
Application of Quaternions to Computation with Rotations 1

APPLICATION OF QUATERNIONS TO COMPUTA-
TION WITH ROTATIONS

Working Paper, Stanford AI Lab, 19791

by Eugene Salamin

Computer programs which operate on rotations may profitably represent these rota-
tions by quaternions. The orthogonal matrix which performs a rotation by angle θ
about axis n is derived. After developing some elementary properties of quaternions,
it is shown how the same rotation can be represented by a unit quaternion. Formulas
for interconversion between the two representations are derived. For computation with
rotations, quaternions offer the advantage of requiring only 4 numbers of storage, com-
pared with 9 numbers for orthogonal matrices. Composition of rotations requires 16
multiplications and 12 additions in quaternion representation, but 27 multiplications
and 18 additions in matrix representation. Rotating a vector, with the rotation matrix
in hand, requires 9 multiplications and 6 additions. However, if the matrix must be
calculated from a quaternion, then this calculation needs 10 multiplications and 21 ad-
ditions. The quaternion representation is more immune to accumulated computational
error. A quaternion2 Q which deviates from unicity can be fixed by Q← Q/ |Q|, how-
ever a matrix R which deviates from orthogonality must be fixed by the more involved
calculation R ← R(RTR)−1/2, or some approximation thereto. One can mentally
picture the rotation group manifold as the 3-sphere with diametrically opposite points
identified. The intrinsic metric of the manifold is the same as the metric resulting from
the imbedding of the 3-sphere in Euclidean 4-space. This makes well-defined the con-
cept of randomly chosen rotations. Finally, it is shown how Lorentz transformations in
relativity can be implemented with complex quaternions.

1. Rotations and Orthogonal Matrices

Let a vector x be rotated by angle θ about the unit vector n to obtain the vector x′.
Write

x = (x · n)n + (x − (x · n)n).

The first term on the right is the component of x parallel to n; it is unchanged by the
rotation. The second term is the component of x perpendicular to n. It is rotated into

(x− (x · n)n) cos θ + n× (x− (x · n)n) sin θ.

Collecting all terms, we see that

x′ = (cos θ)x + (sin θ)n× x + (1 − cos θ)n (n · x). (1.1)

1Edited and TeX-formatted by Henry G. Baker (hbaker@netcom.com), Nov., 1995. Post-
ings (ftp://ftp.netcom.com/pub/hb/hbaker/quaternion/stanfordaiwp79-
salamin.ps.gz and .dvi.gz) by permission of Eugene Salamin.

2Editor’s note: to minimize confusion, we use capital letters for quaternions, lower-case letters for
scalars, bold capital letters for matrices, and bold lower-case letters for vectors.

Application of Quaternions to Computation with Rotations 2

We want to write (1.1) in matrix form

x′ = R(θ,n)x, (1.2)

where R(θ,n) denotes the orthogonal matrix which performs a rotation by angle θ
about axis n. For this purpose, we set up a correspondence between vectors and anti-
symmetric matrices.

n =


 n1

n2

n3


 ↔ N =


 0 −n3 n2

n3 0 −n1

−n2 n1 0


 (1.3)

This correspondence is useful because Nx = n× x.
The characteristic equation of N is

det(λI−N) = λ3 + (n2
1 + n2

2 + n2
3)λ = 0.

Since n is a unit vector, the eigenvalues are distinct, and so the characteristic equation
is also the minimal equation. Thus (Cayley-Hamilton theorem)

N3 = −N. (1.4)

From (1.1) and the definition of N, the rotation matrix for rotation by a small angle
ε is

R(ε,n) = I + εN + O(ε2).

For a finite rotation,

R(θ,n) = R(θ/k,n)k = (I + (θ/k)N + O(k−2))k.

Now let k→∞, and we get

R(θ,n) = exp(θN) = eθN. (1.5)

Expand eθN into a power series. Use (1.4) to reduce all powers of N to N or N2.
Finally, identify the power series coefficients of N and N2 with their trigonometric
sums. The result is

eθN = I + (sin θ)N + (1− cos θ)N2. (1.6)

By matrix multiplication,

N2 =


−n2

2 − n2
3 n1n2 n1n3

n2n1 −n2
1 − n2

3 n2n3

n3n1 n3n2 −n2
1 − n2

2


 = nn− I, (1.7)

in which nn denotes the dyadic product.
By substituting (1.7) into (1.6), and taking the product x′ = R(θ,n)x, we find

agreement with (1.1), which was derived directly from the definition of rotation.

Application of Quaternions to Computation with Rotations 3

2. Elementary Properties of Quaternions

Quaternions are elements of a certain 4-dimensional algebra, i.e. a vector space en-
dowed with multiplication. For the moment, we make no assumption about the ground
field of the vector space.

It is convenient to think of a quaternion, Q = q0 +q, as the sum of a scalar, q0, and
an ordinary 3-vector, q. Then the quaternion product

R = PQ

is defined by
r0 = p0q0 − p · q, (2.1)

r = p0 q + p q0 + p× q. (2.2)

We will identify a scalar (field element) with a quaternion having vanishing vector
part: s = s + 0. Likewise, we identify a 3-vector with a quaternion having vanishing
scalar part: v = 0 + v. If Q = q0 + q, then by Q∗ is meant the quaternion with the
sign of its vector part changed, i.e. Q∗ = q0 − q.

The quaternion algebra is also given a dot product.3

P ·Q = p0q0 + p · q. (2.3)

A unit quaternion is a quaternion Q such that Q · Q = 1. A null quaternion is a
quaternion Q such that Q · Q = 0. Non-zero null quaternions exist. Examples are
Q = (2, 1, 0, 0) over Z5, and Q = (1, i, 0, 0) over the complex numbers. For this
reason, the dot product is, in general, not an inner product.

The following properties are easily established, and are left as an exercise for the
reader. Remember that the ground field is arbitrary in the current context.

1. The quaternion 1 is the multiplicative identity.

1Q = Q1 = Q.

2. Quaternion multiplication is associative.

P (QR) = (PQ)R = PQR.

Furthermore,4

PQR = p0q0r0 − p0 q · r− q0 p · r− r0 p · q− [p,q, r]
+ q0r0 p + p0r0 q + p0q0 r

+ p0 q× r + q0 p× r + r0 p× q
− (q · r)p + (p · r)q− (p · q) r.

(2.4)

3Editor’s note: P · Q = Scalar(P ∗Q) = Scalar(PQ∗) =
PQ∗+(PQ∗)∗

2
.

4Editor’s note: [p,q, r] is the “scalar triple product” — i.e.,

[p,q, r] = p · (q × r) =

∣∣∣∣∣
p1 p2 p3

q1 q2 q3

r1 r2 r3

∣∣∣∣∣ = −Scalar(pqr) = −pqr + (pqr)∗

2
.

Application of Quaternions to Computation with Rotations 4

3. Quaternion multiplication is non-commutative. There exist P and Q such that
PQ �= QP . However, multiplication by a scalar is always commutative.

4. The ∗ operator is an anti-homomorphism.

(PQ)∗ = Q∗P ∗.

5.
Q ·Q = QQ∗ = Q∗Q.

6.
(PQ) · (PQ) = (PQ) · (QP) = (P · P)(Q ·Q). (2.5)

7.
(PQ) · (PR) = (P · P)(Q · R). (2.6)

3. Quaternion Description of Rotations

We now assume we are dealing with real quaternions. The dot product is now an inner
product, and we can define the length of a quaternion Q as |Q| = √Q ·Q. It will be
shown that the rotation matrices are in a 1-2 correspondence with the unit quaternions,
i.e. those quaternions, Q, for which |Q| = 1.

Consider the transformation

X ′ = QXQ∗, (3.1)

where Q is a unit quaternion. The scalar part, x0, of X is transformed into x′
0 =

(QQ∗)x0 = x0. From (2.5), we see that X ′ · X ′ = X · X . Since the scalar part
is left unchanged, we also have x′ · x′ = x · x, which is sufficient to prove that the
transformation is a rotation. By specialization of (2.4), we see that the vector part, x,
of X is transformed into

x′ = (q2
0 − q · q)x + 2q0 q× x + 2q (q · x). (3.2)

Note the similarity in form between (1.1) and (3.2). It is reminiscent of the trigono-
metric double angle formulas. By choosing

Q = Q(θ,n) = cos
θ

2
+ sin

θ

2
n,

(which is not much of a choice, since every unit quaternion is of this form) we make
the two equations identical.

This can also be written in a form similar to (1.5). First, note that, as a quaternion
product, n2 = −1. By manipulation of the power series, just as was done for rotation
matrices, we find

Q(θ,n) = e(θ/2)n = cos
θ

2
+ sin

θ

2
n. (3.3)

We have now exhibited the correspondence between unit quaternions and proper
orthogonal matrices as representations of rotations.

Q(θ,n)↔ R(θ,n) (3.4)

Application of Quaternions to Computation with Rotations 5

This correspondence is a group homomorphism because P (QXQ∗)P ∗ = PQXQ∗P ∗ =
(PQ)X(PQ)∗. It is not quite an isomorphism, since both Q(θ,n) and −Q(θ,n) cor-
respond to the same orthogonal matrix.

Given the elements of a unit quaternion, Q, we can use (3.2) to obtain the elements
of the corresponding rotation matrix, R.

R =


 q2

0 + q2
1 − q2

2 − q2
3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)

2(q0q3 + q2q1) q2
0 − q2

1 + q2
2 − q2

3 2(−q0q1 + q2q3)
2(−q0q2 + q3q1) 2(q0q1 + q3q2) q2

0 − q2
1 − q2

2 + q2
3


 . (3.5)

Conversely, given the elements of a proper orthogonal matrix, R, we want to com-
pute the elements of a corresponding unit quaternion, Q. From the diagonal elements
of (3.5) we get

q2
0 = 1

4 (1 + R11 + R22 + R33),

q2
1 = 1

4 (1 + R11 −R22 −R33),

q2
2 = 1

4 (1−R11 + R22 −R33),

q2
3 = 1

4 (1−R11 −R22 + R33).

(3.6)

From the off-diagonal elements of (3.5) we get

q0q1 = 1
4 (R32 −R23),

q0q2 = 1
4 (R13 −R31),

q0q3 = 1
4 (R21 −R12),

q1q2 = 1
4 (R12 + R21),

q1q3 = 1
4 (R13 + R31),

q2q3 = 1
4 (R23 + R32).

(3.7)

Choose the equation from (3.6) which yields the qk of largest magnitude. In particular,
if we find some q2

k ≥ 1/4, then no other element of Q can be larger. Since both Q and
−Q are solutions to the same R, we can take either sign of the square root. Once we
have solved for one qk, the three equations in (3.7) which contain qk on the left hand
side can be solved for the remaining elements of Q.

4. Comparison Between Quaternions and Orthogonal Matrices

If rotations are represented by 3 × 3 orthogonal matrices, then it is necessary to store
all 9 elements. Composing rotations requires multiplying the two matrices. For each
product matrix element, we must do 3 multiplications and 2 additions, for a total of 27
multiplications and 18 additions.

If rotations are represented by quaternions, then only 4 elements need to be stored.
Composition of rotations corresponds to quaternion multiplication. When the quater-
nion product, (2.1) and (2.2) is written out in terms of actual elements, we see that
computing each product element requires 4 multiplications and 3 additions, for a total
of 16 multiplications and 12 additions.

When rotating a vector, if we already possess the rotation matrix, then only 9 mul-
tiplications and 6 additions are needed. If we have to compute the rotation matrix

Application of Quaternions to Computation with Rotations 6

from the quaternion, then we can follow the procedure of (3.5). First compute all the
quadratic monomials qjqk, which takes 10 multiplications. Next, each of the three di-
agonal terms can be calculated with 3 additions. Finally, each of the six off-diagonal
terms can be calculated with 2 additions, provided multiplication by 2 is considered as
an addition. The total computation in obtaining the matrix is 10 multiplications and 21
additions.

Buildup of computational error will cause the quaternion to become of non-unit
length. This can be fixed by dividing the quaternion by |Q|. In contrast, fixing a
non-orthogonal matrix is much more complicated (see Appendix A). If A is an al-
most orthogonal matrix, then A can be re-orthogonalized by replacing it by R =
A(AT A)−1/2.

But we can even avoid having to rescale the quaternion provided we rotate vectors
according to

x′ =
QxQ∗

Q ·Q .

No such option exists when orthogonal matrices are used.

5. The Rotation Group Manifold

We already know what the rotation group manifold looks like topologically. It is a
3-sphere, i.e. the 3-dimensional surface of a 4-dimensional ball, with diametrically
opposite points identified, since Q and −Q represent the same rotation. This space is
usually called a projective 3-space, and denoted by P3. Equivalently, the points of P3

can be taken to be the lines through the origin in Euclidean 4-space.
The group manifold inherits a metric, the dot product (2.3), by virtue of its imbed-

ding in Euclidean space. A group manifold also has an intrinsic metric, which is de-
fined by the requirement that it be invariant under group multiplication. If P , Q, and
R are group elements, i.e. unit quaternions, then the invariant metric must satisfy
(PQ) · (PR) = (QP) · (RP) = Q · R. But, by (2.6), the inherited metric already
satisfies this condition. This validates in total the picture of the rotation group manifold
as a 3-sphere (with opposite points identified).

The invariant metric implies a measure on the group manifold, and thus allows
probability distributions to be defined. This is useful for Monte Carlo simulations
where we need to choose “random rotations”. Random rotations are to be chosen
uniformly distributed over the 3-sphere.

In order to carry out integrations over the group manifold, we can use hyperspheri-
cal coordinates.

q0 = cosα,

q1 = sinα cosβ,

q2 = sinα sinβ cos γ,

q3 = sinα sinβ sin γ.

(5.1)

Application of Quaternions to Computation with Rotations 7

To cover the P3, we only need the region q0 ≥ 0. The range of the angles is

0 ≤ α ≤ π/2,

0 ≤ β ≤ π,

0 ≤ γ ≤ 2π.

The length element is

ds2 = dα2 + sin2α dβ2 + sin2α sin2β dγ2, (5.2)

and the volume element is

dΩ = sin2α sin β dα dβ dγ. (5.3)

The total group volume is

Ω =
∫ π/2

0

dα

∫ π

0

dβ

∫ 2π

0

dγ sin2α sinβ = π2. (5.4)

As an application, let’s calculate the mean value of the rotation angle, θ, of ran-
domly chosen rotations. Since q0 = cos(θ/2) = cosα, we have

〈θ〉 = 2〈α〉 = 1
Ω

∫
2α dΩ =

8
π

∫ π/2

0

α sin2α dα =
π

2
+

2
π

= 126.5 deg.

Appendix A. Re-orthogonaliztion of Matrices

Let A be a matrix which is supposed to be orthogonal, but isn’t, because of accumu-
lated computational error. We want to replace A by the “nearest” orthogonal matrix.
Let X be the unknown replacement matrix. X can be found by minimizing the quantity

f =
∑
i,j

(
(Xij −Aij)2 −Mij(XT X− I)ij

)
.

The first term on the right hand side assures that X is close to A. In the second term,
M is a Lagrange multiplier matrix. We minimize f by variation of X and M. Dif-
ferentiation of f with respect to the elements of M gives the condition, XT X = I,
that X be orthogonal. Since XT X− I is always symmetric, regardless of X, there are
only 6 constraints, not 9. So we need only 6 independent Lagrange multipliers, i.e. we
assume that M is symmetric.

Then, differentiating f with respect to the elements of X results in

X−A−XM = 0. (A.1)

The solution of (A.1) proceeds as follows.

X = A(I−M)−1

XT = (I−M)−1AT

XT X = (I−M)−1AT A(I−M)−1 = I

AT A = (I−M)2

I−M = (AT A)1/2

X = A(AT A)−1/2

Application of Quaternions to Computation with Rotations 8

Note that since A is almost orthogonal, AT A is almost the identity, and so exactly
one of its square roots is also almost the identity. This is obviously the square root to
be used.

Appendix B. Quaternions and Relativity

This appendix will mainly be of interest to the reader acquainted with the special theory
of relativity. Quaternions are now complex, and the dot product defined in (2.3) and the
definition of unit quaternion are carried over exactly as stated, i.e. there is no complex
conjugation. When we need complex conjugation, we denote it by an overline.

We will consider the following two transformations.

U ′ = QUQ
∗
, (B.1)

U ′ = QUQ∗, (B.2)

in which Q is a complex unit quaternion. (B.1) is the Lorentz transformation of 4-
vectors, e.g. space-time displacements, or momentum-energy. (B.2) is the Lorentz
transformation of the electromagnetic field.

Starting with (B.1), we see from (2.5) that U ′ · U ′ = U · U . Suppose the vector
part of U is real and the scalar part of U is imaginary, i.e. we have U = it + x, where
t and x are real. Also let U ′ = it′ + x′. Then the invariance of the dot product is
reformulated as

−t′2 + x′ · x′ = −t2 + x · x, (B.3)

which is the familiar condition defining the Lorentz transformation.
We proceed to prove that (B.1) is a Lorentz transformation. We must show that t′

and x′ are real, for otherwise (B.3) would not be correctly interpreted. Note that t and
x are real if and only if U = it + x satisfies U = −U∗, and likewise for U ′. So,
to prove that (B.1) is a Lorentz transformation, we must show that U = −U∗ implies
U

′
= −U ′∗.

U
′
= QUQ∗ = −QU∗Q∗ = −

(
QUQ

∗)∗
= −U ′∗.

As Q varies over all unit quaternions, the (B.1) transformations can, at most, gen-
erate the proper Lorentz transformations, i.e. those which involve no space or time
reflections. To show that all the proper Lorentz transformations are obtained, we only
need to obtain a generating set. Such a generating set consists of the rotations and the
Lorentz boosts, or pure velocity transformations.

The rotations are obtained by choosing Q real. Then Q necessarily has the canoni-
cal form (3.3) with θ and n real, and we get

Q (it + x)Q
∗

= Q (it + x)Q∗ = it + QxQ∗.

The time part is unchanged, and the space part is rotated, exactly as in section 3.
The pure velocity boosts are obtained by choosing Q to have a real scalar part and

imaginary vector part. Then Q necessarily has the canonical form

Q = cosh
α

2
+ i sinh

α

2
m, (B.4)

Application of Quaternions to Computation with Rotations 9

where α is real and m is a real unit vector. We find, by using (2.4),

U ′ = QUQ
∗

= QUQ

= (q2
0 − q · q)u0 − 2q0 q · u + u− 2q (q · u) + 2q0 qu0.

(B.5)

Substitute (B.4) into (B.5), let U = it+x, apply the hyperbolic double angle formulas,
and finally, separate the imaginary scalar part from the real vector part.

t′ = (cosh α) t− (sinh α)m · x
x′ = (cosh α)mm · x + (1−mm) · x− (sinh α)mt

(B.6)

Let’s put (B.6) into its more familiar form. Let m be along the z-axis, let the
velocity be v/c = tanhα, and note that coshα = 1/

√
1− v2/c2 = γ. Then (B.6)

becomes
t′ = γ(t− (v/c)z),
x′ = x,

y′ = y,

z′ = γ(z − (v/c)t).

In general, (B.6) is the Lorentz transformation for velocity v/c = (tanhα)m.
Next, we examine the transformation (B.2). Note that (B.2) is algebraically iden-

tical to (3.1), except that now the quaternions are all complex. Just as in section 3,
U ′ ·U ′ = U ·U , and u′

0 = u0, so u′ · u′ = u · u. Anticipating the type of tensor whose
transformation is effected by (B.2), we let u = E+ iB, where E and B are real.5 Then
we see that E ·E−B ·B and E ·B are invariants of the transformation.

When Q is a pure rotation, and has canonical form (3.3), E and B are independently
rotated. When Q is a pure velocity boost, substitute the canonical form (B.4) into (3.2)
and apply the double angle formulas to get

u′ = mm · u + (coshα) (1 −mm) · u + 2i(sinhα)m × u.

With separation into real and imaginary parts, this becomes

E′ = mm · E + (coshα) (1 −mm) ·E− (sinh α)m×B,

B′ = mm · b + (coshα) (1 −mm) ·B + (sinhα)m ×E.
(B.7)

To put (B.7) into the familiar form of the Lorentz transformation of the electric and
magnetic fields, again choose m to lie along the z-axis.

E′
x = γ(Ex + (v/c)By),

B′
x = γ(Bx − (v/c)Ey),

E′
y = γ(Ey − (v/c)Bx),

B′
y = γ(By + (v/c)Ex),

E′
z = Ez,

B′
z = Bz.

5Editor’s note: we break our convention here and allow bold capitals to denote the familiar electric and
magnetic vectors.

