constructing P' 
from P") .  We find that eigenvectors corresponding to the 
eigenvalues X1 = u ( r  - 1) and X3 = o ( r  + 1) are i - fi and 
i + fi, respectively. If we normalize these, we obtain the 
unit vectors 

t - f i  i + fi 
u' = ,,/- 

and u3 = m* 
Note that  we can determine o = In\ It1 from 

The equations for u l  and u s  are linear in i and fi, and 
so  can be easily solved for these vectors: 

The sign of the eigenvectors are arbitrary. If we change 
the sign of u l ,  we obtain instead 

where h  and i are interchanged. This is the dual solution. 
The  signs of the two eigenvectors can be chosen inde- 

pendently. This might suggest that there are a total of four 
different solutions for fi and i. We show next that  two of 
these solutions can be discarded because they correspond 
to viewing the planar surface "from behind". We assume 
that  the visible part of the plane is the bounding surface 
of some solid object. We chose to  define the orientation 
of the surface using the inward pointing normal n .  The 
equation of the plane is R . n = 1, or (r  . n ) ( R  . 2 )  = 1, 
since 

R = (R . i ) r .  

Kow, R . 2  = Z is positive for points in front of the viewer, 
and so r . n must be positive for points on the visible por- 
tion of the plane. The  equation r . n = 0 corresponds to a 
line in the image. Points on one side of this line, for which 
r . n > 0: can be images of points on the plane defined by 
the inward pointing normal n. Conversely, points on the 
other side of the line, where r e  n < 0, can not. They can 
be thought of as images of points on a parallel but oppo- 
sitely oriented plane corresponding to the vector -n .  We 
are analyzing brightness gradients for a particular image 
region. If r . n > 0 for points in this region, then n is a 



possible solution for the surface normal. If r . n < 0 for 
points in this region, then -n is a possible solution. If 
r . n > 0 for some points and r . n < 0 for others, then we 
are not dealing with the image of a single planar surface. 

Also, note that  we can recover t and n up to a scale 
factor. We can let t to  be a unit vector without loss of 
generality. Then, n can be found as follows: 

n = nl fi = In( It/ xi  = an, 

using the known value of a. 

So far, we have assumed that  n and t are not parallel. 
In the special case that i 1 1  fi., we have 

This dyadic product has rank one, that  is it only has one 
non-zero eigenvalue. This is easy to show since any vector 
perpendicular t o  fi is an eigenvector with zero eigenvalue. 
Also, fi is an eigenvector with eigenvalue 20. 

So if we find that P" has two equal eigenvalues (that is 
P' has two zero eigenvalues), then we conclude that d and 
i are parallel and equal to  the eigenvector corresponding 
to the 'remaining eigenvalue. 

We then solve for the rotation parameters by substi- 
tuting the solutions for n and t into the equation 

Even though we gave a complete and compact proof of 
the dual solution in an earlier paper[l5],  it is intriguing t o  
confirm those results with our closed form solution. There, 
we showed that the two solutions are related by 

We conclude that n' ,  t' ,  and w ' ,  as defined above, consti- 
tute a second solution since they lead to the same set of 
essential parameters. 

5. Summary 

In this paper, we presented a closed form solution for 
recovering the motion of a n  observer with respect t o  a pla- 
nar surface without having t o  compute the optical flow as 
an intermediate step. We need the image intensity gra- 
dients a t  a minimum of 8 points. However, in general, 
it is better t o  compute gradients in a larger portion of 
the image to reduce the noise effects. We first employed 
a constraint equation we developed for planar surfaces to 
compute 9 intermediate parameters, the elements of a 3x3 
matrix. We referred t o  them as essential parameters. The 
special structure of this matrix allows us to  compute the 
motion and plane parameters easily. 
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where we have arbitrarily set It1 = 1. The two solutions 
given earlier for n and t already satisfy the duality rela- 
tionship given above. The identity 

(ntT - tnT)x = x x (n x t ) ,  

holds for any vector x. Using this in 

we arrive at 

If this is to  be true for all vectors x, we must have 

n' = n - ntT + tnT. 

So, we finally obtain 

-n' + n't.' = -n + ntT - tnT tnT, 

n' ; n't'  = -n + ntT = P. 
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