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What is Computational Imaging?

• Computation inherent in image formation

(1) Computing is getting faster and cheaper

—precision physical apparatus is not

(2) Can’t refract or reflect some radiation

(3) Detection is at times inherently coded
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Examples of Computational Imaging:

(1) Synthetic Aperture Imaging

(2) Coded Aperture Imaging

(3) Diaphanography—Diffuse Tomography

(4) Exact Cone Beam Reconstruction



(1) SYNTHETIC APERTURE IMAGING

Traditional approach:

• Coupling of resolution, DOF, FOV to NA

• Precision imaging — “flat” illumination

with: Michael Mermelstein, Jekwan Ryu,
Stanley Hong, and Dennis Freeman



Objective Lens Parameter Coupling



Synthetic Aperture Imaging

Traditional approach:

• Coupling of resolution, DOF, FOV to NA

• Precision imaging — “flat” illumination

New approach:

• Precision illumination — Simple imaging

• Multiple images — Textured illumination











Synthetic Aperture Imaging

• Precision illumination — Simple imaging

• Multiple images — Textured illumination

• Image detail in response to textures

• Non-uniform samples in FT space



SAM M6



Creating Interference Pattern



Creating Interference Pattern



Fourier Transform of Texture Pattern



Interference Pattern Texture



Synthetic Aperture Microscopy

• Interference of many Coherent Beams

• Amplitude and Phase Control of Beams



Amplitude and Phase Control



Amplitude and Phase Control



Synthetic Aperture Microscopy

• Interference of many Coherent Beams

• Amplitude and Phase Control of Beams

• On the fly calibration

• Non-uniform inverse FT Least Squares



Wavenumber Calibration using FT



Hough Transform Calibration



Least Squares Match in FT



Fourier Transform of Texture Pattern
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Uneven Fourier Sampling



Polystyrene Micro Beads (1µm)



Resolution Enhancement

• Reflective Optics Illumination

Vaccum UV — Short Wavelength



Reflective Optics M6



Resolution Enhancement

• Reflective Optics Illumination

Vaccum UV — Short Wavelength

• Fluorescence Mode

Resolution Determined by Illumination



Synthetic Aperture Lithography

• Create pattern — controlled interference

Example: Two Dots

Example: Straight Line

• Destructive interference “safe zone”

Example: Bessel Ring

.

http://www.csail.mit.edu/~bkph/images/Binary_Stars.gif
http://csail.mit.edu/~bkph/images/Linear_Growth.gif
http://csail.mit.edu/~bkph/images/Color_Ring.gif
http://csail.mit.edu/~bkph/images/Binary_Stars.gif
http://csail.mit.edu/~bkph/images/Linear_Growth.gif
http://csail.mit.edu/~bkph/images/Color_Ring.gif


(2) CODED APERTURE IMAGING

• Can’t refract or reflect gamma rays

• Pinhole — tradeoff resolution and SNR

with: Richard Lanza, Roberto Accorsi,
Klaus Ziock, and Lorenzo Fabris.



Coded Aperture Imaging

• Can’t refract or reflect gamma rays

• Pinhole — tradeoff resolution and SNR

• Multiple pinholes

• Complex masks can “cast shadows”



Masks — Fresnel Camera



Coded Aperture Principle



Decoding Method Rationale



Coded Aperture Imaging

• Can’t refract or reflect gamma rays

• Pinhole — tradeoff resolution and SNR

• Complex masks can “cast shadows”

•   Decoding by Correlation

•   Special Masks with Flat Power Spectrum



Mask Design — Inverse Systems



Maximizing SNR

min
n∑
i=1

w2
i subject to

n∑
i=1

wi = 1

yields wi = 1
n



Masks — Legri URA



Masks — XRT Coarse



Mask Design — 1D

Definition: q is a quadratic residue (mod p)
if ∃n s.t. n2 ≡ q(mod p)

Legendre symbol(
a
p

)
=
{

1 if a is quadratic residue
−1 otherwise

Correlation with zero shift (p − 1)/2
Correlation with non-zero shift (p − 1)/4



Mask Design

• Auto Correlation

a(i) = (p − 1)
4

(1+ δ(i))

• Power Spectrum

A(j) = (p − 1)
4

(δ(j)+ 1)



Masks — Hexagonal



Coded Aperture Extensions

• Artifacts due to Finite Distance

• Mask / Countermask Combination







Coded Aperture Backprojection

Reconstruction Animation

http://csail.mit.edu/~bkph/images/Coded_Backprojection.html
http://csail.mit.edu/~bkph/images/Coded_Backprojection.html


Coded Aperture Extensions

• Artifacts due to Finite Distance

• Mask / Countermask Combination

• Multiple Detector Array Positions

• “Synthetic Aperture” radiography



Coded Aperture Applications

• Detection of Fissile Material

• Large Area Detector Myth

• Signal and Background Amplified



Spatially Varying Background



Large Area Alone Doesn’t Help



Imaging and Large Area Do!



Coded Aperture Example

• Imaging — 1/R instead of 1/R2



Coded Aperture Detector Array
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Coded Aperture Example

Three weak, distant radioactive sources

Reconstruction Animation

http://csail.mit.edu/~bkph/images/back-402.html
http://csail.mit.edu/~bkph/images/back-402.html


Coded Aperture Applications

• Detection of Fissile Material

• Imaging — 1/R instead of 1/R2

•   Increasing Gamma Camera Resolution

•   Replacing Rats with Mice

.



(3) DIAPHANOGRAPHY

(Diffuse Optical Tomography)

• Highly Scattering — Low Absorption

• Many Sources — Many Detectors

with: Xiaochun Yang, Richard Lanza,
Charles Sodini, and John Wyatt.



Diaphanography

• Randomization of Direction

• Scalar Flux Density



Diaphanography

• Approximation: Diffusion Equation

∆v(x,y)+ ρ(x,y)c(x,y) = 0

v(x,y) flux density

ρ(x,y) scattering coefficient

c(x,y) absorption coefficient

• Forward: given c(x,y) find v(x,y)



Diaphanography

• Approximation: Diffusion Equation

• Leaky Resistive Sheet Analog (2D)



Diaphanography

• “Invert” Diffusion Equation

• Regions of Influence

.



(4) EXACT CONE BEAM ALGORITHM

• Faster Scanning—Fewer Motion Artifacts

• Lower Exposure—Uniform Resolution

with: Xiaochun Yang



Exact Cone Beam Reconstruction

• Faster Scanning—Fewer Motion Artifacts

• Lower Exposure—Uniform Resolution

• Parallel Beam → Fan Beam

• Planar Fan → Cone Beam



Parallel Beam to Fan Beam

Coordinate Transform in 2D Radon Space



Cone Beam Geometry — 3D



Radon’s Formula

• In 2D: ~ derivatives of line integrals

• In 3D: derivatives of plane integrals

• Can’t get plane integrals from projections∫ (∫
f(r , θ)dr

)
dθ

∫ ∫
1
r
f(x,y)dx dy



Radon’s Formula in 3D

f(x) = − 1
8π2

∫
S2

∂2R f(l,β)
∂l2

∣∣∣∣∣
l=x·β

dβ

where

R f(l,β) =
∫
f(x) δ(x · β− l)dV



Grangeat’s Trick

∂
∂z

∫ ∫
f(x,y, z)dx dy =

∂
∂θ

∫ ∫
f(r ,φ,θ)dr dφ



Exact Cone Beam Reconstruction

• Data Sufficiency Condition

• Good “Orbit” for Radiation Source



Radon Space — 2D



Circular Orbit is Inadequate (3D) 



Data Insufficiency



Good Source Orbit



Exact Cone Beam Reconstruction

• Data Sufficiency Condition

• Good “Orbit” for Radiation Source

• Practical Issue: Spiral CT Scanners

• Practical Issue: “Long Body” Problem

.



COMPUTATIONAL IMAGING

(1) Synthetic Aperture Imaging

(2) Coded Aperture Imaging

(3) Diaphanography—Diffuse Tomography

(4) Exact Cone Beam Reconstruction
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