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RTT ranging to Wi-Fi APs beats GNSS localization
Berthold K. P. Horna

Abstract—Wi-Fi round-trip-time (RTT) ranging has proven
successful in indoor localization. Here it is shown to be useful
outdoors as well — and more accurate than smartphone code-
based GNSS when used near buildings with Wi-Fi access points
(APs). A Bayesian grid with observation and transition models
is used to update a probability distribution of the position of the
user equipment (UE). The expected value (or the mode) of this
probability distribution provides an estimate of the UE location.

Localization of the UE using RTT ranging depends on knowing
the locations of the Wi-Fi APs. Determining these positions from
floor plans can be time-consuming, particularly when the APs
may not be accessible (as is often the case in order to prevent
unauthorized access to the network). An alternative is to invert
the Bayesian grid method for locating the UE — which uses
distance measurements from the UE to several APs with known
position. In the inverted method we instead locate the AP using
distance measurements from several known positions of the UE.

In localization using RTT, at any given time, a decision has to
be made as to which APs to range to, given that there is a cost
associated with each “range probe” and that some APs may not
respond. This can be problematic when the APs are not uniformly
distributed. Without a suitable ranging strategy one can get into
a dead end state where there is no response from any of the APs
currently being ranged to. This is a particular concern when there
are local clusters of APs that may “capture” the attention of the
RTT app. To avoid this, a strategy is developed here that takes
into account distance, signal strength, time since last “seen,” and
the distribution of the directions to APs from the UE — plus a
random contribution.

We demonstrate the method in a situation where there are
no line-of-sight (LOS) connections and where the APs are
inaccessible. The localization accuracy achieved exceeds that of
the smartphone code-based GNSS.

Index Terms—outdoor location; outdoor position; round trip
time; fine time measurement; RTT; FTM; IEEE 802.11mc;
IEEE 802.11–2016; IEEE 802.11az; IEEE 802.11–2024; Bayesian
grid; Bayesian grid update; observation model; transition model;
relative permittivity; refractive retardation;

I. Introduction

Indoor localization using fine-time-measurement (FTM)
round-trip-time (RTT) with respect to Wi-Fi access points
(APs) [1]–[31] has been shown to work well, achieving 1–
2 meter accuracy [9], [19], [20] in houses and office spaces.
All this without the impractical detailed surveying that some
competing localization methods require. FTM RTT depends on
Wi-Fi APs implementing the IEEE 802.11mc protocol (“two-
sided” RTT) incorporated in IEEE 802.11-2016 [32]. More
recently, it has also become possible to range to “uncoop-
erative” APs using “one-sided” RTT [27]. This allows one to
make use of more types of APs, albeit with somewhat reduced
accuracy, typically 3–4 meters. There are applications available
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that implement localization methods using RTT ranging, in-
cluding Google’s WiFiRttLocator [33], which uses least-
squares (LSQ) multilateration, and FTMRTT [34] which uses
a Bayesian grid update (BGU) method (in 2-D and 3-D). The
BGU method is described in papers on indoor localization
[19], [20], and in the chapter “Updating Occupancy Grids
Using Bayesian Estimation” in Murphy’s “An Introduction to
AI Robotics” [35].

The accuracy of RTT measurements is roughly inversely
proportional to the bandwidth. However, in practice, the results
are not nearly as good as suggested by the Cramér-Rao bound
[27], [36] for a given bandwidth. There are several reasons
for this. One is the so-called “position-dependent” error [19]
which can induce meter-size changes in reported distance
when the user equipment is moved just a few millimeters.
This is prevalent indoors where reflections off various surfaces
lead to interference patterns with texture elements about one-
half wavelength in size [37]. A related problem is multi-path
where the algorithm for detecting the first arrival may be
misled by contributions from later arrivals (Note that there is
no path diversity in IEEE 802.11mc since it does not exploit
the multi-input multi-output (MIMO) method, introduced in
IEEE 802.11ac Wave 2).

Another contribution to measurement error is the retardation
of radio frequency signals by material of high refractive
index along the path. The refractive index n equals

√
εrμr,

where εr is the relative permittivity and μr is the relative
permeability. Many materials have high relative permittivity
at Wi-Fi frequencies [38]–[41] so the refractive index can be
quite large (e.g. εr ≈ 79 and n ≈ 8.9 for water at 2.4 GHz).
The resulting “refractive retardation” adds (n − 1) δ to the
measured distance, where δ is the thickness of the material.
This is less of a problem for outdoor application of RTT
ranging since the radiation typically has to go through just
one or two walls near the AP but does not have to traverse
additional obstacles.

So far there has been little effort to apply RTT methods
outdoors. RTT potentially can work even better outdoors than
indoors because typically most of the path between the AP
and the UE is free of obstacles. It is also desirable to provide
a smooth transition from navigating indoors to navigating
outdoors. Methods based on RTT ranging will work both
indoors and outdoors. Naturally, there are limitations on the
distance one can stray from areas that have Wi-Fi APs.

II. Background

In the indoor situation, there are several alternative local-
ization methods. Perhaps the most frequently reported upon is
based on signal strength (RSSI). Since signal strength depends
on many factors other than distance, it is not possible to unam-
biguously recover the distance of a smartphone from an access
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point. To overcome this problem, so-called finger-printing
methods have been developed which require measurement of
signal strenghts of multiple APs at each point on a grid. The
accuracy achievable depends in part on how fine a grid one is
willing to survey. Spatial fluctuations in the electromagnetic
field due to interference of signals travelling along different
paths have a “texture” on the order of half a wavelength [37]
(which is 60 mm in the 5 GHz band). So, ideally, one should
sample the field at that scale — something that is not practical,
particularly if carried out for “all” locations on a 3-D grid
rather than just on a single horizontal plane.

Further, modern enterprise Wi-Fi systems optimize their
performance and minimize interference by periodically reas-
signing AP channel frequencies and by changing AP transmit
power. Such adjustements make pre-determined fingerprinting
data much less useful. Also, fingerprinting needs to be redone
when there are changes in the radio frequency environment,
such as caused by movement of absorbers or reflectors.

Another approach to indoor localization is based on scatter-
ing a large number of low power beacons (typically Bluetooth)
over the area of interest. The location reported for the device
is then the (known) location of the beacon with the strongest
signal (perhaps also taking into account the locations of the
beacons with the second and third largest signal). The accuracy
of this approach depends on how many beacons one is willing
to spread around. This approach requires additional investment
in hardware, installation, and maintainence — unlike methods
exploiting pre-existing Wi-Fi infra-structure.

Since the accuracy of time-of-flight methods is inversely
proportional to the bandwidth of the signal, there is an
advantage to very wide bandwidths. So-called ultra wide-band
(UWB) systems (> 500 MHz bandwidth) can make accurate
distance measurements. However, the Federal Communication
Commission (FCC) limits the RF power of such systems
(−41.3 dBm/MHz) to the point where they are only useful
for short distances — the order of a few meters, as opposed
to a few tens of meters for Wi-Fi signals.

None of these methods have found wide-spread use for in-
door localization — and certainly not for outdoor localization.

Meantime, IEEE Wi-Fi standards are continuing to increase
the available channel bandwidth, with IEEE 802.11ac (2013)
supporting 80 MHz, IEEE 802.11ax (2021) supporting 160
MHz, and the next standard, IEEE 802.11be (2024), support-
ing 320 MHz bandwidth. Thus FTM RTT is approaching
the ranging accuracy possible with UWB, but without the
stringent power limitations, thus making it useful for distances
of interest here.

III. Motivation

The method that comes to mind first for outdoor navigation is,
of course, GNSS. The typical accuracy of smartphone’s code-
based GNSS under an open sky is 4.9 meters [42]. There are
methods such as carrier phase enhanced GPS (CPGPS), Real-
Time Kinematic Positioning (RTK), Continuously Operating
Reference Stations (CORS), GDGPS, TDRSS, PPP-AR, etc.
that can increase the accuracy of GNSS localization, but these
typically add to cost and complexity, require subscription to

Fig. 1. Cumulative Distribution Function (CDF) for position errors (in meters)
using (i) RTT and the expected value of the Bayesian Grid Update method
(BGU) (blue) and (ii) smartphone GNSS (red). The mean and RMS error are
smaller for the BGU results than for the smartphone’s GNSS. The CDFs are
based on measurements in a hotel/condo complex described in section XI.

auxiliary services, or do not operate in real-time [9]. There has
also recently been interest in alternate methods for localization
given the susceptibility of GNSS to jamming and spoofing
[43].

In the experiments reported here, the positions determined
using the BGU method with RTT ranging have smaller errors
than those of the smartphone’s code-based GNSS. In Fig. 1,
the blue curve is the Cumulative Distribution Function (CDF)
for the error in expected value of the probability distribution
of the RTT measurements, while the red curve is the CDF for
the error in the positions reported by the smartphone’s GNSS.
These CDFs are based on 6140 measurements in a hotel/condo
complex described in section XI.

IV. Where are the APs?

One issue that may have dampened enthusiasm for the deploy-
ment of localization using Wi-Fi RTT is that the positions of
the APs need to be known. Installation of APs may be based
on a marked-up floor plan with the desired coordinates. But
such plans may not be available, may not be accurate or may
not be up to date, given that APs are replaced when faulty,
and are moved when “holes” in Wi-Fi coverage are noted.

Wi-Fi APs supporting IEEE 802.11mc do have the oppor-
tunity to encode their own location and provide it to the
UE using the Location Configuration Information (LCI) or
the Location Civic Report (LCR) fields in the “Measurement
Report Element” [32], [44], but setting these fields has not yet
been widely supported by AP makers. This is about to change
as major vendors such as HPE/Aruba [45], Cisco/Meraki [46],
Juniper [47], Extreme Networks [48], and Zebra [49] start to
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support AP location information and automated determination
of AP locations. These systems can use RTT ranging between
APs, in addition to known coordinates of a small number of
“anchor” APs (whose position may, for example, be obtained
via some form of high-accuracy GNSS) [50].

For APs in areas where GNSS is available (e.g. near the
outside walls of buildings or under non-metallic roofs), it is
also possible to get estimated positions using crowd-sourced
data such as those made available by Google’s geolocation
API [51]. There are some limitations to this, since what is
reported is based in part on the weighted centroid of the
GNSS-determined locations of smartphones that were near
enough to the AP to receive a signal, not the location of the AP
itself. This can be problematic when directional antennas (such
as panel antennas) are used or when most of the pedestrian
traffic is off to one side of the AP. Also, this service can only
be provided for “universally-administered” MAC addresses.
Typically APs support several Basic Service Set Identifiers
(BSSIDs) many of which are “locally administered.” These
are not recorded by the geolocation API because they are not
globally unique.

In any case, what is needed is an automated way of
determining where the APs are.

V. What is New?

The following are contributions of this paper:

• The Bayesian grid update (BGU) method of localization
using FTM RTT ranging is extended for use outdoors;

• An “inverse” Bayesian grid method is used to determine
the locations of the APs;

• A simplified observation model for the outdoor applica-
tion of the Bayesian grid method is presented;

• A strategy is introduced for selecting the set of APs to
range to;

• A way of avoiding Wi-Fi scans, using instead range
probes to determine what frequencies APs operate on;

• Localization results are shown for a large complex (210 ×
120 m) containing multiple buildings with over a hundred
APs;

• Results are compared with coordinates provided by the
smartphone’s code-based GNSS.

VI. Inverse Bayesian grid for finding AP locations.

In localizing the UE, RTT ranges to several APs with known
positions are measured. These ranges are then used either in
least-squares multilateration or in a Bayesian grid method for
estimating the position of the UE. Generally speaking, the
accuracy of the estimated location is inversely proportional to
the square root of the number of APs that respond. Naturally,
the distribution of APs also affects accuracy. For example,
there won’t be sufficient constraint if most APs are located in
more or less the same direction as seen from the UE. More
generally, if the APs lie more or less along a straight line there
will be a two-way ambiguity (related by reflection about that
line). The dependence of accuracy on geometry is similar to
the “dilution of precision” in GNSS parlance [52].

Indoors, distributions for APs that are good for satisfactory
Wi-Fi coverage tend to be useful for localization also. Such
distributions tend to have roughly the same density throughout,
avoid dead zones and avoid clustering of APs. (Although
things tend not to work quite as well near corners of the
convex hull of the AP locations, since constraints there are
not available from all directions). By contrast, in outdoor
localization, many APs may be arranged in clusters inside
buildings and may lie more or less to one side of the UE.

The localization process can be “inverted” and the positions
of APs obtained from ranges measured from known positions
of the UE. RTT ranging data for this purpose can be collected
while walking around with the UE in hand. For such ranging
data to be useful there must be a way of independently locating
the UE during this calibration step. This location information
can be based on prominent landmarks, such as intersections of
paths, corners of buildings, and so on (with a way of marking
the times at which the UE passes them).

The method of locating an AP is very similar to that used for
localization of the UE in that a Bayesian grid of probabilities
of possible AP position is updated using Bayes’ rule based on
a suitable observation model.

VII. Simplified Observation Model for Outdoor Use.

Ideally, the RTT-reported distance would be equal to the true
distance, perhaps with a small amount of measurement noise
added — and a small offset that may depend on the equipment
used [53]. Inside buildings, multi-path and refractive retar-
dation complicate matters in that measured RTT ranges are
typically larger than the actual distances. This can be taken
into account in the BGU method if statistical information is
available relating observed distances to actual distances — i.e.
if we have an observation model [20].

In outdoor localization, while paths between APs and UEs
may not be line of sight (LOS), typically most of the path
is unobstructed. That is, there may very well be one or two
walls between the AP and the outside, but there are typically
no additional obstacles along the path to the UE — as there
would be inside a building.

Experiments confirm that the observation model can be
much simpler in the outdoor application. In the results reported
below (see e.g. Fig. 8), a good model is one where the
measured distance is the actual distance plus a measurement
noise with standard deviation of about 3 meters. This does
not take into account outliers contributing to “long tails” on
the probability distribution. If we ignore these outliers for
the moment, the conditional probability can reasonably be
modeled as

p(rrtt|rtrue) ≈ 1√
2πσ

exp

(
−1

2

(
rrtt − rtrue

σ

)2
)

(1)

where rrtt is the RTT-measured distance while rtrue is the true
distance and σ ≈ 3 m.

When an RTT range measurement rrtt is reported for an
AP, the BGU method steps through the cells of the grid and
updates the probabilities stored there using Bayes’ rule [19],
[20], [35]. At each cell it uses the corresponding position of
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the UE to compute the distance rtrue from the AP (this can be
precomputed if desired). Then, it applies Bayes’ rule, which,
in the 2-D case, comes to

p
(n+1)
i,j = p

(n)
i,j p(rtrue|rrtt)/N (2)

where

N =
∑
i,j

p
(n)
i,j p(rtrue|rrtt) (3)

Division by N can be taken care of simply by renormalising
after the multiplicative part of the update step. Here p

(n)
i,j is

the probability of the UE being in cell (i, j), at step n (In the
3-D case we have instead p

(n)
i,j,k).

The BGU method needs an estimate of p(rtrue|rrtt), which,
using Bayes’ rule, can be written

p(rtrue|rrtt) = p(rrtt|rtrue) p(rtrue)/p(rrtt) (4)

Now, if we assume that the distribution of APs is uniform in
the plane out to some radius R0 say, then

p(rtrue) = 2 rtrue/R
2
0 (5)

Further, if the RTT distance is more or less equal to the true
distance (modulo some measurement error) then we have

p(rrtt) ≈ 2 rrtt/R
2
0 (6)

and so

p(rtrue|rrtt) ≈ p(rrtt|rtrue) (rtrue/rrtt) (7)

Since the Gaussian (eq. 1) is small except near rrtt = rtrue
(because the distances are mostly large compared to σ ) one
may be justified in further simplifying this to

p(rtrue|rrtt) ≈ p(rrtt|rtrue) (8)

and just use p(rrtt|rtrue) from eq. 1 for p(rtrue|rrtt).
In any case, given a measurement rrtt , values of p(rtrue|rrtt)

can be precomputed for a range of values of rtrue in order
to speed up the grid update (the saved result of this pre-
computation has been called a “rate vector” in [20]). Note
that the simple observation model can be used both for
initially locating the APs from RTT measurements, and later
for locating the UE from RTT measurements.

The above shows what to do with positive evidence that the
AP may be in certain grid locations based on a response to
a ranging request from the UE. There may also be negative
evidence: An AP is unlikely to be nearby if it does not respond
to a ranging request (i.e. the absence of an RTT response
is also an “observation”). In this situation one may want to
reduce the probabilities of cells near the current UE positions
— by an amount that decreases with distance. Experiments
with a difference-of-Gaussian probability distribution for this
did not prove especially beneficial in the cases described
below.

VIII. Wi-Fi installations used for AP localization

We determined the positions of APs in three installations
using the “inverse” Bayesian method described above. In each
case, the APs where inside buildings in condo developments
or hotels (see Fig. 3). We report here specifically on one
large complex (210 × 120 m) with 108 APs concentrated
in three main buildings, (with another 5 APs in two aux-
iliary buildings). The APs in this case were from Ruckus
Wireless according to their Organizational Unique Identifier
(OUI) (94:B3:4F). These APs do not advertise support for
IEEE 802.11mc in the Wi-Fi beacon; but do respond to two-
sided RTT ranging requests. The RTT measurements in this
case were determined to have an offset or bias of 2.8 m
(to be subtracted from the RTT measurement) [53] — and
a standard deviation of about 3 m. (Note that the standard
deviation reported in the RTT measurement itself is typically
smaller because it is based on multiple measurements in rapid
succession under near identical conditions and from basically
the same position).

We experimented with several smartphones including
Pixel 5, Pixel 6 Pro and Pixel 7a. The data reported here was
obtained using a Google Pixel 5.

The ground truth is based on coordinates from Google Maps
of landmarks — such as intersections of paths — along with
interpolation over short distances based on step counting and
headings obtained using the smartphone’s acceleration and
magnetic sensors. Coordinates determined from Google Maps
are claimed to be accurate to about 1 m in some regions of the
developed world (with a world-wide average of about 4.38 m)
[54].

Because many RTT measurements were available for lo-
cating each AP, the accuracy of the derived AP position is
better than that of the raw RTT measurement. If the probability
distribution was Gaussian, and the directional geometry ideal,
we would expect

σAP = 1√
N/D

σRTT (9)

where σRTT is the standard deviation of the RTT measure-
ments, σAP is the standard deviation of the computed position
of the AP, N is the number of different UE positions, and
D = 2 in the 2-D case, and D = 3 in the 3-D case. Based on
measurements on three different days, the error in AP position
was estimated to be around 1–2 meters. (This uncertainty in
positions of the APs naturally induces some small error later
when ranging to these APs in order to determine the position
of the UE).

Fig. 2 shows four sample Bayesian grids for locating APs
in the first building. In each subfigure, the red cross marks the
mode of the probability distribution, while the outlines of the
buildings are shown in blue. The grid cells here are 1 × 1 m.
To accommodate the large dynamic range of the probabilities,
the grey level in the figure is made proportional to the square
root of the logarithm of the probability.

RTT measurements often have outliers far from the correct
distance (an example may be seen in the lower left of the
bottom right image). Some of these are easy to reject (e.g. very
large RTT standard deviations or negative RTT distances) but
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Fig. 2. Inverse Bayesian grid distributions for four different Wi-Fi access
points. The red crosses mark the peak values in each probability distribution.
Outlines of the buildings containing the APs are shown in blue.

many masquerade as legitimate measurements (with reason-
able looking standard deviations) even when they are dozens
of meters off the correct value. These outliers do not present
much of problem for the BGU method, but can potentially
be problematic for LSQ-based multilateration because of the
large contributions to the least-squares loss function (An effect
that can be ameliorated to some extent by weighting the
contributions with the inverse of the standard deviation of the
RTT measurement, and by dropping the worst of a group of
related range measurements.).

The above figures are based on data collected during a single
“walk-through” of the property. For improved accuracy, the
final AP locations were based on data collected during several
such data collecting sessions.

IX. Which of the APs should be used for ranging?

When using FTM RTT for localization, one needs a strategy
for selecting APs. It takes time to perform RTT measurement;
so one typically can’t afford to request RTT responses from
all of the responders in an area of interest.

In addition, the Android API limits the number of BSSIDs
in a given ranging request (maxPeers=10). To address
more APs, multiple ranging requests have to be used, with
considerable associated overhead. A tempting strategy is to
include in the current set of APs just the ones that have a
high probability of responding again. One could, for example,
range to the APs that have responded recently, are nearby, and
have good signal strength. But this means that, as the ranging
process is repeated, the number of APs in the current “ranging
set” can only go down. This creates a problem when one
moves away from those APs, since once far enough away, no

responses will be received at all. There must be a mechanism
for adding “new” APs into the “current set” (and for retiring
“old” ones).

One way to attack this problem is to perform frequent Wi-Fi
scans to see which APs are “within range.” But, as discussed
below, Wi-Fi scans are slow and may interfere with ranging.

Another approach is to sort APs on their distance and select
the nearest ones. The distance can be calculated for all APs
— including ones not in the current set — using an estimate
of the current position of the UE. However, if the APs come
in clusters rather than being uniformly distributed, then the
APs nearest to the old estimate of the UE position may form
a group, none of which responds once the UE is far enough
away. When moving away from such a cluster, all ranging
requests may be for “old” APs that eventually are too far away
to respond.

An alternative is to “probe” APs that, while not in the
current set, are likely to respond. There is a cost associated
with ranging to APs. As a result, there is a trade-off between
addressing mostly APs that are expected to respond — in order
to get the highest localization accuracy — versus adding in
some “range probes” — to avoid losing contact and becoming
stuck ranging to a cluster of non-responsive APs.

What criterion to use? We already discussed selection based
on distance (see also [27]). We can also use signal strength
and the time since a response was last obtained. Some of these
criteria only apply to APs that have been “seen” recently. One
alternative is to sort on a “quality” factor that incorporates
all available information. A simple version of a quality factor
is a linear weighted combination of distance, time since last
seen, and the signal-strength when last seen (The stored signal-
strength of an AP not seen recently is not trustworthy, so
should be forced to algorithmically “fade away” with time.).
Other factors may be included, some with positive weights
and some negative. Examples include whether the frequency
of the AP is known or whether it is yet to be determined (see
below). Higher weight can be given to an AP whose frequency
has already been found.

The directions from the UE to the APs are also important,
in that a set of APs lying in more or less the same direction do
not provide a strong constraint on the position of the UE. The
best is a set of directions spread all around the compass. A
criterion based on this notion is harder to incorporate since it
is not dependent on just the direction to an individual AP. One
approach is to first determine the set of directions of all APs
currently responding (since these are likely to respond again
to the next ranging request) and then compute some criterion
favoring directions that are different from those in the current
set of directions. That is, favor APs that lie in large gaps in
the set of current directions to APs.

There may also be prior information about how reliable the
information from a particular AP is (e.g. a radio with different
accuracy may be used in waterproof APs installed outdoors
than those installed indoors e.g. [27]). If BSSIDs with different
frequencies and bandwidths are used, then one may favor those
with higher bandwidth since the RTT range is more accurate
with higher bandwidths.

Finally, to avoid getting stuck in a situation where a set
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of APs yields no response (perhaps because the currently
estimated position of the UE is outdated) it is useful to add
a random component to the overall quality criterion. This
ensures that successive ranging requests will have different AP
composition even when there has been no response (and hence
no change in the quality factors). The random component is
also useful when there are just a few responses. The weight
of the random component can be made to decline with the
number of APs responding, so that it is quite large when there
are no responses (or when there are just one or two), but does
not have much of a disturbing effect when several APs are
providing good data.

In summary, the selection criterion may be based on the
following: (i) distance; (ii) time since last seen; (iii) signal-
strength (faded since last seen); (iv) whether the frequency is
known; (v) directional factor; (vi) prior quality factor (weight);
and (vii) a random perturbation;

Some other factors that could be taken into account in the
quality factor calculation include the frequency band, the Wi-
Fi standard supported by the AP, the selection of preamble,
and whether the Service Set Identifier (SSID) is hidden.
Further, ranging with APs operating in the Dynamic Frequency
Selection (DFS) part of the 5GHz band may be slower on
some platforms, so one may want to assign a lower weight
to those APs. Also, since switching the frequency that the
radio operates on takes time, there may be some advantage
to picking a set of APs that operate on the same small set of
different frequencies. Overall, while some strategy is needed
to avoid getting stuck in a situation where no APs respond to
successive ranging requests, the exact details appear to be less
important.

X. Determining frequency of APs in enterprise Wi-Fi

The frequency of each AP needs to be known in order to
construct an RTT ranging request. While APs in some home
Wi-Fi systems operate on one (or two) fixed frequencies, in
enterprise-level installations, some central optimization peri-
odically (often overnight) reassigns frequencies to improve
throughput and reduce conflicts between APs.

One way to obtain the necessary information is to scan
the Wi-Fi bands and determine the frequencies of APs within
range. Wi-Fi scans take the order of 100 msec per channel This
means that it takes about 4 to 5 seconds to perform a Wi-Fi
scan covering the 2.4 GHz band (11 possible channels) and
the 5 GHz band (25 possible channels) — longer if the 6 GHz
band (15 preferred scanning channels) is also supported. At an
average pace of 1.4 m/sec, a person walks 6 to 7 m during a
Wi-Fi scan. So one can’t afford to simply stop RTT ranging
to wait for Wi-Fi scan results, and, at this point in time there
doesn’t appear to be a way to reliably interlace RTT ranging
and Wi-Fi scanning on certain platforms (nor a way to restrict
Wi-Fi scanning to specific channels).

An alternative is to probe the different possible frequencies
for each AP using range requests. A trial frequency is verified
if there is a valid RTT response (while lack of a response
may be due to any number of reasons, not just that the wrong
frequency was selected). This may be a reasonable alternative

since RTT ranging responses are much faster (50–400 msec —
depending on burst size, number of responders, radio model,
and frequency) than Wi-Fi scans (4–5 sec). It helps that often
enterprise Wi-Fi systems limit the number of channels used
(e.g. using only channels 1, 6, and 11 in the 2.4 GHz band,
and only 8 of the 25 channels in the 5 GHz band). This speeds
up the search for the correct frequencies.

XI. Sample outdoor localization results

Fig. 3. Sample FTMRTT screen shots at the three locations: (i) with 17
APs; (ii) with 29 APs; (iii) with 113 APs. The red blob is the probability
distribution of the UE position. The GNSS position is shown as a small dark
blue dot. APs currently responding are shown in green (or cyan); APs not
currently responding to range requests are shown in magneta (or red);
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We experimented with the method in three locations (see
Fig. 3):

• A small hotel with three main buildings (133 × 72 m) and
17 APs supporting only one-sided RTT (video at [55]).

• A condominium development (182 × 108 m) with 29
active APs, supporting only one-sided RTT.

• A hotel/condominium complex (210 × 120 m) with 113
APs supporting two-sided RTT (videos at [56], [57]).

In each of the above referenced screen recordings, the red
blob is the probability distribution of where the app thinks the
UE may be. APs currently responding are shown in green (or
cyan), while APs not responding are shown in magenta (or
red). APs not in the current selection, but whose frequency is
known, are shown in a brownish yellow. When available, the
GNSS location is shown as a dark blue dot. We focus here on
the third, most challenging case.

The locations of the 113 APs were determined using the
inverse BGU method described above in section VI. In this
particular location, additional prior information was available
to constrain the results for the 108 (= 36 × 3) APs in the
three main buildings: the layout of rooms and the position of
APs within the rooms was the same in each of the buildings.
This made it possible to use a least-squares method to find
that regular pattern using data from all three buildings. The
positions of the APs could then be fine-tuned to fit this
common pattern. The results could not be checked directly
since the APs were not visible from outside, but comparing AP
positions obtained using data on three different days indicated
that the AP positions were accurate to within 1–2 m.

For comparison, the Google geolocation API applied to
the “universally-administered” MAC addresses of these APs
yielded results mostly within 3–5 m of the AP positions
determined as above (albeit with a few large outliers). So,
actually, one could just use the locations supplied by the
geolocation API if a slightly larger error in the estimated
location of the UE was acceptable.

The known positions of the APs were then used in the
FTMRTT app [34] to determine the position of the UE as
it was carried around the property. In this installation APs
use channels in both the 2.4 GHz and 5 GHz bands. The
5 GHz band potentially provides for higher ranging accuracy
because it can support wider bandwidths (up to 80 MHz), but
in this installation, channels in both bands were restricted to
20 MHz bandwidth. BSSIDs operating in the 2.4 GHz band
were chosen for ranging because, for the same transmitted
power, lower frequencies provide a stronger signal [58]. and
so allow for ranging at larger distances (on the other hand,
using both 2.4 GHz and 5 GHz channels on an AP can provide
improved accuracy because of frequency diversity [19]).

GNSS coordinates were recorded, as well as the times at
which easy-to-identify landmarks on the path were passed
(using the repurposed “volume down” key). The geographical
coordinates of these were determined using Google Maps.

In Fig. 4, the ground truth is indicated in blue, the GNSS
coordinates in red, and the results of the BGU method in green.
Note that some parts of the path are traversed twice, and that
there are two gaps in the recording apparently resulting from
firmware freezes leading to 5 second watch-dog timer events.

Fig. 4. Ground truth (blue), GNSS (red) and RTT (green) positions with
outlines of buildings in black. The path folds back on itself and traverses
some sections twice. The large outer rectangle (210×120 m) delineates the
area covered by the Bayesian grid.

The locations of the five APs (top left) not in the three main
buildings are not as well known because they are not part of
a repeating pattern that could be used for fine-tuning.

Fig. 5 compares the errors in the estimated position of the
UE based on RTT measurements and the smartphone’s GNSS.
The mean error for determining the position of the UE using
the BGU method here was 4.16 m (RMS error 4.64 m). For
comparison, the mean error in the GNSS track was 5.85 m
(RMS error 6.31 m). The error in the GNSS positions is about
what is expected of smartphone’s GNSS (4.9 m with open sky
[42]). The corresponding CDF plots are shown in Fig. 1 above.

Note that any remaining uncertainty in the position of the
APs, although small, contributes a bit to the errors in UE
positions.

A. Observed RTT distance measurement errors

We next consider the errors in the RTT measurements by
comparing the reported RTT distance with the actual distance
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Fig. 5. Histogram of errors in the position of the UE (in meters) based on
(i) RTT measurements and known positions of APs; and (ii) the smartphone’s
GNSS measurements. The mean and RMS error are smaller for the RTT based
results than for the smartphone’s GNSS.

between the UE and the AP.
In Fig. 6, the vertical axis is the RTT measured distance

while the horizontal axis is the actual distance. This shows that
the RTT distance can be considered to be the true distance plus
some form of measurement error (and a small offset). There
are, however, also quite a number of large outliers (including
some negative values).

We can present this information in another way by plotting
the difference between the RTT measurement and the true
distance (i.e. the measurement error) versus distance as shown
in Fig. 7. Note that the vertical spread is fairly independent of
distance. Overall, a histogram of RTT error, as in Fig. 8, looks
approximately Gaussian with standard deviation σ ≈ 3 m
(aside from some long tails). This probability distribution was
used as the observation model in the BGU method both for
finding the APs from RTT measurements and then also for
finding the UE from RTT measurements (section VII).

We can use the formula σ ≈ 2.45 + 0.035 d if we wish
to account for a slight increase of measurement error with
distance d (in meters). Note, however, that there remain some
large outliers that do not fit the Gaussian distribution model.

XII. Boot-strapping

Obtaining measurement data for constructing the observation
model — and for locating the APs — takes some effort. There
is a limit to how many distinctive landmarks one may want to
make measurements from. Once an approximate observation

Fig. 6. Scattergram of RTT distance (vertical axis - meters) versus actual
distance (horizontal axis - meters). The scatter is relatively large, in part
because of the small bandwidth (20 MHz). The dashed line has slope one.
There are many outliers far above and below the dashed line.

Fig. 7. Scattergram of error in RTT distance (vertical axis) versus actual
distance (horizontal axis). The mean (μ) of each 5-meter wide histogram bin
is shown in red, while the blue lines go from μ − σ to μ + σ , where σ is
the standard deviation.
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Fig. 8. The histogram of error in RTT measurement has a bell shape somewhat
like a Gaussian, although also sporting long tails. (The error here is in the
RTT measurement, given the AP positions). Superimposed in red is a Gaussian
with standard deviation 3 meter.

model — and approximate positions for the APs — have been
determined in this fashion, one can generate a lot of synthetic
data: The estimate of the location of the UE can then be used
as a proxy for the true position of the UE. This way, instead of
a few dozen measurements obtained from known landmarks,
one has available thousands of RTT measurements that can be
used to improve the model — and refine the positions of the
APs. This boot-strapping process for fine-tuning the model can
be repeated; although the return-on-effort tends to be lower the
second time around.

XIII. Nature of the measurement error

One striking feature of Fig. 4 is the different “fine structure”
of the BGU tracks (green) and the GNSS tracks (red). Part of
the difference is the result of GNSS positions being updated
regularly at 1 second intervals, while the BGU estimates of
position are computed irregularly, several times per second, as
RTT responses come in.

The GNSS tracks are smoother but appear to have a rela-
tively large offset or bias that persists over time. The offset
changes when different satellites come into view, as is apparent
in some sections of the path that were traversed more than
once a few minutes apart. The smoothness of the tracks is
most likely the result of some form of smoothing of the raw
measurements, such as Kalman filtering. This filtering also
manifests itself as a lag that causes the GNSS along-track
error to be greater than the GNSS across-track error.

The BGU tracks, which appear more “jittery,” could be
made smoother using some form of filtering as well. But
filtering introduces lag, which is undesirable when navigating
in real-time. Unlike the GNSS tracks, the BGU tracks tend
to pass through nearly the same positions when the path
is traversed a second time. This is because the “position-
dependent error” [19] does not change much with time.

XIV. Conclusions

The Bayesian grid method of localization using FTM RTT
has been extended for use outdoors. An “inverse” Bayesian
grid method has been used to determine the locations of the
APs. A simplified observation model for outdoor use has been
presented. A strategy has been introduced for selecting the set
of APs to range to in order to avoid dead ends where no AP

being ranged to respond. Experimental results are presented
and analyzed for a large complex (210× 120 m) containing
multiple buildings with over a hundred APs. The methods were
demonstrated in a situation where there are no line-of-sight
(LOS) connections, where the APs are inaccessible, and where
the APs are concentrated in a few clusters. The RTT-based
localization results are compared with the smartphone’s code-
based GNSS.

Of course, many factors influence the performance of GNSS
and FTM RTT. For real-time use, smartphones provide code-
based GNSS. Much greater accuracy can be achieved with
geodetic grade GNSS devices with survey-grade circularly po-
larized antennas if locations are not required in real-time and
data can be collected over a long time. Such setups typically
require equipment that costs several thousand dollars, plus a
second device in a known fixed location, a subscription to a
service providing correction data, as well as post-processing
(i.e. positions are not available in real-time).

Some Wi-Fi APs do not support the FTM RTT protocol and
so can be used only with “one-sided” RTT, which has lower
accuracy [27]. Going in the other direction, the IEEE 802.11az
standard will enable ranging with even higher accuracy. The
results in this paper apply to current smartphone implemen-
tations of code-based GNSS positioning and current “two-
sided” IEEE 802.11mc FTM RTT distance measurements with
respect to Wi-Fi access points.

The adoption of IEEE 802.11mc may not have been as rapid
as one might have hoped. Meantime much progress has been
made in finalizing IEEE 802.11az, the next generation posi-
tioning (NGP) protocol [59], [60]. IEEE 802.11az promises
to further increase accuracy, likely to sub-meter level, by ex-
ploiting MIMO path diversity and channel sounding repetition.
In addition 802.11az will provide reduced measurement time
and added privacy and security. This will further improve
localization using Wi-Fi APs, both indoors and outdoors.
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