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Image Processing:
Continuous Images

It is often useful to transform an image in some way, producing a new one
that is more amenable to further manipulation. Image processing involves
the search for methods to accomplish such transformations. Most of the
methods examined so far are linear and shift-invariant. Methods with
these properties allow us to apply powerful analytic tools. We show in
this chapter that linear, shift-invariant systems can be characterized by
convolution, an operation introduced in its one-dimensional form when we
discussed the probability distribution of the sum of two random variables.

We also demonstrate the utility of the concept of spatial frequency and
of transformations between the spatial and the frequency domains. Image-
processing systems, whether optical or digital, can be characterized either
in the spatial domain, by their point-spread function, or in the frequency
domain, by their modulation-transfer function. The tools discussed in this
chapter will be applied to the analysis of partial differential operators used
in edge detection, and to the analysis of optimal filtering methods for the
suppression of noise.

Most of the methods discussed here are simple extensions to two di-
mensions of linear systems techniques for one-dimensional signals, but we
shall not assume that the reader is familiar with these techniques. We treat
the continuous case in this chapter and the discrete case in the next.
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6.1 Linear, Shift-Invariant Systems

An image can be thought of as a two-dimensional signal. We can develop
an approach to image processing based on this observation. Consider an
out-of-focus imaging system (figure 6-1). We can think of the image g(x, y)
produced by the defocused system as a processed version of the ideal im-
age, f(x, y), that one would obtain in a correctly focused imaging system.
Now, if the lighting is changed so as to double the brightness of the ideal
image, the brightness of the out-of-focus image is also doubled. Further,
if the imaging system is moved slightly, so that the ideal image is shifted
in the image plane, the out-of-focus image is similarly shifted. The trans-
formation from the ideal image to that in the out-of-focus system is said
to be a linear, shift-invariant operation. In fact, incoherent optical image-
processing systems that are more complicated are typically also linear and
shift-invariant. These terms will now be defined more precisely.

Consider a two-dimensional system that produces outputs g1(x, y) and
g2(x, y) when given inputs f1(x, y) and f2(x, y), respectively:

f1 → → g1

f2 → → g2



6.1 Linear, Shift-Invariant Systems 105

The system is called linear if the output αg1(x, y) + βg2(x, y) is produced
when the input is αf1(x, y) + βf2(x, y), for arbitrary α and β:

α f1 + β f2 → → α g1 + β g2

Most real systems are limited in their maximum response and thus cannot
be strictly linear. Moreover, brightness, which is power per unit area,
cannot be negative. The original input, an image, is thus restricted to
nonnegative values. Intermediate results of our computations can, however,
have arbitrary values.

Now consider a system that produces output g(x, y) when given input
f(x, y):

f(x, y) → → g(x, y)

The system is called shift-invariant if it produces the shifted output g(x −
a, y − b) when given the shifted input f(x − a, y − b), for arbitrary a and b:

f(x − a, y − b) → → g(x − a, y − b)

In practice, images are limited in area, so that shift invariance only holds for
limited displacements. Moreover, aberrations in optical imaging systems
vary with the distance from the optical axis; such systems are therefore
only approximately shift-invariant.

Methods for analyzing linear, shift-invariant systems are important for
understanding the properties of image-forming systems. System shortcom-
ings can often be discussed in terms of the linear, shift-invariant system
that would transform the ideal image into the one actually observed. More
importantly for us, a study of linear, shift-invariant systems leads to useful
algorithms for processing images using either optical or digital methods.

A simple example of a linear, shift-invariant system is one that produces
the derivative of its input with respect to x or y. Linearity follows from
the rules for differentiating the product of a constant and some function
and the rule for differentiating the sum of two functions. Shift invariance
is equally easy to prove. Systems taking derivatives will prove useful as
preprocessing stages in edge-detection systems.

We start by considering continuous images in order to lay the ground-
work for the discrete operations. Linear, shift-invariant systems for pro-
cessing images are extensions to two dimensions of one-dimensional linear,
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shift-invariant systems, such as simple passive electrical circuits. Not sur-
prisingly, most of the results presented here can be derived using simple
extensions of methods used to prove similar results applying to the one-
dimensional case. To simplify matters, we shall factor functions of two
variables into products of two functions of one variable whenever possi-
ble. This will allow us to split the two-dimensional integrals that arise into
products of one-dimensional integrals.

In the analysis of one-dimensional systems, functions of time are typi-
cally used as both inputs and outputs. No system can anticipate its input.
This places a severe restriction on systems for processing one-dimensional
signals: They have to be causal. Only those that obey this restriction
can be physically realized. There is no such problem in the synthesis of
two-dimensional systems.

While we inherit the powerful methods of signal processing from one-
dimensional systems, we must also point out the shortcomings. The con-
straints of linearity and shift invariance are severe and greatly limit the
kinds of things we can do with an image. Still, it is hard to make progress
without some guiding theory.

6.2 Convolution and the Point-Spread Function

Consider a system that, given an input f(x, y), produces as its output

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x − ξ, y − η)h(ξ, η) dξ dη.

Here g is said to be the convolution of f and h. It is easy to show that such
a system is linear by applying it to αf1(x, y)+βf2(x, y) and noting that the
output is αg1(x, y) + βg2(x, y). Here again g1(x, y) is the output produced
when f1(x, y) is the input and g2(x, y) is the output produced when f2(x, y)
is the input. The result follows from the rule for integrating the product
of a constant and a function and from the rule for integrating the sum of
two functions. It is also easy to show that the system is shift-invariant by
applying it to f(x − a, y − b) and noting that the output is g(x − a, y − b).
Thus a system whose response can be described by a convolution is linear
and shift-invariant. We shall soon show the converse:

• Any linear, shift-invariant system performs a convolution.

Convolution is usually denoted by the symbol ⊗. So the above formula can
be abbreviated

g = f ⊗ h.
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It would be useful to relate the function h(x, y) to some observable
property of the system. Given an arbitrary function h(x, y), can we always
find an input f(x, y) that causes the system to produce h(x, y) as output?
That is, can we find an f(x, y) such that

h(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x − ξ, y − η)h(ξ, η) dξ dη ?

Cursory inspection suggests that if this is to be true for arbitrary h(x, y),
then f(x, y) needs to be zero at all points away from the origin and “in-
finite” at the origin. The “function” we are looking for is called the unit
impulse, denoted δ(x, y). It is also sometimes referred to as the Dirac delta
function.

Loosely speaking, δ(x, y) is zero everywhere except at the origin, where
it is “infinite.” The integral of δ(x, y) over any region including the origin
is one. (If we think of a function of x and y as a surface, then this integral
is the volume under that surface.) The impulse δ(x, y) is not a function
in the classical sense (that is, it is not defined by giving its value for all
arguments). It is a generalized function that can be thought of as the
“limit” as ε → 0 of a series of square pulses of width 2ε in x and y and of
height 1/(4ε2). We shall have more to say about this later, but for now we
simply note the sifting property,∫ ∞

−∞

∫ ∞

−∞
δ(x, y)h(x, y) dx dy = h(0, 0),

by which the impulse can be defined. It follows that∫ ∞

−∞

∫ ∞

−∞
δ(x − ξ, y − η)h(ξ, η) dξ dη = h(x, y),

as can be seen by a simple change of variables. By comparing this with our
original equation for the output of the system, we see that h(x, y) is the
response of the system when presented with the unit impulse as input.

Considered as an image, δ(x, y) is black everywhere except at the origin,
where there is a point of bright light. Thus h(x, y) tells us how the system
blurs or spreads out a point of light. In the case of a two-dimensional
system it is called the point-spread function. It is the response of the two-
dimensional system to an impulse and is thus analogous to the familiar
impulse response of a one-dimensional system.

We now want to show that the output of any linear, shift-invariant
system is related to its input by convolution. The point-spread function of
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the system, h(x, y), can be determined by applying the test input δ(x, y).
Given that the response to an impulse is now known, it is convenient to
think of the input, f(x, y), as made up of an infinite collection of shifted,
scaled impulses,

k(ξ, η)δ(x − ξ, y − η).

A simple geometric construction will help show how this can be done.
Divide the xy-plane into squares of width ε. On each such elementary
square erect a pulse of height equal to the average of f(x, y) in the square.
Figure 6-2 shows a cross section through such a two-dimensional array
of square pulses. The function f(x, y) is approximated by the piecewise-
constant function that is the sum of all these pulses.

We can go one step further and replace each rectangular pulse by an
impulse at the center of its square base. The volume under the impulse can
be made equal to the volume of the rectangular pulse, that is, the integral
of the function f(x, y) over the elementary square. If the function f(x, y)
is continuous, and ε is small enough, one can approximate this integral by
the product of the value of f(x, y) at the center of the square and the area
of the square. The desired result is obtained in the limit as we let ε → 0.

The same decomposition of f(x, y) in terms of impulses can be obtained
by appealing to the sifting property of the unit impulse function. Either
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way, we find that

f(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) δ(x − ξ, y − η) dξ dη.
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Having decomposed the function in terms of impulses, we can determine the
overall output, g(x, y), when f(x, y) is the input, by adding the responses
of the system to the shifted, scaled impulses. This is so because the system
is linear.

The response to k δ(x − ξ, y − η) is k h(x − ξ, y − η), since the system
is shift-invariant. Thus, since k is just f(ξ, η),

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) h(x − ξ, y − η) dξ dη.

This can be written in the form h ⊗ f . We show below that convolution is
commutative, so that h ⊗ f = f ⊗ h, and so

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x − ξ, y − η) h(ξ, η) dξ dη.

Linear, shift-invariant systems can always be described by a suitable point-
spread function h(x, y). Using this function we can compute the output
g(x, y), given an arbitrary input f(x, y). The point-spread function is a
complete characterization of a linear, shift-invariant system. We have thus
shown that a linear, shift-invariant system performs a convolution.

We now show that convolution is commutative, that is, that

b ⊗ a = a ⊗ b.

Let c = a ⊗ b, or

c(x, y) =
∫ ∞

−∞

∫ ∞

−∞
a(x − ξ, y − η) b(ξ, η) dξ dη.

Now let x − ξ = α and y − η = β, so that

c(x, y) =
∫ ∞

−∞

∫ ∞

−∞
a(α, β) b(x − α, y − β) dα dβ.

Since α and β are arbitrary dummy variables, we can substitute ξ and η

for them without changing the value of the integral. We obtain

c(x, y) =
∫ ∞

−∞

∫ ∞

−∞
b(x − ξ, y − η) a(ξ, η) dξ dη,

which is b ⊗ a. Convolution is also associative; that is,

(a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).
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This allows us to consider the cascade of two systems with point-spread
functions h1(x, y) and h2(x, y):

f → h1 h2 → g

If the input is f(x, y), then the output of the first system is f⊗h1. This new
signal is the input of the second system, and so the output of the second
system is (f ⊗ h1) ⊗ h2. This can be written in the form f ⊗ (h1 ⊗ h2),
that is, the output produced when the input f is applied to a system with
point-spread function h1 ⊗ h2:

f → h1 ⊗ h2 → g

6.3 The Modulation-Transfer Function

It is harder to visualize the effect of convolution than it is the multiplica-
tion of two functions. Because convolution in the spatial domain becomes
multiplication in the frequency domain, a transformation to the frequency
domain is attractive in the case of linear, shift-invariant systems. Before
we can explore these ideas, however, we must understand what frequency
means for two-dimensional systems.

In the case of one-dimensional linear, shift-invariant systems we find
that eiωt is an eigenfunction of convolution. An eigenfunction of a system
is a function that is reproduced with at most a change in amplitude:

eiωt → → A(ω) eiωt

Here A(ω) is the (possibly complex) factor by which the input signal is
multiplied. That is, if we apply a complex exponential to a linear, shift-
invariant system, we obtain a similar complex exponential waveform at the
output, just scaled and shifted in phase. We call ω the frequency of the
eigenfunction. In practice, we use real waveforms like cos ωt and sinωt,
corresponding to the real and imaginary parts of eiωt. The relationship
between the two forms is, of course, just

eiwt = cos ωt + i sin ωt.

The complex exponential form is used in deriving results because it makes
the expressions more compact and helps avoid the need to treat cosines
and sines separately.
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In a two-dimensional linear, shift-invariant system, the input f(x, y) =
e+i(ux+vy) gives rise to the output

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
ei(u(x−ξ)+v(y−η))h(ξ, η) dξ dη,

or

g(x, y) = e+i(ux+vy)
∫ ∞

−∞

∫ ∞

−∞
e−i(uξ+vη)h(ξ, η) dξ dη.

The double integral on the right is a function of u and v only, and the
output g(x, y) is therefore just a scaled, possibly shifted, version of the
input f(x, y). Thus e+i(ux+vy) is an eigenfunction of convolution in two
dimensions:

ei(ux+vy) → → A(u, v) ei(ux+vy)

Note that frequency now has two components, u and v. We refer to the
uv-plane as the frequency domain, in contrast to the xy-plane, which is
referred to as the spatial domain.

The real waveforms cos(ux+vy) and sin(ux+vy) correspond to waves
in two dimensions. The maxima and minima of cos(ux+ vy) lie on parallel
equidistant ridges along the lines

ux + vy = kπ

for integer k (figure 6-3). Taking a cut through the surface at right angles
to these lines, that is, in the direction (u, v), gives us sinusoidal waves with
wavelength

λ =
2π√

u2 + v2
.

Such waves cannot occur on their own in an imaging system since brightness
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cannot be negative. There must be an added constant offset.
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If we let

H(u, v) =
∫ ∞

−∞

∫ ∞

−∞
e−i(uξ+vη)h(ξ, η) dξ dη,

then, in the special case treated so far,

g(x, y) = H(u, v) f(x, y),

as can be seen from the integral given previously. Thus H(u, v) character-
izes the system for sinusoidal waveforms, just as h(x, y) does for impulsive
waveforms. For each frequency, it tells us the response of the system in
amplitude and phase. In the case of a two-dimensional system it is called
the modulation-transfer function. It is the frequency response of the two-
dimensional system and so is analogous to the familiar frequency response
of a one-dimensional system. (Note that H(u, v) need not be real-valued.)

Just as we can learn much about the quality of an audio amplifier
from its frequency response curve, so we can compare camera lenses, for
example, by looking at their modulation-transfer function plots.

6.4 Fourier Transform and Filtering

An input f(x, y) can be considered to be the sum of an infinite number
of sinusoidal waves, just as earlier we thought of it as the sum of an infi-
nite number of impulses. This is another convenient way to decompose the
input, since we once again already know the system’s response to each com-
ponent, provided we are given the modulation-transfer function H(u, v). If
we decompose f(x, y) as

f(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e+i(ux+vy) du dv,

then

g(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
H(u, v) F (u, v)e+i(ux+vy) du dv.

(The 1/4π2 occurs here for consistency with formulae introduced later on.)
The only problem is that the decomposition into sinusoidal waves is not
quite as trivial as the decomposition into impulses. How do we find F (u, v)
given f(x, y)? As we shall demonstrate in a moment, the answer turns out
to be

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(ux+vy) dx dy
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provided that this integral exists. We can see that this might be so by
changing variables,

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(α, β)e−i(uα+vβ) dα dβ,

and substituting into the expression for f(x, y) to obtain

1
4π2

∫ ∞

−∞

∫ ∞

−∞
f(α, β)

[∫ ∞

−∞

∫ ∞

−∞
ei(u(x−α)+v(y−β)) du dv

]
dα dβ.

The inner integral does not converge. We show later, using so-called con-
vergence factors, that it can be considered to equal 4π2δ(x−α, y −β). We
therefore have∫ ∞

−∞

∫ ∞

−∞
f(α, β)δ(x − α, y − β) dα dβ = f(x, y),

so that

1
4π2

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e+i(ux+vy) du dv = f(x, y).

F (u, v) is called the Fourier transform of f(x, y). Similarly, we can define
the Fourier transform G(u, v) of the output g(x, y). Finally,

G(u, v) = H(u, v) F (u, v),

which is simpler than

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x − ξ, y − η)h(ξ, η) dξ dη.

Thus convolution has been transformed into multiplication!
We also see once again that the modulation-transfer function H(u, v)

specifies how the system attenuates or amplifies each component F (u, v)
of the input. A linear, shift-invariant system thus acts as a filter that se-
lectively attenuates or amplifies various parts of the spectrum of possible
frequencies. It can also shift their phase, but this is all it does. We might
conclude that restricting ourselves to linear, shift-invariant systems seri-
ously limits what we can accomplish, but at the same time it allows us to
derive a lot of useful results, because the mathematics is manageable.

Note the minor asymmetry in the expressions for the forward Fourier
transform

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(ux+vy) dx dy
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and the inverse transform

f(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e+i(ux+vy) du dv.

The constant multipliers are split up in this way to be consistent with
other textbooks. The fact that the transforms are almost symmetric makes
it possible to deduce properties that apply to the inverse transform, given
properties that apply to the forward transform. Observe, however, that
F (u, v) is generally complex, whereas f(x, y) is always real. Note also that
H(u, v) is the Fourier transform of h(x, y).

Not all functions have a Fourier transform. Functions in certain simple
classes are equal to the Fourier integrals of their Fourier transforms. But it
is hard to characterize exactly which functions do, and which do not, have
a transform.

A different kind of difficulty is that the integrals are taken over the
whole xy-plane, whereas imaging devices only produce usable images over
a finite part of the image plane. Moreover, computers only use discrete
samples of these images. These two issues will be discussed in more detail
in the next chapter.

6.5 The Fourier Transform of Convolution

Let c = a ⊗ b; then the Fourier transform C(u, v) of c(x, y) is
∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ ∞

−∞
a(x − ξ, y − η)b(ξ, η) dξ dη

]
e−i(ux+vy) dx dy

or ∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞

∫ ∞

−∞
a(x − ξ, y − η)e−i(ux+vy) dx dy

]
b(ξ, η) dξ dη.

That is,

C(u, v) =
∫ ∞

−∞

∫ ∞

−∞
A(u, v)e−i(uξ+vη)b(ξ, η) dξ dη = A(u, v)B(u, v).

Convolution in the spatial domain becomes multiplication in the frequency
domain. This it is the ultimate justification for the introduction of the
complex machinery of the frequency domain. The commutativity and as-
sociativity of convolution follow directly from the corresponding properties
of multiplication.
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Noting the near-symmetry between forward and inverse transforms, we
can show that the transform of the product d = ab is

D(u, v) =
1

4π2 A(u, v) ⊗ B(u, v).

The argument is similar to the one used above.
Next, consider the convolution c = a ⊗ b at (x, y) = (0, 0) :

c(0, 0) =
∫ ∞

−∞

∫ ∞

−∞
a(−ξ,−η)b(ξ, η) dξ dη.

We also have

c(0, 0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
C(u, v) du dv,

by taking the inverse transform of C(u, v). Since

C(u, v) = A(u, v)B(u, v),

we have∫ ∞

−∞

∫ ∞

−∞
a(−ξ,−η)b(ξ, η) dξ dη =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
A(u, v)B(u, v) du dv.

If we reflect a(x, y) and repeat the above argument for a(−x,−y), we obtain
instead∫ ∞

−∞

∫ ∞

−∞
a(ξ, η)b(ξ, η) dξ dη =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
A∗(u, v)B(u, v) du dv,

since the transform of a(−x,−y) is A∗(u, v), the complex conjugate of
A(u, v). In particular, we see that∫ ∞

−∞

∫ ∞

−∞
a2(ξ, η) dξ dη =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
|A(u, v)|2 du dv,

assuming that a(x, y) is real. Here |A(u, v)|2 = A∗(u, v)A(u, v). This re-
sult, equating power in the spatial domain with power in the frequency
domain, is known as Raleigh’s theorem. The discrete equivalent is Parse-
val’s theorem.

6.6 Generalized Functions and Unit Impulses

The unit impulse δ(x, y) is not a function in the traditional sense, because
we cannot define its value for all x and y. A consistent interpretation is
possible, though, if we think of δ(x, y) as the limit of a sequence of functions.
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We need a function that depends on a parameter in such a way that its
properties approach those defined for the unit impulse as the parameter
tends to a specified limit. This sequence is said to define a generalized
function. An example will help clarify this idea.

Consider the sequence of square pulses of unit volume:

δε(x, y) =
{

1/(4ε2), for |x| ≤ ε and |y| ≤ ε;
0, for |x| > ε or |y| > ε.

Cross sections through three functions in this sequence look like this:

→ →

Clearly ∫ ∞

−∞

∫ ∞

−∞
δε(x, y) dx dy = 1,

and further, if f(x, y) is sufficiently well behaved,

lim
ε→0

∫ ∞

−∞

∫ ∞

−∞
δε(x, y)f(x, y) dx dy = lim

ε→0

1
4ε2

∫ ε

−ε

∫ ε

−ε

f(x, y) dx dy.

This is just f(0, 0), as can be seen by expanding f(x, y) in a Taylor series
about the point (0, 0). Also

lim
ε→0

δε(x, y) = 0 for any (x, y) �= (0, 0).

Thus the sequence of functions {δε(x, y)} can be thought of as defining the
unit impulse. When evaluating an integral involving δ(x, y), we can use
δε(x, y) instead and then take the limit of the result as ε → 0.

From the form given for δε(x, y) we see that δ(x, y) can be thought of
as the product of two one-dimensional unit impulses,

δ(x, y) = δ(x)δ(y),

where the one-dimensional impulse is defined by the sifting property,∫ ∞

−∞
f(x) δ(x) dx = f(0) for arbitrary f(x).
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The integral of the one-dimensional unit impulse is the unit step func-
tion, ∫ x

−∞
δ(t) dt = u(x),

where

u(x) =




1, for x > 0;
1/2, for x = 0;
0, for x < 0.

Conversely, we can think of the unit impulse as the derivative of the unit
step function. This can be seen by considering the step function as the
limit of a sequence {uε(x)}, where

uε(x) =




1, for x > +ε.
(1/2)

(
1 + (x/ε)

)
, for |x| ≤ ε;

0, for x < −ε.

Then clearly
d

dx
uε(x) =

{
1/(2ε), for |x| ≤ ε;
0, for |x| > ε.

It must be pointed out that different sequences may define the same
generalized function. We can, for example, consider the sequence of Gauss-
ians,

δσ(x, y) =
1

2πσ2 e− 1
2

x2+y2

σ2 ,

as σ → 0. Functions in this sequence have unit volume, and δσ(x, y) tends
to zero for all points (x, y) �= (0, 0) as σ → 0. The sequence δσ(x, y) has
the advantage over δε(x, y) of being infinitely differentiable.

What is the Fourier transform of the unit impulse? We have∫ ∞

−∞

∫ ∞

−∞
δ(x, y)e−i(ux+vy) dx dy = 1,

as can be seen by substituting x = 0 and y = 0 into e−i(ux+vy), using the
sifting property of the unit impulse. Alternatively, we can use

lim
ε→0

∫ ∞

−∞

∫ ∞

−∞
δε(x, y)e−i(ux+vy) dx dy,

or

lim
ε→0

1
2ε

∫ ε

−ε

e−iux dx
1
2ε

∫ ε

−ε

e−ivy dy,
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that is,

lim
ε→0

sin uε

uε

sin vε

vε
= 1.

We conclude that a system whose point-spread function is the unit impulse
is the identity system, since it does not modify anything in the signal. All
frequencies are passed through with unit gain and no phase shift, since the
modulation-transfer function H(u, v) is unity: The output is equal to the
input.

6.7 Convergence Factors and the Unit Impulse

The integral

∫ ∞

−∞

∫ ∞

−∞
ei(ua+vb) du dv

does not converge. The problem is that the oscillations in the integrand
do not die away as u and v become large. One way to assign a mean-
ing to the integral, despite this problem, is to multiply the integrand by a
convergence factor that forces it to be small when u and v are large (fig-
ure 6-4). The convergence factor has to depend on a parameter in such a
way that the modified integral approaches the original one when the pa-
rameter approaches a specified limit. The value assigned to the integral is
the limit of the modified integral as the parameter approaches this limit.
The method will become clear as we apply the notion of convergence factor
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to the integral given above.
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A convenient convergence factor, in this case, is the Gaussian,

cσ(u, v) = e− 1
2

u2+v2

σ2 ,

where σ is the parameter that will be varied. Note that

lim
σ→∞ cσ(u, v) → 1, for any finite (u, v).

The integral we have to evaluate is∫ ∞

−∞

∫ ∞

−∞
e− 1

2
u2+v2

σ2 ei(ua+vb) du dv,

or ∫ ∞

−∞
e− 1

2 (u
σ )2

+iua du

∫ ∞

−∞
e− 1

2 ( v
σ )2

+ivb dv.

Now ∫ ∞

−∞
e− 1

2 (u
σ )2

cos(ua) du =
√

2πσe− 1
2 a2σ2

,

while ∫ ∞

−∞
e− 1

2 (u
σ )2

sin(ua) du = 0,

since sin(ua) is an odd function of u. The overall integral is thus

2πσ2e− 1
2 (a2+b2)σ2

,

which tends to zero as σ → ∞ as long as a2 + b2 �= 0. When a = b = 0,
however, the result does not tend to a finite limit as σ → ∞. The integral∫ ∞

−∞

∫ ∞

−∞
ei(ua+vb) du dv

must therefore be a scaled version of the impulse function δ(a, b). But what
is the scale factor? Since∫ ∞

−∞

∫ ∞

−∞
δ(a, b) da db = 1,

we can determine the scale factor by considering

lim
σ→∞

∫ ∞

−∞

∫ ∞

−∞
2πσ2e− 1

2 (a2+b2)σ2
da db.
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The double integral can be split into the product of two single integrals as
follows:

2πσ2
∫ ∞

−∞
e− 1

2 a2σ2
da

∫ ∞

−∞
e− 1

2 b2σ2
db = 4π2.

The product is independent of σ, and we finally have∫ ∞

−∞

∫ ∞

−∞
ei(ua+vb) du dv = 4π2δ(a, b).

This result was used earlier in our discussion of the Fourier transform.

6.8 Partial Derivatives and Convolution

We shall use differentiation to accentuate edges in images, and it will be
useful to know how the Fourier transform of the derived image is related
to the Fourier transform of the original image. That is, if F (u, v) is the
Fourier transform of f(x, y), what are the Fourier transforms of ∂f/∂x and
∂f/∂y? Consider the transform∫ ∞

−∞

∫ ∞

−∞

∂f

∂x
e−i(ux+vy) dx dy,

or ∫ ∞

−∞

[∫ ∞

−∞

∂f

∂x
e−iux dx

]
e−ivy dy.

We can attack the inner integral using integration by parts:∫ ∞

−∞

∂f

∂x
e−iux dx =

[
f(x, y)e−iux

]∞
−∞ + (iu)

∫ ∞

−∞
f(x, y)e−iux dx.

We cannot proceed, however, unless f(x, y) → 0 as x → ±∞. In that case
the Fourier transform is just∫ ∞

−∞
(iu)

∫ ∞

−∞
f(x, y)e−i(ux+vy) dx dy = iuF (u, v).

The integral does not converge if f(x, y) does not tend to zero at infin-
ity, but we can resort to convergence factors if this happens and obtain
basically the same result. It is easy to show in a similar fashion that the
Fourier transform of ∂f/∂y is just ivF (u, v). We conclude that differ-
entiation accentuates the high-frequency components and suppresses the
low-frequency components. In fact, any constant offset or zero-frequency
term is lost completely.
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The Laplacian of the function f(x, y) is defined as

∇2f =
∂2f

∂x2 +
∂2f

∂y2 .

So the Fourier transform of the Laplacian is just

−(u2 + v2) F (u, v).

We can think of −(u2 + v2) as the modulation-transfer function of the
operator ∇2, in a sense to be made precise later. Note that this modulation-
transfer function is rotationally symmetric, that is, it depends only on
(u2 + v2), not on u and v independently. This suggests that the Laplacian
operator itself is rotationally symmetric.

It may seem a strange coincidence that taking derivatives in the spatial
domain corresponds to multiplication in the frequency domain, since we saw
earlier that convolution in the spatial domain corresponds to multiplication
in the frequency domain. This becomes less surprising when we consider
that differentiation is linear and shift-invariant! Is it possible that taking a
derivative is just like convolution with some peculiar function? (It has to
be a peculiar function, because it must be zero except at the origin, since
the derivative operates locally.) Let us study this question in more detail.

The modulation-transfer function H(u, v) corresponding to the first
partial derivative with respect to x is iu. We can find the point-spread
function corresponding to the first partial derivative by finding the inverse
Fourier transform of iu:

1
4π2

∫ ∞

−∞

∫ ∞

−∞
iue+i(ux+vy) du dv.

This integral does not converge. We could attack it using a convergence
factor, but it is easier to note that∫ ∞

−∞

∫ ∞

−∞
e+i(ux+vy) du dv = 4π2δ(x, y).

The integral is thus
∂

∂x
δ(x, y),

since multiplication of the transform with iu corresponds to differentiation
with respect to x. Now δ(x, y) is already somewhat pathological, so we
cannot expect its derivative to be a function in the classic sense. It can,
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however, be defined as the limit of a sequence of functions, for example, by

∂

∂x
δσ(x, y) = − x

2πσ4 e− 1
2

x2+y2

σ2 .

Alternatively, it can be thought of as the limit of the sequence

δx;ε(x, y) =
1
2ε

(
δ(x + ε, y) − δ(x − ε, y)

)
,

where we have two closely spaced impulses of opposite polarity. The result,
called a doublet, will be denoted δx(x, y). This definition corresponds to
the usual way of defining a partial derivative as the limit of a difference,
for

f(x, y) ⊗ δx;ε(x, y) =
f(x + ε, y) − f(x − ε, y)

2ε
,

so that

lim
ε→0

f(x, y) ⊗ δx;ε(x, y) = f(x, y) ⊗ δx(x, y) =
∂f

∂x
.

The generalized function corresponding to the Laplacian can be con-
sidered as the limit of the sequence

Lσ(x, y) =
(

x2 + y2 − σ2

2πσ6

)
e− 1

2
x2+y2

σ2 ,

obtained by differentiating δσ(x, y), for example (figure 6-5a). This function
is circularly symmetric. It has a central depression of magnitude 1/(2πσ4)
and radius σ surrounded by a circular wall of maximum height e−3/2/(πσ4)
and radius

√
3σ. The form of this function suggests another sequence

(figure 6-5b):

Lε(x, y) =




−2/(πε4), for 0 ≤ x2 + y2 ≤ ε2;
+2/(3πε4), for ε2 < x2 + y2 ≤ 4ε2;
0, for 4ε2 < x2 + y2.

We shall find this form useful later when we look for discrete analogs of
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these continuous operators.
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6.9 Rotational Symmetry and Isotropic Operators

The Laplacian is the lowest-order linear combination of partial derivatives
that is rotationally symmetric. That is, the Laplacian of a rotated image
is the same as the rotated Laplacian of an image. Conversely, if we rotate
an image, take the Laplacian, and rotate it back, we obtain the same result
as if we had just applied the Laplacian.

Another second-order operator that is rotationally symmetric is the
quadratic variation,

(
∂2

∂x2

)2

+ 2
(

∂2

∂x∂y

) (
∂2

∂y∂x

)
+

(
∂2

∂y2

)2

.

It is, however, not linear. If we allow nonlinearity, then the lowest-order
rotationally symmetric differential operator is the squared gradient,

(
∂

∂x

)2

+
(

∂

∂y

)2

.

The Laplacian, the squared gradient, and the quadratic variation are useful
in detecting edges in images, as we shall see in chapter 8.

Rotationally symmetric operators are particularly attractive because
they treat image features in the same way, no matter what their orientation
is. Also, a rotationally symmetric function can be described by a simple
profile rather than a surface. Finally, the Fourier transform of a rotationally
symmetric function can be computed using a single integral instead of a
double integral, as we show next.

Let us introduce polar coordinates in both the spatial and the frequency
domains (figure 6-6):

x = r cos φ and y = r sin φ,

u = ρ cos α and v = ρ sin α,

so that ux+vy = rρ cos(φ−α). Now, if f(x, y) = f(r), then the transform

F (u, v) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(ux+vy) dx dy,

becomes just

F (ρ) =
∫ π

−π

∫ ∞

0
rf(r)e−irρ cos(φ−α) dr dφ.
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(The r in the integrand is of course just the determinant of the Jacobian
of the transformation from Cartesian to polar coordinates.) If we change
the order of integration, then a simple change of variables turns the inner
integral into

∫ π

−π

e−irρ cos φ dφ = 2
∫ π

0
cos(rρ cos φ) dφ = 2πJ0(rρ),

where J0(x) is the zeroth-order Bessel function. Thus if F (u, v) = F (ρ),
then

F (ρ) = 2π

∫ ∞

0
rf(r)J0(rρ) dr.

Similarly, one can show that

f(r) =
1
2π

∫ ∞

0
ρF (ρ)J0(rρ) dρ.

These two formulae define the Hankel transforms. (The asymmetry can be
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traced to our asymmetric definition of the Fourier transform.)
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We conclude that the Fourier transform of a rotationally symmetric
function is also rotationally symmetric. It is also real, which means that
the phase shift is zero. We shall use these results in analyzing some simple
imaging system defects. As an example, consider the point-spread function
of a system that acts as a lowpass filter with cutoff frequency B, that is,

H(ρ) =
{

1, for ρ ≤ B;
0, for ρ > B.

Taking the inverse transform, we obtain

h(r) =
1
2π

∫ ∞

0
ρH(ρ)J0(rρ) dρ =

1
2π

∫ B

0
ρJ0(rρ) dρ.

Let z = rρ; then

h(r) =
1
2π

1
r2

∫ rB

0
zJ0(z) dz.

Now

d

dz
zJ1(z) = zJ0(z),

where J1(z) is the first-order Bessel function. Therefore

h(r) =
1
2π

1
r2 (rB)J1(rB) =

1
2π

B2 J1(rB)
(rB)

.

It can be shown that

lim
z→0

J1(z)
z

=
1
2
,

so h(r) has a maximum at the origin and then drops smoothly to zero at r =
3.83171 . . . (figure 6-7). It is negative for a while and then oscillates about
zero with decreasing amplitude. The amplitude decreases asymptotically
as z−3/2. The function J1(z)/z plays a role for two-dimensional systems
that is similar to that played by sin(z)/z in the case of one-dimensional
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systems.
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It should be apparent, by the way, that a filter with a sharp cutoff will
produce oscillatory responses, or “ringing” effects in the spatial domain
(sometimes referred to as Gibbs’s phenomena). In many cases a filter with
a more gradual rolloff is better, since it suffers less from these overshoot
phenomena. A Gaussian filter, for example, has a very smooth rolloff that
extends over a considerable frequency band. It does not introduce any
spurious inflections into the filtered image.

6.10 Blurring, Defocusing, and Motion Smear

In a typical imaging system we find that the rays that would be focused
at a single point in an ideal system are, in fact, slightly spread out. This
blurring of the image can take various forms, but it can sometimes be
modeled by a Gaussian point-spread function,

h(x, y) =
1

2πσ2 e− 1
2

x2+y2

σ2 ,

with unit volume. This is a rotationally symmetric point-spread function,
since it depends only on x2 + y2, not on x or y separately. We can compute
its Fourier transform using the Hankel transform formula.

Note, however, that the Gaussian happens to be separable into the
product of a function of x and a function of y. So another approach may
be easier:

H(u, v) =
∫ ∞

−∞

∫ ∞

−∞

1
2πσ2 e− 1

2
x2+y2

σ2 e−i(ux+vy) dx dy

=
1√
2πσ

∫ ∞

−∞
e− 1

2 ( x
σ )2

e−iux dx
1√
2πσ

∫ ∞

−∞
e− 1

2 ( y
σ )2

e−ivy dy.

The first integral on the right-hand side equals

1√
2πσ

∫ ∞

−∞
e− 1

2 ( x
σ )2

cos(ux) dx = σe− 1
2 u2σ2

.

So finally,
H(u, v) = e− 1

2 (u2+v2)σ2
,

which is rotationally symmetric, as expected.
We note that low frequencies are passed unattenuated, while higher

frequencies are reduced in amplitude, significantly so for frequencies above
about 1/σ. Now σ is a measure of the size of the original point-spread
function; therefore, the larger the blur, the lower the frequencies that are
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attenuated. This is an example of the inverse relationship between scale
changes in the spatial domain and corresponding scale changes in the fre-
quency domain. In fact, if r is a measure of the radius of a blur in the
spatial domain, and ρ is a measure of the radius of its transform, then r ρ
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is constant.
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One way to blur an image is to defocus it (figure 6-1). In this case the
point-spread function is a little pillbox, as can be seen by considering the
cone of light emanating from the lens with its vertex at the focal point.
(This point does not lie on the image plane, but slightly in front of or
behind it.) The image plane cuts this cone in a circle. Within the circle,
brightness is uniform (figure 6-8), so we have

h(x, y) =
{

1/(πR2), for x2 + y2 ≤ R2;
0, for x2 + y2 > R2.

Here

R =
1
2

d

f ′ e,

where d is the diameter of the lens, f ′ the distance from the lens to the
correctly focused spot, and e the displacement of the image plane. We can
apply the Hankel transform formula to obtain

H(ρ) =
2

R2

∫ R

0
rJ0(rρ) dr = 2

J1(Rρ)
(Rρ)

,

using the fact that
d

dz
zJ1(z) = zJ0(z),

as noted before. Again, low frequencies are passed unattenuated, while
higher frequencies are reduced in amplitude, and some are not passed at
all. Some are even inverted, since J1(z) oscillates about zero. For frequen-
cies for which J1(Rρ) < 0 we find that the brightest parts of the defocused
image coincide with the darkest parts of the ideal image, and vice versa.
Components of the waveform with frequencies for which J1(Rρ) = 0 are
removed completely. Such components cannot be recovered from the de-
focused image. As mentioned before, the first zero of the function J1(z)
occurs at z = 3.83171 . . . .We observe again the inverse scaling in the spa-
tial and frequency domains, since in our case z = Rρ. That is, the larger
the defocus radius R, the lower the frequency ρ for which J1(Rρ) = 0.

Another form of image degradation is due to image motion. This can
result from motion of either the imaging system or the objects being im-
aged. In either case an image point is smeared into a line. For convenience,
suppose the motion is along the x-axis and the length of the line is 2l. Then
the point-spread function can be described by the product

hx(x, y) =
1
2l

(
u(x + l) − u(x − l)

)
δ(y),
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where u(z) is the unit step function, as before. In this case the point-spread
function is not rotationally symmetric. Its Fourier transform can be found
as follows:

H(u, v) =
∫ ∞

−∞

1
2l

(
u(x − l) − u(l − x)

)
e−iux dx

∫ ∞

−∞
δ(y)e−ivy dy,

or

H(u, v) =
1
2l

∫ l

−l

e−iux dx,

so that

H(u, v) =
sin(ul)

ul
.

The argument can easily be extended to motion in any direction. Once
again, low frequencies are hardly affected, while higher ones are attenuated.
Waves at some frequencies are inverted, and those for which ul = πk, where
k is an integer, are completely suppressed. Waves with crests parallel to
the direction of motion are not affected at all, of course.

6.11 Restoration and Enhancement

To undo the effects of image blur we can pass the image through a system
with a modulation-transfer function H ′(u, v) that is the algebraic inverse
of the modulation-transfer function H(u, v) of the system that introduced
the blur. That is,

H(u, v)H ′(u, v) = 1.

Equivalently, we need a system with point-spread function h′(x, y) such
that the convolution of h′(x, y) with h(x, y) is the unit impulse. That is,
h′(x, y) ⊗ h(x, y) = δ(x, y):

f(x, y) → h(x, y) h′(x, y) → f(x, y)

The cascade of the two systems is the identity system.
An immediate problem is that we cannot recover frequencies that have

been totally suppressed, for which H(u, v) = 0. A second problem occurs
when we try to compute the inverse Fourier transform of H ′(u, v) in order
to obtain h′(x, y). It is likely that the needed integral will not converge,
although we might be able to obtain a result by introducing a convergence
factor. Such a result will not be a function in the classical sense, however.

The most serious problem is noise. Real image measurements are in-
exact, and we can usually model this defect as additive noise. The noise
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at one image point is typically independent of, and thus uncorrelated with,
the noise at all other image points. It can be shown that this implies that
the noise has a flat spectrum: The noise power in any given region of the
frequency domain is as large as that in any other region with same area.

Unfortunately, the noise we are concerned with here is introduced af-
ter the blurring. The effect is that strongly attenuated frequencies tend
to become submerged in the noise, and when we try to recover them by
amplification, we also amplify the noise. This is the basic limitation of
image restoration, and it is due to the fact that, at any given frequency,
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we cannot distinguish between signal and noise.
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One approach to restoration is heuristic. We can design a system that
has a modulation-transfer function approximately equal to the inverse of
the modulation-transfer function of the blurring system. We place an upper
limit, however, on the amplification. For example,

|H ′(u, v)| = min
(

1
|H(u, v)| , A

)
,

where A is the maximum gain. Or more elegantly, we can use something
like

H ′(u, v) =
H(u, v)

H(u, v)2 + B2 ,

where 1/(2B) is the maximum gain, if H(u, v) is real (figure 6-9).

6.12 Correlation and the Power Spectrum

When images are processed, it is at times useful to correlate them. In
this way we can tell, for example, how similar two brightness patterns are
(figure 6-10). The crosscorrelation of a(x, y) and b(x, y) is defined by

a � b =
∫ ∞

−∞

∫ ∞

−∞
a(ξ − x, η − y) b(ξ, η) dξ dη.

We shall use the notation φab(x, y) for this integral. Note the similarity to
the definition of convolution. The only difference lies in the arguments of
the first function in the integrand. Here a(ξ, η) is simply shifted by (x, y)
before being multiplied by b(ξ, η). In convolution the first function is also
“flipped over” in x and y:

a ⊗ b =
∫ ∞

−∞

∫ ∞

−∞
a(x − ξ, y − η) b(ξ, η) dξ dη.

If b(x, y) = a(x, y), the result is called the autocorrelation. The autocor-
relation of a function is symmetric, that is, φaa(−x,−y) = φaa(x, y). It
can be shown that the autocorrelation of any function has a maximum at
(x, y) = (0, 0), so that

φaa(0, 0) ≥ φaa(x, y) for all (x, y).

If b(x, y) is a shifted version of a(x, y),

b(x, y) = a(x − x0, y − y0),
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then a similar maximum will occur for the appropriate value of shift. That
is,

φab(x0, y0) ≥ φab(x, y) for all (x, y).

Note that there can be other maxima, particularly if a(x, y) is periodic.
Nevertheless, when b(x, y) is approximately equal to a shifted version of
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a(x, y), then the shift can be estimated by looking for maxima in φab.
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The Fourier transforms of the crosscorrelations and autocorrelations
are often informative. They are called power spectra for reasons that will
become apparent, and they are denoted Φab(u, v) and Φaa(u, v), respec-
tively. If the Fourier transform of a(x, y) is A(u, v), then

Φaa(u, v) = |A(u, v)|2 = A∗(u, v)A(u, v),

where A∗(u, v) is the complex conjugate of A(u, v). Thus Φaa is always
real, a property that can also be deduced from the symmetry of φaa and
the fact that the transform of a(−x,−y) is A∗(u, v). In any case, for small
δu and δv,

Φaa(u, v) δu δv

is the power in the rectangular region of the frequency domain lying be-
tween u and u + δu and v and v + δv. This explains the origin of the term
power spectrum.

Even when the Fourier transform of a(x, y) does not converge, its power
spectrum may still exist. It should also be noted that A(u, v) uniquely
specifies a(x, y) via the inverse Fourier transform, but there is no unique
function corresponding to a given Φaa(u, v). Infinitely many functions have
the same autocorrelation and thus the same power spectrum. The power
spectrum does not change, for example, when an image is translated, since
only the phase of the Fourier transform is changed. If an object can be
recognized from the power spectrum of an image, then it can be recognized
independently of its position. Great hope was held out at one time, for
this reason, that Fourier transform methods would be important in solving
recognition problems. Unfortunately, such methods only work when the
object is alone in the image and does not rotate or change size. Moreover,
as we have seen, the power spectra of different objects may be the same.

Random noise provides another interesting illustration. The Fourier
transform of an image in which each point has independent random noise
with mean zero and standard deviation σ is a similar random image with
mean zero and standard deviation 2πσ. The average of the power spectra
of an infinite number of such random images tends to the constant (2πσ)2

at all frequencies.

6.13 Optimal Filtering and Noise Suppression

The next section, dealing with optimal filtering, requires some patience
with nontrivial mathematical manipulations. The hasty reader may choose
to skip it on first reading without serious loss of continuity. It may be
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worthwhile returning to this section later, however, since it is the first place
in this book where we introduce the tools of the calculus of variations.

Suppose that we are given the sum of the signal b(x, y) and the noise
n(x, y). Our task is to recover, as best we can, the signal b(x, y). The mea-
sure of how well we succeed will be the integral of the square of the differ-
ence between the output o(x, y) and the desired signal d(x, y) (figure 6-11).
Usually d(x, y) is just b(x, y). We choose to minimize the integral of the
square of the error because it leads to tractable mathematics. (This, of
course, is the real reason for the popularity of least-squares methods in
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general.)
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We have to minimize the squared error

E =
∫ ∞

−∞

∫ ∞

−∞

(
o(x, y) − d(x, y)

)2
dx dy.

If we are going to use a linear system for the filtering operation, we can
characterize the system by means of its point-spread function h(x, y). The
input to the system is

i(x, y) = b(x, y) + n(x, y),

and the output is
o(x, y) = i(x, y) ⊗ h(x, y).

So

E =
∫ ∞

−∞

∫ ∞

−∞

(
o2(x, y) − 2o(x, y)d(x, y) + d2(x, y)

)
dx dy.

Since o2 = (i ⊗ h)2,

o2(x, y) =
∫ ∞

−∞

∫ ∞

−∞
i(x − ξ, y − η)h(ξ, η) dξ dη

×
∫ ∞

−∞

∫ ∞

−∞
i(x − α, y − β)h(α, β) dα dβ,

and so∫ ∞

−∞

∫ ∞

−∞
o2(x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φii(ξ − α, η − β)h(ξ, η)h(α, β) dξ dη dα dβ,

where φii(x, y) is the autocorrelation of i(x, y). Moreover,

o(x, y)d(x, y) =
∫ ∞

−∞

∫ ∞

−∞
i(x − ξ, y − η)h(ξ, η)d(x, y) dξ dη,

and so∫ ∞

−∞

∫ ∞

−∞
o(x, y)d(x, y) dx dy =

∫ ∞

−∞

∫ ∞

−∞
φid(ξ, η)h(ξ, η)) dξ dη,

where φid(x, y) is the crosscorrelation of i(x, y) and d(x, y). Finally we
need ∫ ∞

−∞

∫ ∞

−∞
d2(x, y) = φdd(0, 0),
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where φdd(x, y) is the autocorrelation of d(x, y). We can now rewrite the
expression for the error term to be minimized in the form

E =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φii(ξ − α, η − β)h(ξ, η)h(α, β) dξ dη dα dβ

− 2
∫ ∞

−∞

∫ ∞

−∞
φid(ξ, η)h(ξ, η) dξ dη + φdd(0, 0).

This expression is to be minimized by finding the point-spread function
h(x, y). This is a problem in the calculus of variations. (The calculus of
variations is covered in more detail in the appendix.) We shall attack the
problem using the basic method of that speciality. In the typical calculus
problem we look for a parameter value that results in a stationary value of
a given function. In the problem here, we are looking instead for a function
that leads to a stationary value of a given functional. A functional is an
expression that depends on a function, as, for example, E above depends
on h(ξ, η).

Suppose that h(x, y) gives the minimum value of E, and let δh(x, y)
be an arbitrary function used to modify h(x, y). Then h(x, y) + ε δh(x, y)
will give a value that cannot be less than E, no matter what δh(x, y) is.
Let the value be E + δE. If we are truly at a minimum, then

lim
ε→0

∂

∂ε
(E + δE) = 0 for all δh(x, y).

If this were not the case, we could reduce E by adding a small multiple
of δh(x, y) to h(x, y), thus contradicting the assumption that h(x, y) is
optimal. Now

lim
ε→0

∂

∂ε
(E + δE)

= 2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φii(ξ − α, η − β)h(ξ, η)δh(α, β) dξ dη dα dβ

− 2
∫ ∞

−∞

∫ ∞

−∞
φid(ξ, η)δh(ξ, η) dξ dη,

or

lim
ε→0

∂

∂ε
(E + δE)

= −2
∫ ∞

−∞

∫ ∞

−∞

[
φid(ξ, η) −

∫ ∞

−∞

∫ ∞

−∞
φii(ξ − α, η − β)h(α, β) dα dβ

]
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× δh(ξ, η) dξ dη.

If this is to be zero for all δh(x, y), then the bracketed expression must be
zero, or

φid(ξ, η) =
∫ ∞

−∞

∫ ∞

−∞
φii(ξ − α, η − β)h(α, β) dα dβ,

that is, perhaps surprisingly,

φid = φii ⊗ h .

This simple equation for h(x, y) can be solved by taking the Fourier trans-
form,

Φid = HΦii,

where Φii and Φid are the power spectra. The power spectra are thus all
we need to know to design the image-restoring system under the given as-
sumptions. The same system will be optimal for a large class of images, not
just a single one. (It would, of course, not be of much interest otherwise.)

As an example, consider a system designed to suppress noise, that is,
a system that takes the sum of the image b(x, y) and the noise n(x, y) and
produces an output o(x, y) that is as close as possible, in the least-squares
sense, to the original image b(x, y). Here d(x, y) = b(x, y) and

i(x, y) = b(x, y) + n(x, y).

So
Φid = Φbb + Φnb,

and
Φii = Φbb + Φbn + Φnb + Φnn,

as can be seen by noting the definitions of Φii and Φid. We now assume
that the noise is not correlated to the signal, so that Φbn = Φnb = 0. Then

H =
Φid

Φii
=

Φbb

Φbb + Φnn
=

1
1 + Φnn/Φbb

.

It is clear what the optimal system is doing. In parts of the spectrum where
the signal-to-noise ratio, Φbb/Φnn, is high, the gain is almost unity; in parts
where the noise dominates, the gain is very low, approximately Φbb/Φnn,
which is just the signal-to-noise ratio.
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Now consider the case where the signal b(x, y) is passed through a
system with point-spread function h(x, y) before the noise n(x, y) is added.
The result,

i = b ⊗ h + n,

is to be passed through a system with point-spread function h′(x, y). The
output

o = i ⊗ h′

should be as close as possible to the original image b(x, y), in the least-
squares sense. Here d(x, y) = b(x, y), so that

Φid = HΦbb + Φnb

and
Φii = H2Φbb + H(Φnb + Φbn) + Φnn.

Assuming that the noise is not correlated with the signal, we have

H ′ =
Φid

Φii
=

HΦbb

H2Φbb + Φnn
.

If the signal-to-noise ratio is high in a particular part of the spectrum, then

H ′ ≈ 1
H

there, while gain is limited to about H(Φbb/Φnn) in parts where Φnn >

|H|2 Φbb. Note the similarity of this result to that derived heuristically
earlier.

Finally, it may be instructive to consider the optimal filter for estimat-
ing a processed version of the image rather than the image itself. Suppose
we want the least-squares estimate of

d(x, y) = b(x, y) ⊗ p(x, y),

where p(x, y) is the point-spread function of a processing filter. Then

φid = i � d = i � (b ⊗ p) = (i � b) ⊗ p = φib ⊗ p,

so that
Φid = Φib P,

where P (u, v) is the Fourier transform of p(x, y). Thus

H ′ =
Φid

Φii
=

Φib

Φii
P.
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The optimal filter is just the cascade of the optimal filter for recovering the
image b(x, y) and the processing filter P (u, v). We do not need anything
else.

We should note at this point that the design of the optimal filter here
is much simpler than in the one-dimensional situation. This is because the
impulse response in the one-dimensional case must be one-sided, since a
system cannot anticipate its input. Limitations in the time domain do not
translate easily into understandable limitations in the frequency domain.
For example, it is hard to express the constraint that f(t) = 0 for t < 0 in
terms of F (ω), the Fourier transform of f(t). Fortunately, there is no such
problem in the case of images, since the support of a point-spread function
can extend in all directions from the origin. The support of a function is
the region over which it is nonzero.

6.14 Image Models

In order to apply the optimal filtering methods, we must estimate the
power spectra of the images to be processed. Looking at the spectra of a
few “typical” images will quickly persuade you that most of the energy is
concentrated at the lower frequencies. It is useful to know about this falloff
with frequency since it helps separate the desired signal from the noise,
which has a flat spectrum. The observed falloff in power with frequency is,
in part, due to the fact that many objects or parts of objects are opaque
and have nearly uniform brightness. The corresponding image patches are
separated by discontinuities along edges where objects occlude one another.

A full discussion of image models lies beyond the scope of this book,
but we can get a rough idea by considering a simple rectangular patch

f(x, y) =
{

1, for |x| ≤ W and |y| ≤ H;
0, for |x| > W or |y| > H.

The Fourier transform is

F (u, v) = WH
sin(uW )

uW

sin(vH)
vH

.

Shifting the patch just changes the phase, not the magnitude, of the trans-
form. Ignoring the oscillations, we see that the transform falls off as 1/(uv).
Thus, depending on the direction we choose in the frequency domain, it
falls off as 1/ρ or 1/ρ2 with distance ρ from the origin.
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Another useful component of an image model might be the “pillbox”
patch,

f(r) =
{

1, for r ≤ R;
0, for r > R.

The transform in this case is

F (ρ) = 2R2 J1(ρR)
(ρR)

.

For large arguments, J1(z) behaves like

√
2
πz

sin(z − π/4),

so that, if we ignore the oscillations, F (ρ) falls off as 1/ρ3/2 for large ρ.
Image models containing polygonal or circular patches tend to have

power spectra falling off as some power of frequency. At higher frequen-
cies real images fall off even more rapidly, due to the resolution limits of
the optical system. In telescopes, for example, there is an absolute cutoff
frequency, determined by the ratio of the aperture diameter to the wave-
length of light, above which there is no transmission at all. Microscopes
have a similar absolute limitation determined by the numerical aperture of
the objective and the wavelength of light.

A different application of the observation that most power in images is
concentrated at low frequencies can be found in image reproduction. Meth-
ods for displaying images, such as the printing of halftones, photographic
reproduction, and television, have limited dynamic range; that is, they can
only show a certain range of gray-level values. In terms of the quality of
reproduction, what we are interested in is the ratio of the brightest to the
darkest reproducible gray-level. One important consideration in display-
ing images is that small brightness differences be perceptible. Even large
differences in brightness between adjacent regions may not be noticeable if
the regions are themselves very bright. What is important is the relative
size of the brightness difference, that is, the ratio of the difference to the
smaller of the two. It is for this reason that dynamic range is measured
by the ratio of the brightest to the darkest level that can be reproduced,
rather than the difference.

The dynamic range of color transparencies can be over a hundred to
one, while that of newsprint is often not much more than ten to one. Nat-
ural images tend to have large dynamic ranges. Usually a compromise has
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to be struck when they are to be reproduced. If we try to impose the vari-
ation in image brightness unchanged onto the medium, the brightest and
the darkest areas will not be reproduced properly. To avoid losing detail
in the highlights and shadows due to saturation, we have to compress the
dynamic range.

A power function can do this compression. If the brightness of the
reproduction is b′(x, y) and that of the original is b(x, y), then

b′(x, y) =
(
b(x, y)

)γ
,

where 0 < γ < 1. Such reproductions are generally acceptable, although
barely perceptible brightness differences in the original will be impercepti-
ble in the reproduction.

Another approach is to take advantage of the fact that images usually
contain large low-frequency components. A filter that attenuates low fre-
quencies can be devised by subtracting from the image a smoothed version
of the image. Such a filter will tend to reduce the dynamic range. An
example is provided by a filter with a point-spread function

h(x, y) = δ(x, y) − k

2πσ2 e− 1
2

x2+y2

σ2

for 0 < k < 1. The modulation-transfer function of this filter is

H(u, v) = 1 − ke− 1
2 (u2+v2)σ2

.

Other smoothing functions can be used. A photographic technique for
achieving a similar effect is called unsharp masking. Here an out-of-focus
image is “subtracted,” in part, from the original. Note that, in this case,
sharp edges are reproduced with their full contrast. We have to be careful in
applying this process, however, since the brightness values in the image are
shifted around and spurious changes in the appearance of the objects may
result. As we shall see later, the brightness values are used in recovering
surface shape, for example.

6.15 References

The classic reference on image processing is Digital Image Processing by
Pratt [1978]. The first few chapters of Digital Picture Processing by Rosen-
feld & Kak [1982] also provide an excellent introduction to the subject.
Much of the two-dimensional analysis is a straightforward extension of the
one-dimensional case aptly described in Signals and Systems by Oppenheim
& Willsky [1983] and Circuits, Signals, and Systems by Siebert [1986]. The
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underlying theory of the Fourier transform is given in the standard reference
The Fourier Transform and Its Applications by Bracewell [1965, 1978]. An
enjoyable discussion of generalized functions appears in Lighthill’s Intro-
duction to Fourier Analysis and Generalised Functions [1978]. Even more
detail can be found in Generalized Functions: Properties and Operations
by Gel’fand & Shilov [1964]. Few texts explicitly discuss convergence fac-
tors; one that does is Summable Series and Convergence Factors by Moore
[1966].

The basic work on optimal filtering is due to Wiener. He uses a de-
lightfully symmetric definition of the Fourier transform in Extrapolation,
Interpolation, and Smoothing of Stationary Time Series with Engineering
Applications [1966]. The optimal filter is derived using the methods of
the calculus of variations, for which volume I of Methods of Mathematical
Physics by Courant & Hilbert [1953] may be the best reference. Image
models are discussed in Pattern Models by Ahuja & Schachter [1983].

Image processing is a relatively old field that matured more than ten
years ago. A survey of early work on image processing is provided by
Huang, Schreiber, & Tretiak [1971]. The classic application of image
processing method has been in improving image quality, as discussed by
Schreiber [1978].

Detailed structure in an image that is too fine to be resolved, yet coarse
enough to produce a noticeable fluctuation in the gray-levels of neighboring
picture cells, constitutes texture. (Note that there are other notions of
what is meant by the term texture.) Texture may be periodic, nearly
periodic, or random. There has been work devoted to the derivation of
texture measures that allow classification. Other efforts are directed at the
segmentation of images into regions of differing texture, as in the work of
Bajcsy [1973] and Ehrich [1977]. Methods for the analysis of gray-level
co-occurrence histograms have found application in this domain. Another
approach depends on the appearance of peaks in the frequency domain.
Ahuja & Rosenfeld [1981] study the relationship of mosaic image models
to the notion of texture. Further references relating to image processing
will be given at the end of the next chapter.

6.16 Exercises

6-1 Find k(σ) such that the family of functions

δσ(x, y) = k(σ) e
− 1

2
x2+y2

σ2

defines the unit impulse δ(x, y) as σ → 0.
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6-2 Consider the family of functions

Lδ(x, y) =

{
a, for r ≤ δ;
b, for δ < r ≤ 2δ;
0, for 2δ < r;

where r =
√

x2 + y2. For what values of a and b does this family define the
generalized function that corresponds to the Laplacian? That is, when is the
limit of the convolution of Lδ(x, y) with some given function f(x, y) equal to
∇2f(x, y)? Hint: It may help to apply the operator to the test function

1
4
(x2 + y2),

whose Laplacian is known to be equal to one.

6-3 Show that if f(x, y) is separable into a product of a function of x and a
function of y, its Fourier transform F (u, v) is also separable into a function of u

and a function of v.

6-4 Show that if f(x, y) ≥ 0 for all x and y, then F (0, 0) ≥ |F (u, v)| for all u

and v. When is F (0, 0) = F (u, v)?

6-5 Usually the point-spread function h(x, y) of an operator used for smoothing
operations is largest at the origin, (x, y) = (0, 0), positive everywhere, and dies
away as x and y tend to infinity. It can be conveniently thought of as a mass
distribution. Without loss of generality we shall assume that the center of mass
of this distribution lies at the origin. We need to be able to say how “spread
out” such a distribution is. The radius of gyration of a mass distribution is the
distance from its center of mass at which a point of equal mass would have to
be placed in order for it to have the same inertia as the given distribution. (The
inertia of a point mass is the product of the square of the distance from the origin
times the mass.)

The total mass M of a distribution h(x, y) is just

M =
∫ ∞

−∞

∫ ∞

−∞
h(x, y) dx dy,

while the radius of gyration R is defined by∫ ∞

−∞

∫ ∞

−∞
r2h(x, y) dx dy = R2

∫ ∞

−∞

∫ ∞

−∞
h(x, y) dx dy = M R2,

where r2 = x2 + y2.
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(a) Find the radius of gyration of a pillbox defined by

bV (x, y) =

{
1/(πV 2), for r ≤ V ;
0, for r > V .

(b) Find the radius of gyration of the Gaussian

Gσ(x, y) =
1

2πσ2 e
− 1

2
x2+y2

σ2 .

Note that the distributions in (a) and (b) both have “unit mass” and that it may
help to convert the required integrals to polar coordinates.

(c) Show that the mass of the convolution of two smoothing functions is the
product of the masses of the two functions. Also show that, when smoothing
functions are convolved, their gyration radii squared add. That is, if f =
g ⊗ h, then R2

f = R2
g + R2

h, where Rf , Rg, and Rh are the radii of gyration
of f , g, and h, respectively.

(d) When a rotationally symmetric smoothing function is convolved with itself
many times, it becomes indistinguishable from the Gaussian. Suppose that
the pillbox is convolved with itself n times. What is the value of σ of the
approximating Gaussian?

6-6 Show that a�(b⊗c) = (a�b)⊗c, where � denotes correlation and ⊗ denotes
convolution.

6-7 The modulation-transfer function of an optical telescope is A(u, v) =
P (u, v) ⊗ P (u, v), where P (u, v) is the rotationally symmetric lowpass filter

P (u, v) =

{
1, for u2 + v2 ≤ ω2;
0, for u2 + v2 > ω2,

for some ω, where ω is a function of the wavelength of light and the size of the
collecting optics.

(a) Find A(u, v). Hint: What is the overlap between two disks of equal diameter
when their centers are not aligned?

(b) What is the corresponding point-spread function? Hint: What does multi-
plication in the frequency domain correspond to in the spatial domain?

6-8 Consider a system that blurs images according to a Gaussian point-spread
function with standard deviation σ. Suppose that the noise power spectrum is
flat with power N2, the signal power spectrum is also flat with power S2, and
that S2 > N2. (Noise is added to the image after blurring.)
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(a) Sketch the modulation-transfer function of the optimal filter for deblurring
the image.

(b) What is the low-frequency response?

(c) What frequency is maximally amplified?

(d) What is the maximal gain?

6-9 It is difficult to measure the point-spread function of an optical system di-
rectly. Instead, we usually image a sharp edge between two regions with different
brightnesses. In this fashion we obtain the edge-spread function.

(a) How would you obtain the line-spread function l(x) from the response e(x)
to a unit step edge? The line-spread function is the response of the system
to an impulsive line.

(b) Show that l(x) is related to the point-spread function h(r) by

l(x) = 2
∫ ∞

x

r√
r2 − x2

h(r) dr.

This is the definition of the Abel transform. Here l(x) is the Abel transform
of h(r). Assume that the point-spread function is rotationally symmetric.

(c) Show that the Abel transform obeys the relationships∫ ∞

−∞
l(x) dx = 2π

∫ ∞

0
h(r) r dr and l(0) = 2

∫ ∞

0
h(r) dr.

(d) How would you recover the point-spread function from the measured line-
spread function? Show that

h(r) = − 1
π

∫ ∞

r

l′(x)√
x2 − r2

dx = − 1
π

∫ ∞

r

√
x2 − r2 d

dx

(
l′(x)

x

)
dx,

where l′(x) is the derivative of l(x) with respect to x. This is the inverse
Abel transform.

6-10 A rotationally symmetric function f(x, y) depends only on the radius r

and does not depend on the polar angle θ, where

r =
√

x2 + y2 and θ = tan−1(y/x).

Show that the Gaussian is the only rotationally symmetric function that can be
decomposed into the product of a function of x and a function of y; that is,
f(x, y) = g(x)h(y). Hint: First prove that f(x, y) is rotationally symmetric if
and only if

1
x

∂f

∂x
=

1
y

∂f

∂y
.
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You can then easily prove that, for some constant c,

dg

dx
= c x g(x) and

dh

dy
= c y h(y).


