
Time to Contact Relative to a Planar Surface

Berthold K.P. Horn∗ Yajun Fang∗∗ Ichiro Masaki∗∗∗

Abstract— We show how to determine the time to contact
from time varying images using only accumulated sums of
suitable products of image brightness derivatives. There is
no need for feature or object detection, tracking of features,
estimation of optical flow, or any “higher level” processing.
This so-called “direct” method for determining the time to
contact is based on analysis of the motion field resulting
from rigid body motion under perspective projection and the
constant brightness assumption. The method has essentially
no latency, since it can be based on analysis of just two
frames of a video sequence, and does not require a calibrated
camera. An implementation of the method is demonstrated on
synthetic image sequences and stop motion sequences — where
the ground truth is accurately know — as well as on video
sequences taken by a camera mounted on moving vehicles.

I. Background

The time to contact (TTC) is defined as the time that would
elapse before the center of projection (COP) reaches the
surface being viewed if the current relative motion between
the camera and the surface were to continue without change.
The TTC is essentially the ratio of distance to velocity:

T = −Z

/
dZ

dt
= −1

/
d

dt
loge(Z), (1)

where Z is the distance from the center of projection (COP)
to the object, while W = dZ/dt is the velocity at which the
object is moving relative to the COP (which will be negative
if the object is approaching the camera). While distance and
velocity can not be recovered from images taken with a
single camera without additional information, such as the
principal distance and the size of the object, the ratio of
distance to velocity can be recovered directly, even with an
uncalibrated sensor.

Consider a simple situation where the camera is approach-
ing an elongated planar object lying perpendicular to the
optical axis, with the direction of translational motion along
the optical axis. If the (linear) size of the object is S and the
size of its image is s, then, from the perspective projection
equation, we have (s/f) = (S/Z), that is, sZ = fS .
Differentiating w.r.t time yields

s
dZ

dt
+Z

ds

dt
= 0 (2)

Together with (1), this shows that the TTC is equal to the
ratio of the size s of the image of the object to the rate of

* Department of Electrical Engineering and Computer Science and
CSAIL, MIT, Cambridge, MA 02139, USA bkph@csail.mit.edu

** Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA 02139, USA yajufang@csail.mit.edu

*** Department of Electrical Engineering and Computer Science, and
MTL, MIT, Cambridge, MA 02139, USA IMasaki@aol.com

change of the size, that is

T = s

/
ds

dt
= 1

/
d

dt
loge(s) (3)

It is convenient to use the inter-frame interval as the unit of
time and express the TTC as a multiple of that interval.

Naturally, formulae such as (3) beg the question of how
one determines the size of the image of an object and the
change in that size over time [12]. In order to use the
formulae, one has to be able to extract features and track
features from frame to frame. In addition, this idea does not
easily generalize to translational motions that do not happen
to be along the optical axis — or to objects other than planar
ones that happen to lie at right angles to the optical axis.

Further, the time varying image is sampled at regular
intervals and the time derivative of size is estimated using
the difference between sizes of the images of the object in
two frames. High accuracy is needed in measuring the size
of the image in order to obtain accurate estimates of the
TTC when it is large compared to the inter-frame interval.
For example, when the time to collision is 100 frames, then
an image of size 100 pixels changes by only 1 pixel from
frame to frame, and so, to achieve even 10% error in the
TTC one would have to measure the size of the image with
an accuracy of better than 1/10 of a pixel. The tolerance for
measurement error becomes even smaller when the object is
further away and the TTC larger.

An alternative approach to determining the TTC is to
first estimate the optical flow (or the so-called normal flow)
and then use the expected form of the flow field based on
rigid body motion relative to a known shape to recover
the TTC [2], [8], [9], [10], [11]. However, methods for
estimating optical flow are iterative, need to work at multiple
scales, tend to be computationally expensive and require a
significant effort to implement properly.

II. Direct Method for Time to Contact

The method described here instead works directly with the
derivatives of image brightness and does not require feature
detecting, feature tracking, or estimation of the optical flow.
The key to the new method is exploitation of the constraints
between the brightness gradient (spatial derivatives of bright-
ness) and the time derivative of brightness. These derivatives
depend on the motion field, and the motion field in turn
depends on the rigid body motion between the camera and
the surface being viewed, as well as the shape of the surface.
Related “gradient based” methods have been exploited before
in so-called “direct” motion vision [3], [4], [5], [6], [7].

A related problem is that of recovering the “focus of
expansion” (FOE). Spatial and temporal derivatives of bright-
ness can be used to locate the point in the image towards
which motion is taking place [7]. One difference between
the two tasks is that, in the FOE case, the intent is to be
insensitive to the magnitude of the velocity and distances to
points in the scene, while in the TTC case the intent is to be
insensitive to the direction of motion. In some sense the two
tasks are complementary: one finds the direction of motion
(FOE) while the other finds the time until we ‘get there’
(TTC). While a FOE method may exploit ‘stationary points’
— points where the time derivative of brightness is zero
while the spatial derivatives are not [7] — such points do not
help in the determination of the TTC since the information
there is insensitive to velocity.

A. Constant Brightness Assumption

Methods for finding the FOE and TTC can both be based
on the “constant brightness assumption”:

d

dt
E(x, y, t) = 0 (4)

which encapsulates the observation that in many situations
the brightness of the image of a point in the scene does not
change significantly as it moves in the image [1]. The above
total derivative can be expanded into:

uEx + vEy +Et = 0 (5)

where u = dx/dt , v = dy/dt are the x and y components
of the motion field in the image, while Ex , Ey , Et are the
partial derivatives of brightness w.r.t. x, y, and t .

The constant brightness assumption naturally does not
apply in all cases. It is violated by specular surfaces, for
example, since typically such a surface will have different
brightnesses when viewed from different directions. It is also
violated if the light sources move relative to the scene. But
in many practical situations it is a reasonable — and useful
— approximation.

B. Perspective Projection and the Motion Field

It is convenient to establish a camera-oriented coordinate
system, with the origin at the COP, the Z axis along the
optical axis (i.e. the perpendicular dropped from the COP to
the image plane), and the X and Y axes parallel to axes of the
image sensor. Image coordinates x and y are measured from
the principal point (foot of the perpendicular dropped from
the COP) — not an arbitrary reference such as the corner of
the sensor array. Finally, the units of measurement for x and
y are the same as that used for the principal distance, f (e.g.
the inter-pixel spacing). The perspective projection equations
of image formation can then be written in the simple form:

x

f
= X

Z
and

y

f
= Y

Z
(6)

where X , Y , and Z are coordinates of a point in space,
while x and y are the corresponding image coordinates These
equations are subject to the familiar scale factor ambiguity

since multiplying X , Y and Z by the same factor does not
change the image coordinates x or y.

By differentiating the perspective projection equations (6)
with respect to time, we obtain

u

f
= U

Z
− X

Z

W

Z
and

v

f
= V

Z
− Y

Z

W

Z
(7)

where (u, v) = (ẋ, ẏ) is the motion field and (U, V ,W) =
(Ẋ , Ẏ , Ż) is the velocity of a point on the object relative
to the sensor (which is opposite to the motion of the sensor
relative to the object). The motion field is also subject to a
scale factor ambiguity, since multiplying the coordinates X ,
Y , and Z and the velocity components U , V , and W by the
same factor does not change u or v.

Using the perspective projection equations (6) we can
rewrite the above in the form

u

f
= U

Z
− x

f

W

Z
and

v

f
= V

Z
− y

f

W

Z
(8)

or

u = 1

Z
(f U − xW) and v = 1

Z
(f V − yW) (9)

This can also be written in terms of the FOE (x0, y0) as

u = −W

Z
(x − x0) and v = −W

Z
(y − y0) (10)

where x0 = f (U/W) and y0 = f (V /W).

III. Translation Relative to a Planar Surface

We show details of three particular cases: (A) Translational
motion along the optical axis towards a planar surface
perpendicular to the optical axis; (B) Translational motion
in an arbitrary direction relative to a planar surface that
is perpendicular to the optical axis; and (C) Translational
motion along the optical axis relative to a planar surface of
arbitrary orientation. Clearly (A) is a special case of both
(B) and (C).

These special cases can be generalized to arbitrary trans-
lational motion relative to a planar surface of arbitrary
orientation. While the simpler cases have closed form solu-
tions, the more general case requires non-linear optimization
techniques. The basic principle stays the same, however.

A. Translational Motion Along the Optical Axis towards a
Plane Perpendicular to the Optical Axis

In this case the motion field is simple, since U = V = 0.
Substituting u = −x(W/Z) and v = −y(W/Z) into the
brightness change equation yields

−W

Z
(xEx + yEy)+Et = 0 (11)

or
CG +Et = 0 (12)

where C = −W/Z is the inverse of the TTC, and G is a
short-hand for the “radial gradient” (xEx + yEy). We can
formulate a least squares method that has us minimize

∑(
CG +Et

)2
(13)

where the sum is over all pixels of a region of interest
(which could be the whole image). Differentiating w.r.t. C
and setting the result equal to zero yields∑(

CG +Et

)
G = 0 (14)

or
C
∑

G2 = −∑
GEt (15)

So C , the inverse of the TTC, is given by

C = −∑
GEt

/∑
G2 (16)

which shows the importance of the “radial gradient” term
G = xEx + yEy . Note that the computation requires
only accumulation of products of brightness gradients, time
derivatives of brightness, and image coordinates x and y.

When the translational motion is not along the optical axis,
but is known, then the above computation can be done using
the modified “radial gradient”

G′ = (x − x0)Ex + (y − y0)Ey, (17)

where (x0, y0) is the location of the known FOE.

B. Arbitrary Translational Motion Relative to a Plane Per-
pendicular to the Optical Axis

In this case, the translational motion need not be in the
direction of the optical axis of the imaging system (nor
perpendicular to the surface). Substituting the equations for
the motion field components u and v into the brightness
change constraint yields

AEx + BEy + CG +Et = 0 (18)

where A = f (U/Z), B = f (V /Z), C = −W/Z, and
G is again a convenient short-hand for the “radial gradient”
(xEx +yEy). We can formulate a least squares method that
has us minimize∑(

AEx + BEy + CG +Et

)2 = 0 (19)

To find the best fit values of A, B, and C , we differentiate
with respect to A, B, and C and set the results equal to zero:∑(

AEx + BEy + CG +Et

)
Ex = 0,∑(

AEx + BEy + CG +Et

)
Ey = 0, (20)∑(

AEx + BEy + CG +Et

)
G = 0.

or

A
∑

E2
x + B

∑
ExEy + C

∑
GEx = −∑

ExEt ,

A
∑

ExEy + B
∑

E2
y + C

∑
GEy = −∑

EyEt , (21)

A
∑

GEx + B
∑

GEy + C
∑

G2 = −∑
GEt .

We can solve the three linear equations to obtain the un-
knowns A, B, and C . Note that the coefficients of the sym-
metric 3× 3 matrix are all sums of products of components
of the brightness gradient and image coordinates, while the
quantities on the right-hand sides of the equations are sums
of products of components of the brightness gradient, image
coordinates, and the time derivative of brightness.

We are typically only interested in C , since the TTC is
the inverse of C . If desired, however, we can find the FOE
as well using

x0 = −A/C and y0 = −B/C (22)

Note that the principal distance, f , need not be known in
order to compute the TTC or the FOE. If f is known,
however, then the actual direction of translational motion
can be computed using

U

W
= − 1

f

A

C
and

V

W
= − 1

f

B

C
(23)

Finally, if U = V = 0, that is, if the translational motion
happens to be along the optical axis, then the least squares
problem simplifies, leading to a single equation for C only,
as already discussed above in case (A).

C. Translational Motion Along the Optical Axis Relative to
an Arbitrary Plane

In this case, the planar surface need not be oriented
perpendicular to the optical axis (or the direction of the
translational motion). Let p and q be the slopes of the planar
surface in the X and Y directions. Then we can write

Z = Z0 + pX + qY (24)

The perspective projection equation yields X = (x/f)Z and
Y = (y/f)Z. Substituting into the above equation for the
plane we obtain

Z

(
1− p

x

f
− q

y

f

)
= Z0 (25)

The motion field is u = −x(W/Z) and v = −y(W/Z),
when U = V = 0. Substituting the expression for Z given
above in these expressions for u and v and then inserting
these into the brightness change constraint equation leads to

−G
W

Z0

(
1− p

x

f
− q

y

f

)
+Et = 0 (26)

where G is again a convenient short-hand for the “radial
gradient” (xEx + yEy). The above can be written

G(C + Px +Qy)+Et = 0 (27)

where P = (p/f)(W/Z0), Q = (q/f)(W/Z0), and also
C = −W/Z0. Since the translational motion here is along
the optical axis, the contact point on the plane is (0, 0,Z0)

T ,
and so the TTC is again just the inverse of C .

We can formulate a least squares problem that has us
minimize ∑(

G(C + Px +Qy)+Et

)2
(28)

where the sum is over all pixels of a region of interest (which
could be the whole image). To find the best fit values of P ,
Q, and C , we differentiate with respect to P , Q, and C and
set the three results equal to zero:∑(

G(C + Px +Qy)+Et

)
Gx = 0,∑(

G(C + Px +Qy)+Et

)
Gy = 0, (29)∑(

G(C + Px +Qy)+Et

)
G = 0.

or

P
∑

G2x2 +Q
∑

G2xy + C
∑

G2x = −∑
GxEt ,

P
∑

G2xy +Q
∑

G2y2 + C
∑

G2y = −∑
GyEt , (30)

P
∑

G2x +Q
∑

G2y + C
∑

G2 = −∑
GEt .

We can solve these three linear equations to obtain the
unknowns P , Q, and C . Note that the coefficients of the
symmetric 3× 3 matrix are all sums of products of compo-
nents of the brightness gradient and image coordinates, while
the quantities on the right-hand sides of the equations are
sums of products of components of the brightness gradient,
image coordinates, and the time derivative of brightness.

The TTC is the inverse of C since C = −W/Z0. The
principal distance, f , need not be known to compute the
TTC. If f is known, then the actual surface orientation can
also be determined using

p = −f
P

C
and q = −f

Q

C
(31)

Finally, if p = q = 0, that is, if the planar surface happens
to lie perpendicular to the optical axis, then the least squares
problem simplifies, again leading to a single equation in C
only, as already discussed above in case (A).

IV. Experiments

The new method for recovering the TTC was implemented
as a MontiVision® “filter” and also in MatLab®. Only the
green channel of the images was used. Images were sub-
sampled after approximate low-pass filtering. Block aver-
aging was used as a computationally cheap approximation
to low pass filtering. Importantly, some of the extra bits in
the sums of blocks of pixel values were retained rather than
discarded in the division by the number of picture cells in a
block. The partial derivatives were estimated in a consistent
way using a 2×2×2 cube of pixel values from two images as
illustrated in Fig. 2 of [1]. A threshold on the time derivative
of brightness blocked contributions from parts of the image
that did not change.

Experiments were performed with: (A) Synthetic Se-
quences; (B) Stop Motion Sequences; and (C) Video from
a camera mounted on an automobile.

A. Synthetic Image Sequences

The actual motion of the camera relative to the object
being imaged must be known in order to test the accuracy
of the method, and to discover how the accuracy depends on
parameters such as the sub-sampling factor and the threshold
on the time derivative. Synthetic image sequences can be
generated with arbitrary known “ground truth.” They can
be based on a single image which is shifted and magnified
so as to simulate a specified translational motion relative to
a planar surface. Such sequences were generated from side
views of large trucks for assumed constant forward motion
with various positions for the FOE.

The algorithm produced TTC values that dropped linearly
as expected. There was a bias in the estimate towards larger
values than the actual TTC values (i.e. the motion was

Fig. 1. One of 225 frames of a synthetic image sequence.

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

Fig. 2. TTC from algorithm (red dots) for synthetic image sequence
compared to true TTC (dashed green line). The horizontal axis shows the
frame number; the vertical axis shows the TTC.

underestimated somewhat). The bias could be as much as
20% for large TTCs, dropping to less than 10% for smaller
TTCs. The systematic bias was particularly noticeable when
images were not averaged and sub-sampled, but dropped
significantly even for 2×2 block averaging and sub-sampling.

Near the end of a sequence, the results became unreliable.
There appear to be two reasons for this: One is that at the
very end of a sequence, the original image has to be greatly
magnified and so appears “out of focus” or blurry, lacking
high frequency content, and may have artifacts resulting from
the interpolation method.

However, the main problem near the end of the sequence
is temporal aliasing, in that the frame to frame change is

very large (e.g. when the TTC is 10, the size of the image
of an object changes by 10%). As with other gradient-based
methods, it appears that results become unreliable when
frame to frame image movement is greater than about half
the size of typical “texture elements.” If the expected size of
texture elements is not known, then a useful rule of thumb
appears to be, that, to obtain reasonable results, motion
should be less than about a pixel from frame to frame in
most parts of the image region used.

This implies that spatial averaging and sub-sampling can
change the range in which TTC estimates are reliable, since
the effective “pixel” size is increased by sub-sampling. This
was confirmed experimentally: reasonable TTC estimates
were available closer to the actual time to contact with sub-
sampled images. For example, with the FOE in the center
of 480× 640 pixel images, sub-sampling using 4× 4 block
averages yielded reliable TTC estimates down to a TTC of
about 60 frames, With 16 × 16 block averaging and sub-
sampling, good results are obtained down to a TTC of less
than 15 frames.

Increased spatial averaging and subsampling comes with
a price, in that the estimation of long TTCs becomes less
accurate. Long TTCs are already hard to estimate accurately
because the frame to frame motion of image patterns is
only a small fraction of a pixel. This problem is only made
more difficult with spatial subsampling. However, temporal
averaging and sub-sampling can extend the range of TTC
estimates to larger values. Taken together this suggests that
a wide range of TTCs can be accommodated if spatial
averaging and subsampling is used for short TTCs and
temporal averaging and subsampling for long TTCs.

B. Stop Motion Image Sequences

Fig. 3. One of 130 frames of a stop motion image sequence.

Artificial video sequences with known “ground truth” can
also be constructed using a stop motion technique, where
the camera — or the object — is moved by a controlled
amount between exposures. This approach does require some
care, since accurate increments in position are required For

example, if the motion increment is 10 mm, then the motion
has to be accurate to better than 1 mm in order to achieve
even 10% accuracy in the effective TTC.

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Fig. 4. TTC from algorithm (red dots) for stop motion image sequence
compared to true TTC (dashed green line). The horizontal axis shows the
frame number; the vertical axis shows the TTC.

Video sequences of toy cars were created using the stop
motion method, moving either the camera or the toy car
in regular steps. Sequences involving camera motion are
subject to small camera rotations that are hard to avoid
and even small camera rotations cause significant apparent
lateral image motions. It was somewhat easier to create
reasonable stop motion sequences with the toy car moving
instead. we found that stop motion sequences produced with
ordinary digital cameras suffer from the effects of automatic
focus and automatic exposure adjustments, as well as artifact
introduced by image compression.

The estimated TTCs were again found to be somewhat
larger than the true TTCs, particularly for large TTCs. This
may be in part because, when the toy car was far away, a
large fraction of the image was constant background. This
could be avoided by masking or segmenting the image. At the
other end of the range, small TTCs were relatively inaccurate
because of the large motions of patterns from frame to frame
and de-focus, as explained above. Overall the accuracy was
less than in the synthetic image case mostly because of the
difficulty of accurately positioning the toy car by hand.

C. Video from Cameras mounted on Automobiles

Finally, the method was tested with real video sequences
taken with a camera mounted on an automobile driven around

Cambridge, Massachusetts.
The original “log” file recorded in the vehicle contained

600× 800 images taken at 57 FPS with a camera equipped
with a standard “Bayer” color filter mask. The “log” file also
contained accurate timing information (analysis of which
indicated that in a number of places individual frames were
lost). Video sequences were extracted from the log file in the
form of 300× 400 images in normal RGB color format.

Fig. 5. One of 400 frames of a video sequence taken from a moving
automobile.

The TTC results obtained agreed with visual estimates of
vehicle motion and distances. Interestingly, in the segment
used, the driver appeared to initially brake so as to keep the
TTC more or less constant. The vehicle was then brought to
a complete halt (at which point the computation of the TTC
become unstable since C approached zero). Unfortunately,
the actual “ground truth” is not known in this case.

In order to provide some way of accessing the performance
of the TTC algorithms in this real world setting, a manual
method for estimating the TTC from the sequence was
devised. Visual estimates of the sizes of objects in the
images were made and differences between sizes observed
in different frames used to estimate the TTC using eq. (3).
It turned out, however, that frame to frame changes in size
— being small fractions of a pixel — were too small to be
measured. So, instead, changes in size over ten frames were
used. Even then, serious quantization occurred, because the
image size could be estimated only to about a pixel accuracy.

Graphs of the TTC from the algorithm and the manually
estimated TTC generally agree, although detailed comparison
is not possible because of the coarse quantization of the
manual estimates. The difficulty with manual estimation
of the TTC once again illustrates that the TTC algorithm
presented here works with remarkably small image motions.
For example, when the size of the image of the van is
about 100 pixels, and the estimated TTC is 500 frames, the
frame to frame change in size of the image is only 0.2 pixel
and the motion of either end of the van is about 0.1 pixel.
Measuring the TTC to an accuracy of say 10% requires, in

43
0

44
0

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

62
0

63
0

64
0

65
0

66
0

67
0

68
0

69
0

70
0

71
0

72
0

73
0

74
0

75
0

76
0

77
0

78
0

79
0

80
0

81
0

82
0

83
0

0

100

200

300

400

500

600

700

800

900

1000

Fig. 6. TTC from algorithm (red dots) applied to video sequence compared
to manually estimated TTC (green squares). The horizontal axis shows the
frame number; the vertical axis shows the TTC.

effect, measuring image positions with an accuracy better
than 0.01 pixel.

In the case of these real world video sequences, the TTC
estimated by the algorithm generally tended to be somewhat
lower than that estimated manually — in contrast to the
results with the synthetic sequences. This is because faster
moving parts of the image corresponding to nearby objects
contributed to the result. This effect could be reduced by
masking or segmentation of the image.

The computing time per frame depends, of course, on
the number of pixels and the sub-sampling rate. It is about
3 msec on a 1.7 GHz Pentium® for 400 × 300 images
subsampled on a 4×4 grid. For high sub-sampling rates, the
cost of block averaging dominates the computation, which
drops to below 2 msec per frame.

By the way, since TTC estimates in general, and manual
estimates in particular, tend to be noisy, it can be instructive
to instead plot∫ t

0

1

T (t)
dt versus loge

(
s(t)

s(0)

)
(32)

(see Fig. 7 for example).

V. Conclusions

A new “direct,” gradient-based method for estimating the
time to contact has been described and demonstrated on
synthetic sequences, stop motion sequences, as well as real
video. The method does not require feature detection, feature

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Fig. 7. Integral of 1/TTC (red dots) versus loge(s(t)/s(0)) (marked every
ten frames). The diagonal dashed green line shows the ideal relationship.

tracking, or estimation of the optical flow, and has low
latency. Spatial averaging and sub-sampling can extend the
range of operation to small TTCs, while temporal averaging
and sub-sampling can extend the range to large TTCs.

In practice, some form of image segmentation may be use-
ful in suppressing contributions from image regions moving
in ways different from those of the object of interest.

VI. Acknowledgments

Log files from MIT’s DARPA Urban Challenge vehicle
were kindly made available by David Moore. Measurements
of image feature sizes used to estimate the TTC manually
were made in some video sequences by Orçun Kurugöl.

References

[1] B.K.P. Horn & B.G. Schunck, “Determining Optical Flow,” Artificial
Intelligence, Vol. 16, No. 1-–3, August 1981, pp. 185-–203.

[2] A.R. Bruss & B.K.P. Horn, “Passive Navigation,” Computer Vision,
Graphics, and Image Processing, Vol. 21, No. 1, January 1983, pp. 3-
–20.

[3] B.K.P. Horn & S. Negahdaripour, “Direct Passive Navigation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, No. 1, January 1987, pp. 168-–176.

[4] B.K.P. Horn & E.J. Weldon, Jr., “Direct Methods for Recovering
Motion,” International Journal of Computer Vision, Vol. 2, No. 1,
June 1988, pp. 51-–76.

[5] S. Negahdaripour & B.K.P. Horn, “A Direct Method for Locating
the Focus of Expansion,” Computer Vision, Graphics and Image
Processing, Vol. 46, No. 3, June 1989, pp. 303-–326.

[6] B.K.P. Horn, “Parallel Analog Networks for Machine Vision,” in
Artificial Intelligence at MIT: Expanding Frontiers, edited by Patrick
H. Winston and Sarah A. Shellard, MIT Press, Vol. 2, pp. 531–573,
1990.

[7] I.S. McQuirk, B.K.P. Horn, H.-S. Lee, & J.L. Wyatt “Estimating
the Focus of Expansion in Analog VLSI,” International Journal of
Computer Vision, Vol. 28, No. 3, 1998, pp. 261-–277.

[8] E. De Micheli, V. Torre, & S. Uras, “The Accuracy of the Computation
of Optical Flow and of the Recovery of Motion Parameters,” IEEE
Transactions on PAMI, Vol. 15, No. 5, May 1993, pp. 434-447.

[9] T.A. Camus, “Calculating Time-to-Contact Using Real-Time Quan-
tized Optical Flow,” Max-Planck-Institut fur Biologische Kybernetik,
Technical Report No.14, February, 1995.

[10] P. Guermeur & E. Pissaloux, “A Qualitative Image Reconstruction
from an Axial Image Sequence,” 30th Applied Imagery Pattern Recog-
nition Workshop, AIPR 2001, IEEE Computer Society, pp. 175–181.

[11] S. Lakshmanan, N. Ramarathnam, & T.B.D. Yeo, “A Side Collision
Awareness Method,” IEEE Intelligent Vehicle Symposium 2002, Vol. 2,
pp. 640–645, 17–21 June 2002.

[12] H. Hecht & G.J.P. Savelsbergh (eds.), Time-To-Contact, Elsevier,
Advances in Psychophysics, 2004.

