
Finding the Nearest Orthonormal Matrix
In some appoaches to photogrammetric problems (perhaps inspired by projective
geometry), an estimate M of an orthonormal matrix R representing rotation is
recovered. It is then desired to find the “nearest’’ orthonormal matrix. While
this two step approach — first finding a “best fit’’ matrix without enforcing or-
thonormality, and then finding the nearest orthonormal matrix — is not to be
recommended, it may be of interest to find a solution to this problem nevertheless.

So, given a matrix M , find the matrix R that minimizes ‖M −R‖2F , subject
to RTR = I , where the norm chosen is the Frobenius norm, i.e. the sum of
squares of elements of the matrix, or

‖X‖2F = Trace(XTX)

We can deal with the orthogonality contraint by introducing a symmetric La-
grangian multiplier matrix � and looking for stationary values of

e(R,�) = Trace
(
(M −R)T (M −R)

)+ Trace
(
�(RTR− I)

)

Now define the derivative of a scalar w.r.t. to a matrix to be the matrix of deriva-
tives of the scalar w.r.t. to each of the component of the matrix. Then it is easy
to derive the following useful identities [Horn 1986]
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Trace(X) = I and

d

dX
Trace(XTX) = 2X

d

dA
Trace(AB) = BT and

d

dB
Trace(AB) = AT

d

dX
Trace(AXB) = ATBT and

d

dX
Trace(AXTX) = X(A+AT )

Differentiating e(R,�) w.r.t. R and setting the result equal to zero yields

−2(M −R)+R(�+�T ) = 0

or, since �T = �,
−(M −R)+R� = 0

solving for M we get
M = R(I +�)

which is a useful decomposition of M into the product of an orthonormal and a
symmetric matrix [Horn et al 1988]. Now

MTM = (I +�)RTR(I +�) = (I +�)2

Hence
(I +�) = (MTM)1/2

and so, finally,
R = M(I +�)−1 = M(MTM)−1/2

Note that MTM is symmetric, non-negative definitive and so will have non-
negative real eigenvalues. The inverse of the square root of MTM can thus be
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computed using eigenvalue-eigenvector decomposition. The inverse of the square
root of MTM has the same eigenvectors as MTM , and eigenvalues that are the
inverse of the square roots of the eigenvalues of MTM , so we can write

(MTM)−1/2 = 1√
λ1

e1eT
1 + 1√

λ2

e2eT
2 + 1√

λ3

e3eT
3

where λi for i = 1, 2, and 3, are the eigenvalues and ei for i = 1, 2, and 3, are
the eigenvectors of MTM . This construction of the inverse of the square root
of MTM fails if one of the three eigenvalues is zero. It is possible however to
pretend that that eigenvalue is equal to one and proceed anyway [Horn et al 1988].

It is easy to verify thatR constructed as above is orthonormal, i.e. RTR = I .
However, there is no guarantee that det(R) = +1. To represent a proper rotation,
the orthonormal matrix R has to satisfy this condition as well. Otherwise it
represents a reflection, not a rotation. There is no easy way to enforce this
condition, and with poor measurements, the estimated “rotation matrix’’ M may
very well lead to a least squares solution R such that det(R) = −1.

The “two stage method’’ of first fitting a matrix without enforcing orthonor-
mality, followed by finding an orthonormal matrix that is “nearest’’ to the fitted
matrix, produces a result that is less accurate than that obtained by solving the
least-squares problem directly. Further, in general least squares fitting problems
are solved more easily, and without the possibility of obtaining an improper ro-
tation, using a better notation for rotation, such as unit quaternions [Horn 1987].
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