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We address the problem of recovering the motion of a monocular observer relative to a rigid
scene. We do not make any assumptions about the shapes of the surfaces in the scene, nor do
we use estimates of the optical flow or point correspondences. Instead, we exploit the spatial
gradient and the time rate of change of brightness over the whole image and explicitly impose
the constraint that the surface of an object in the scene must be in front of the camera for it to
be imaged. © 1989 Academic Press, Inc.

1. INTRODUCTION

One of the primary tasks of a computer vision system is to reconstruct, from
2-dimensional images, such 3-dimensional properties of a scene as the shape,
motion, and spatial arrangement of objects. In monocular vision, an important goal
is to recover, from time-varying images, the relative motion between a viewer and
the environment, as well as the so-called structure of the environment. The structure
of the environment is usually defined in terms of the relative distances of points on
the surfaces in the scene from the viewer. In theory at least, absolute distances can
be determined from the image data if the motion is known.

Two types of approaches, discrete and continuous, have been pursued in most of
the earlier work in motion vision. Discrete methods establish correspondences
between images of points in the scene in a sequence of images in order to recover
motion (see, for example, [21, 22, 14, 5, 15, 25, 27]). Among the shortcomings of the
discrete methods are that they require the solution of the correspondence problem
and that they are not very robust, since information from a small portion of the
image is used. To overcome the first problem, methods have been suggested that
only require line or contour correspondence (see, for example, [24, 26, 3]); however,
the computation is still based on information in a relatively small portion of the
image.

Jain [11] presents a method for the computation of the focus of expansion (for
pure translational motion) that does not require determining the point correspon-
dences in the two images, however, one still needs to identify feature points. Lawton
[12] suggests a method based on simultaneous feature extraction and motion
computation. In either case, the need for identifying feature points makes the
method inattractive.

In the continuous approach, optical flow, an estimate of the velocities of the
images of points in the scene, is used. Longuet-Higgins and Prazdny [13] show how
image velocity as well as its first and second derivatives at a single image point can
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be used to recover motion and the local structure of the surface of the scene. This
method, based on only local information, is sensitive to inherent ambiguities in the
solution when data is noisy. In fact, since the method essentially works with a
vanishingly small field of view, it is unable to estimate all components of motion
[19]. Other methods have been suggested based on a least-squares approach (see [4,
6, 1]). Here, motion parameters are found that are most consistent with the
estimated image velocity over the entire image. The least-squares methods are more
robust, however, they make use of the unrealistic assumption that the computed
optical flow is a good estimate of the true image motion. Also, the algorithms for
estimating an optical flow field are computationally expensive. This has motivated
investigation of methods that use brightness derivative information at every image
point directly to recover 3-dimensional shape and motion. Several special cases of
the motion vision problem have already been addressed using this notion.

When the motion is purely rotational, one only has to solve three linear equations
in three unknowns (Aloimonos and Brown [2] apparently first reported a solution to
this problem, while Horn and Weldon [8, 9] studied the robustness). Another special
case of interest is the one where the depth values of some points are known. The
depth values at six image points are sufficient to recover the translational and
rotational motion from six linear equations [19]. In practice, to reduce the influence
of measurement errors, the information from as many image points as possible
should be used. If the variation in depth is negligible in comparison to the absolute
distance of points on the surface, it can be assumed that the points are located at
essentially the same distance from the viewer, that is, the scene lies in a frontal
plane. In this case, Negahdaripour and Yu [19] show that the six translational and
rotational motion parameters can also be obtained from six linear equations. When
the scene is planar (but not necessarily a frontal plane) the results of the least-squares
analysis of Negahdaripour and Horn [16] can be applied. This approach leads to
both iterative and closed-form solutions.

In this paper, we present a direct method for recovering the motion of a viewer
without making any assumptions about the shapes of the surfaces in the scene. We
do not compute optical flow nor do we use correspondences of image features. We
use the information in the image brightness variations (both spatial and temporal)
over the whole image, and only impose a simple physical constraint: Depth must be
positive. That is, a point on a surface must be in front of the viewer in order for it to
be imaged. This physical constraint has been used in the past mainly to distinguish
among multiple solutions to the problem of recovering scene structure from 2-
dimensional images (for example, see [10]); that is, it has been used to eliminate
those solutions for which the depth values are negative for some surface points. In
our work, however, the constraint is used directly in the formulation of the problem
to determine: the best estimate of the motion. Unfortunately, the problem is still
rather difficult to solve when motion consists of both translation and rotation of the
viewer. We therefore first address the problem of a translating observer. We show
how the constraint that depth is positive can be used to locate the focus of
expansion, and consequently the direction of translation, given an image sequence.
We explain how one can develop algorithms, based on our analysis and the
proposed methods, that require simple computations. We will present examples
based on experiments with real images. Finally, we explain how our results can be
extended if the motion involves rotation as well as translation of the viewer. The
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F1G.1. Viewer-centered coordinate system and perspective projection.

general method requires considerably more computation than the special one, and
the solution may not be unique given noisy data. This is because of the inherent
difficulty in distinguishing between rotation about some axis parallel to the image
plane and translation along an axis that is perpendicular to this rotation axis (see
[17] for an example that demonstrates this fact, and [19] for a qualitative analysis).

2. BRIGHTNESS CHANGE CONSTRAINT EQUATION

A viewer-centered coordinate system is chosen. The image is formed on a plane
perpendicular to the viewing direction (which is assumed to be along the z-axis),
and the focal length is taken to be the unit of length, without loss of generality (Fig.
1). Let R =(X,Y, Z)T be the point in the scene that projects onto the point
r = (x,y,1)7 in the image. Assuming perspective projection, we have

where Z = R - % is the distance of the point R from the viewer, measured along the
optical axis. This is referred to as the depth of point R.

Now, suppose the viewer moves with translational and rotational velocities t and
w relative to a stationary scene. Then a point in the scene appears to move with
respect to the viewer with velocity

R,=-RXw-—-t

The corresponding point in the image moves with velocity [16]

A

which is the familiar result apparently first derived by Longuet-Higgins and Prazdny
[13]. The velocities of all image points, given by the above equation, taken collec-
tively, define a 2-dimensional vector field that we call the image motion field. This
has also at times been referred to as the optical flow field (see Horn [7] for a
discussion of the distinction between optical flow and the motion field).
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As an object moves in the environment, the brightness of the image of a patch on
the surface of the object may change for a variety of reasons including changes in
illumination or shading. If the surfaces of the object have sufficient texture (or high
contrast at large frequencies) and the lighting conditions vary rather slowly both
spatially and with time, the image brightness changes due to changing surface
orientation and changing illumination are negligible (relative to changes due to
relative motion of the scene and the observer). Hence, we may assume that the
brightness of a small patch on a surface in the scene remains essentially constant as
it moves. This is the brightness constancy assumption.

Let E(r, t) denote the brightness of an image point r at time 7. Then the constant
brightness assumption allows us to write

d
EE(r,t) =E -r,+E=0,

where E, and E, = (E,, Ey,O)T denote the temporal and spatial derivatives of
brightness respectively. If we substitute the formula for the motion field into this
equation we arrive at the brightness change constraint equation for the case of rigid
body motion [16},

1
E+v-w+ —-s-t=0,
where, for conciseness, we have defined
s=(E,Xx2Z)Xr and =rXs.
In component form, s and v are given by
~E, xyE, + (y2+1)Ey
s = —E, and v=|-(x>+1)E, - xE,
xE, + yE, yE, — xE,

An immediately useful consequence of the way the vectors r, s, and v are defined is
that they form an orthogonal triad, that is,

r-s=20, r-v=_0, s-v=0.

Note that the brightness change constraint equation is not altered if we scale both
Z = R - 7 and t by the same factor, k say. We conclude that we can determine only
the direction of translation and the relative depth of points in the scene; this
well-known ambiguity is here referred to as the scale-factor ambiguity of motion
vision.

We need to mention that the brightness constancy assumption has been a
controversial issue in recent years (for example, see [23]). While this assumption
may be violated in some cases, for example, for surfaces with dominantly specular
reflectance properties, it holds exactly for the case of many other surfaces including
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those with lambertian reflectance properties. More importantly, it is a good approxi-
mation when the surface texture has high contrast at large frequencies (see {9] for a
more detailed explanation). We will later explain why our method is robust with
respect to the errors in the constraint equation provided that the scene has strong
texture. (Negahdaripour and Horn [18] show, through two selected examples with
synthetic data, that the method is robust with respect to errors in the brightness
change equation. We also show this through two selected examples from experi-
ments we have performed using real images.)

3. POSITIVENESS OF DEPTH

The brightness change constraint equation shows how the motion of the observer,
{ w, t}, and the depth of a point in the scene, Z, impose a constraint on the temporal
derivative of the image brightness corresponding to a point in the scene. Unfortu-
nately, we cannot recover both depth and motion using this constraint equation
alone. To show this, we solve the constraint equation for Z, in terms of the true
motion parameters {w, t}, to obtain

s-t
® = —

c+v-w

Now, for an arbitrary motion {w’,t'}, depth values that satisfy the brightness
change constraint equation can be determined using

e s-t
T e+ vew]

(provided that the denominator is not zero). This may suggest that, for any choice of
the pair {w’,t'}, we can determine depth values such that the brightness change
equation is satisfied at every image point. Clearly an infinite number of solutions is
possible since the motion parameters can be chosen arbitrarily.

The depth values of points on the visible portions of a surface in the scene are
constrained to be positive; that is, only points in front of the viewer are imaged. In
theory, any motion pair {&’,t'} that gives rise to negative depth values cannot be
the correct one. Thus, the problem is to determine the pair {w,t} that gives rise to
positive depth values (Z > 0) over the whole image. One may well ask whether
there is a unique solution; that is, given that the brightness change equation is
satisfied for the motion {w,t} and the surface Z > 0, is there another motion
{w’,t'} and another surface Z’ > 0 that satisfies the brightness change equation at
every point in the image In general, this is possible since, for example, an image of
uniform brightness could correspond to an arbitrary uniform surface moving in an
arbitrary way. Hence, the brightness gradients (or lack of brightness gradients) can
conspire to make the problem highly ambiguous. In practice, given a sufficiently
textured scene, it is more likely that we have the opposite problem: There is no
solution because of noise in the images and the error in estimating brightness
derivatives; that is, every possible set of motion parameters, including the correct
one, lead to some negative depth values. So we have to invent a method for selecting
a solution that comes closest to being consistent with the image data.
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The problem is rather difficult when both rotation and translation are unknown.
Therefore, we first restrict attention to the special case when either rotation is zero
or is at least known. We then show how the procedure may be extended to deal with
the general case.

4. PURE TRANSLATION OR KNOWN ROTATION

Suppose the rotational component of motion is known. Then we can write the
brightness change equation in the form

1
5+E(S‘t)=0

where ¢ = ¢ + v + w. For simplicity, we will from now on write ¢ where ¢ should
appear. The problem is still underconstrained if we restrict ourselves to the bright-
ness change constraint equation alone. At each point, we have one constraint
equation. Given n image points we have therefore n constraint equations, but n + 2
unknowns (n depth values and two independent parameters required to specify the
direction of translation). Most of these “solutions,” however, are inconsistent with
the physical constraint that Z > 0 for every point on the visible parts of the
surfaces imaged. If we impose this additional constraint we may have many, only
one, or no solution(s) depending on the variety of brightness gradient directions in
the image and the amount of noise in the data, as mentioned earlier. Note that we
need to use constraint from a whole image region since the problem remains
underconstrained if we restrict ourselves to information from a small number of
points or a line.

Before we discuss the general method, we show how a simplified constraint can be
used to recover motion provided that so-called stationary points can be identified.
We then present a more general procedure for locating the focus of expansion (FOE)
and consequently the direction of motion.

4.1. Stationary Points

An image point where ¢ = 0 will be referred to as a stationary point. In the case
of pure translation (w = 0), a stationary point is one where the time derivative of
brightness, E,, is zero. In order to exclude regions of uniform brightness from
consideration, we restrict attention to points with non-zero brightness gradient
(E, # 0). When ¢ = 0, the brightness change equation reduces to

! 0
E(S't)—,

and, if the depth is finite, this immediately implies that
(s-t)=0.

(We assume a finite depth range here—background regions at essentially infinite
depth have to be detected and removed—see Horn and Weldon [9]). Since Z drops
out of the equation, we conclude that the depth value cannot be computed at a
stationary point. These points, however do provide strong constraints on the
location of the FOE.
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In fact, with perfect data, just two nonparallel vectors, s, and s,, at two stationary
points, provide enough information to recover the translational vector t. We note
that t is perpendicular to both s, and s, and so must be parallel to the cross product
of these two vectors. So

t=k(s; Xs,),

where k is some constant that cannot be determined from the image brightness
gradients alone because of the scale-factor ambiguity.

This solution can be interpreted geometrically: At each stationary point, t is the
normal to the vector s. Two such vectors define the plane with normal vector t.
Another interpretation is in terms of quantities in the image plane: The brightness
gradient at a stationary point is orthogonal to the line that connects the point to the
FOE (see the appendix for more details); or, equivalently, the tangent of the
isobrightness contour at a stationary point passes through the FOE. Intersecting
the tangents of the isobrightness contours at two different stationary points allows
us to determine the FOE.

In practice it will be better to apply least-squares techniques to information from
many stationary points. Because of noise in the images, as well as quantization
error, the constraint equation (s - t = 0) will not be satisfied exactly. This suggests
minimizing the sum of the squares of the errors at all stationary points; that is, we
minimize

n

5 (s, 07 = tT( h )t

i=1

(In the above we have used the identity s -t = s't) Note that the resulting
quadratic form cannot be negative.

Because of the scale-factor ambiguity we can only determine the direction of t,
not its magnitude, so we have to impose the constraint |t|> =1 (otherwise we
immediately obtain the trivial solution t = 0). This leads to a constrained optimiza-
tion problem. We can create an equivalent unconstrained optimization problem,
with a closed-form solution, by introducing a Lagrange multiplier. We find that we
now have to minimize

t+A(1 - tTt).

n
J = tT( Y s;sT

i=1

The necessary conditions for stationary values of J are

v, .Y,
at an an

Executing the indicated differentiations we arrive at

( Yy sis}“)t =A and tTt=1.
H

i=1
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This is an eigenvalue-eigenvector problem; that is, {t, A} is an eigenvector—eigen-
value pair of the 3 X 3 matrix

n
Y s;st.
i=1

This real symmetric matrix generally will have three nonnegative eigenvalues since
the quadratic form we started off with was nonnegative definite. It is easy to see that
J is minimized by the eigenvector associated with the smallest eigenvalue, since
substitution of the solution yields

J=tT(At) + A1 — tT) = MTt + A — ATt = A.

The least-squares method just described can be interpreted as follows. The normal
of the plane defined by the vectors s at all stationary points defines the direction of
t, if there was no measurement error (note that, s - t = 0 implies that t lies in the
null space of all s vectors). In practice these vectors do not lie in the same plane due
to noise. The best estimate of t is the direction for which the sum of the squared
magnitude of the projections of all s vectors is minimum. We can alternatively
choose another estimate, derived in the Appendix. At each stationary point, the
tangent to the isobrightness contour provides us with a line on which the FOE
would lie if there was no measurement error. In practice these lines will not intersect
in a common point due to noise. The position of the FOE may then be estimated by
finding the point with the minimum (weighted) sum of squares of distances from the
lines.

It should be noted that with just two stationary points, the 3 X 3 matrix has rank
two since it is the sum of two dyadic products. The solution then is the eigenvector
corresponding to the zero eigenvalue. Geometrically, this is the vector normal to the
plane formed by s, and s,, as discussed earlier.

By the way, if t is an eigenvector, so is —t. While these two possibilities
correspond to the same FOE, it may be desirable to distinguish between them. This
can be done by choosing the one that makes most depth values positive rather than
negative (see [9)).

4.2. Constraints Imposed by Brightness Gradient Vectors

We first assume that two translational motions and two surfaces satisfy the
brightness change equation; that is, we have

1 1
c+E(s-t)=O and c+7(s-t’)=0.

Here, {Z > 0, t} denotes the true solution and {Z’ > 0,t'} denotes a spurious (or
assumed) solution. We will show that we must have Z = kZ’ and t = kt’, for some
nonzero constant k, provided that there is sufficient texture and that we consider a
large enough region of the image. This means that the solution is unique up to the
scale-factor ambiguity.




FOCUS OF EXPANSION 311

Solving for Z and Z’ we obtain
1 1
Z= ——c—(s-t) and Z'=—-—(s-t).
¢

The depth value cannot be computed at a point where ¢ = 0; that is, at a stationary
point. We already know how to exploit the information at these points and so
exclude them from further consideration; that is, we assume from now on that
c# 0.

Since Z is the true solution, we are guaranteed that Z > 0. If { Z’,t'} is to be an
acceptable solution, we must also have Z’ > 0 and so

1
27 = ?(s -t)(s - t) > 0.
Now the focus of expansion (FOE) is the intersection of the translational velocity

vector t and the image plane z = 1. It lies at

t

t=—
t-z

I

provided that t - 2 # O (otherwise, it is at infinity in the direction given by the vector
t). We can similarly write

for the focus of expansion corresponding to the assumed translational velocity t/
(provided again that t’ - Z # 0).
We can write the product s - t in the form

s-t=(t-2)((r-%-E,).
Similarly, we obtain
st =(t-2)((r-¥)-E,).
Substituting these into the inequality constraint ZZ’ > 0 we arrive at

(t-2)t-2)((r-9-E)(r—¥)-E,)>0.

If (t - ) and (t' - Z) have the same sign, we must have

(-9 -E)(r-7)-E)>0.

For convenience, we denote the term on the left-hand side of the inequality p from
here on. So for ZZ’ > ( we must have p > 0. Note that if (t - Z) and (¢’ - Z) have
opposite signs, the inequality is reversed. Without loss of generality, we assume from
now on that the above constraint holds—the proof is similar in the opposite case as
we will indicate. ‘
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Half-Plane H
Y F* Assumed FOE

Haif-Plane H+

! % _ -7 True FOE

X

Image Plane Image Plane

Half-Plane H' ~

F1G. 2. True and spurious (assumed) FOEs define the positive and negative half planes.

For t’ to be a possible translational motion, the inequality developed above must
hold for every point r in the image region under consideration, that is, p > 0. At
each point, E, is constrained to lie in a direction that guarantees that (r — t) - E,)
and ((r — 1) - E,) have the same sign. In practice, a sufficiently large image region
will contain some image brightness gradients that violate this constraint unless
1 = 7. We will estimate the probability that an arbitrarily chosen brightness gradient
will violate this constraint. This probability varies spatially and we show that there
is a line segment in the image along which the probability of violating the constraint
becomes one. Furthermore we exploit the distribution in the image of places where
Z’ < 0 to obtain an estimate of the true FOE.

4.3. Permissible and Forbidden Ranges
Define

x=(t-r) and x'=(t-r).

The vectors x and X’ represent the line segments from a point P in the image, with
coordinates r = (x, y,1)T, to the true and spurious FOEs, respectively. These are
the line segments PF and PF’ in Fig. 2a. Note that the scalar product (x - E,) is
positive if the angle between x and the brightness gradient vector at point P is less
than 7 /2, and it is negative when the angle is greater than = /2. It is zero when x is
orthogonal to the gradient vector. Similarly, the dot product (x’ - E,) is positive,
negative, or zero when the angle between x’ and the gradient vector at point P is
less than, greater than or equal to = /2.
We have, from the discussion in the previous section, the constraint p > 0 or,

(x-E)X -E)>0

(provided that, as assumed, (t - Z) and (t’ - Z) have the same sign). Now suppose that
we define two directions in the image plane orthogonal to the vectors x and x’ as
follows (see Fig. 2(b)):

A

p=xX2 - and pP=x X1
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The vector p gives the direction of a line that divides the possible directions of E,
into two ranges with differing signs for (x - E,). Similarly, the vector p’ gives the
direction of a line that divides the possible directions of E, into two ranges with
differing signs for (x’ - E,).

Unless p happens to be parallel to p’, we can express an arbitrary gradient vector
E, in the form

E = ap + By,
for some constants « and 8. Then
(X : Er)(x’ ) Er) = _aB‘x X x/|2'

We see that the product denoted p is positive when E, lies between p and —p’
(a > 0 and B < 0) and when E, lies between —p and p’ (e < 0 and 8 > 0). The
union of these two ranges is called the permissible range for E, since it leads to
positive depth values. Conversely, the product will be negative when E, lies between
p and p' (a > 0 and B > 0) and when E, lines between —p and —p’ (a < 0 and
B < 0). The union of these two ranges is called the forbidden range for E, since it
leads to negative depth values.

Denoting the half planes separated by the line parallel to p by H* and H~ and
those separated by the line parallel to p’ by H'* and H'~, we define regions
R,,..., R, as follows:

Ri=H'NH"?, Ry,=H NnH",
and
R,=H'NH', R,=H nH".
We see that R, U R; is the permissible range for E_, because E, has to lie in this

region in order to satisfy the constraint Z’ > 0. Conversely, the region R, U R, is
the forbidden range for E, since Z' < 0 when E, lies in this region (see Fig. 3).

Forbidden

Forbidden
Region

Permissible
Region

Forbidden

Region Forbidden

Region

(a) E, lies within permissible region (b) Er lies within forbidden region

Fi1G. 3. Permissible and forbidden ranges for the brightness gradient direction.
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(Note that the permissible range will be the region consisting of R, and R, and the
forbidden range will consist of R, and R,, when (t - Z)(t' - Z) < 0.)

We now show that if T # T, then the vector E, has to lie in the forbidden region
(and, therefore, Z’ < 0) for some image points. Therefore, we must have T =1 to
guarantee that Z’ > 0 for every image point. In this case, Z = kZ’ for some
non-zero constant k. This implies that

or t = kt'. Since this means that we can recover the translational motion up to a
scale factor, we conclude that the solution is unique up to the scale-factor ambigu-

ity.

4.4. Distribution of Points Violating the Inequality Constraint

Suppose now that the point P lies along the line passing through F and F’, which
we refer to as a FOE constraint line. Then we have

r=(1-y)t+vyt,

for some y. We see that 0 < y < 1 when the point P lies on the segment between
the points F and F’. Also y < 0, if P lies on the ray emanating from F (segment
FX) and y > 1, if P lies on the ray emanating from F’ (segment F’X’). For points
on the FOE constraint line, we have

x=t—-r=y(t-1) and X=t-r=(y-1)(f-1).

The product of interest to us here, p, is then given by

(x-E)(x - E)=vy(y - 1)(E-7)E).

It is clear that p will be negative when 0 < y < 1, unless the gradient vector is
orthogonal to FF’ (note that FF’ is the vector (f — t)). The point P is a stationary
point if the gradient vector is orthogonal to the line FF’, and we have excluded such
points from consideration. This implies that, for points on the line segment FF’, the
depth values Z’ are guaranteed to be negative (unless the point happens to be a
stationary point). The product p is positive when y < 0 or ¥ > 1. So in this case the
depth values are guaranteed to be positive for points along the rays FX and F'X’,
unless the point is a stationary point. (The situation is reversed when (t - Z)(t' - Z) <
0, with positive depth values along FF’ and negative ones along the rays FX and
F'X')

A probability value can be assigned to each image point as a measure of the
likelihood that Z’ < 0 at that image point. Since Z’ < 0 if the gradient vector lies
outside the permissible range, we can conclude that the probability distribution
function depends on 8, the angle between the vectors x and x’, as well as on the
distribution of the brightness gradient vectors.

When @ is small, the permissible range for E, consists of a large set of allowed
directions (see Fig. 4a). Therefore, the points where # is small are likely to have
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Permissible
Region

Permissibie
Region

Permissible
Region

Permissible
Region
Large Permissible Region

Small Permissible Region

(a) small & (b) large 8

[

F1G. 4. Relationship between the size of the permissible range and the relative position of an image
point with respect to the FOE constraint line.

positive depth values even for an incorrect translational vector t'. These are points
that are either at some distance laterally from the FOE constraint line or are in the
vicinity of the two rays FX and F'X'.

Conversely, when @ is large, the permissible range for E, comprises a small set of
directions (see Fig. 4b). Therefore, it is more likely that the brightness gradient lies
outside this range, giving rise to a negative depth value. In the extreme case when
6 = 7 (that is, the point lie along FF’) the depth values are guaranteed to be
negative (unless the point is a stationary point). The forbidden range for a point of
FF’ contains all possible directions for E, excluding only the line orthogonal to FF"'.

Suppose that the probability distribution of the gradient vectors is position-
invariant and rotationally symmetric; that is, all directions of the brightness
gradient are equally likely independent of the image position. It is not difficult to see
that the probability that a point in the image plane gives rise to a negative depth
value is given by

Prob(Z’ < 0) = 0/x.

Since the chord of a circle subtends a constant angle, it follows that the constant
probability loci are circles that pass through F and F’, and that there is symmetry
about the FOE constraint line (see Fig. 5).

To summarize, there are points in the image that give rise to a negative depth
value if an incorrect translation vector (t) is assumed. These points are more likely
to be found in the vicinity of the line segment that connects the incorrect focus of
expansion to the true one (later this is exploited to locate the true focus of
expansion). As F’ approaches F, the region around FF’ that is likely to contain
points with negative depth values shrinks in size. In the limit when F’ coincides with
F, all depth values become positive. (When the product (t - Z)(¥' - Z) is negative, the
situation is reversed. In this case, it is more likely that the points in the vicinity of
FF” will give rise to positive depth values and the points along or in the vicinity of
FX and F'X’ will give rise to negative depth values, but otherwise similar conclu-
sions can be drawn.)
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F1G6. 5. Constant probability loci for Z" < 0.

The true FOE is at infinity when t - 2 = 0. First consider the situation where
t' - Z = 0 for a spurious solution. Then we have

s-t=—t-E

r

and s-t=—t-E,.
Using these, we obtain

(s-t)(s-¢)=(t-E)-E,).

The half planes { H*, H™} and { H'*, H'~} are now defined by the vector t and t,
instead of x and x’ for the case t - Z # 0 (that is, we need to replace x and x’ by t
and t’, respectively, in our earlier analysis). Since these vectors are constants, we
conclude that @ (in this case, this becomes the angle between the two vectors t and
t’) is the same for every image point. If the distribution of brightness gradient
vectors is rotationally symmetric and independent of the image position, each image
point can give rise to a negative depth value with probability equal to 6 /7. We
conclude that the depth values will be negative for some image points unless t = ¢'.
Similar arguments can be made when only one of the FOEs lies at infinity.

4.5. Interpretation of Negative and Positive Depth Clusters

We now give another interpretation of the negative and positive depth clusters
using motion field vectors. For a purely translational motion, the motion field
vectors emanate radially from the FOE for an approaching motion (or point toward
the focus of contraction, for a departing motion). Let us assume an approaching
motion, without loss of generality. For the sake of argument, let two points, one in
the top left region and the other in the bottom right region of the image, denote the
true and some assumed FOEs, respectively. Figure 6 shows, at each image point, the
resulting motion field vectors based on the two FOEs. We see that the largest
discrepancy between the two motion fields is observed in the region around the line
from one FOE to the other. Along this direction, the true motion field vectors point
away from the true toward the assumed FOE, while the assumed motion field
vectors point in the opposite direction. Hence, we need to reverse, along this line,
the direction of the assumed motion field vectors to make them consistent with the
true motion field vectors. This is equivalent to multiplying either the translational
vector or the depth values by the constant scale factor —1. Since the relative
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FiG. 6. Motion field vectors emanating from the true and assumed FOEs.

translational motion between the camera and all scene points is the same, we should
reverse the sign of the depth values. The true depth values are positive, though.
Therefore, the depth values for the assumed FOE will come out negative for points
along this line. The same situation holds for points that are close to this line. This
gives rise to the negative depth cluster we expect 1o observe around the so-called
FOE constraint line. The motion field vectors, both the true and assumed ones, are
consistent along the FOE constraint line away from the two FOEs. This implies that
the true depth values and those obtained based on the assumed FOE will have the
same sign (positive). This gives rise to the two positive depth clusters we expect
along the extensions of the constraint line,

In other regions of the image, the degree of discrepancy between the two motion
field vectors at each point is related to the probability that the resulting depth value
will come out negative (for the particular assumed FOE). This is consistent with the
constant probability loci shown in Fig. 5.

4.6. Brightness Change Equation Revisited

The brightness change equation was derived under the assumption of brightness
constancy. For pure translation, we have

L t=20
+ —s-t=0.
¢ 8
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Now suppose this equation does not hold exactly, and let & denote the error; that is,

1
c+—2~s-t=£.

Solving for Z, we obtain

1
c+ e

Z=-

(s-t).

Our earlier analysis is based on the information in the sign of depth values, Z, and
not their magnitudes. If the scene has strong texture, the magnitude of ¢ = E, is
expected to be larger than ¢ for most image points. Therefore ¢ and ¢ + & will have
the same sign, and consequently Z will preserve its correct sign. The errors in the
brightness change equation affect mostly those points with a small ¢ value. The
information at these points is usually less reliable anyway, due to noise in the
images and quantization error. Therefore, we expect any error in the brightness
change equation (if it exists) due to noise in the images, quantization error, etc. to
affect mostly those points with small ¢ values. This, unfortunately, includes the
critical points we identified earlier, which, at least in theory, provide strong
constraints for locating the focus of expansion.

4.7. Locating the Focus of Expansion Using Gradient Veciors

We have shown that the clusters of positive and negative depth values, obtained
by choosing an arbitrary point as the estimate of the FOE, form particular patterns
in the image. These clusters can be used to determine the location of the FOE.
Hence, the problem of locating the FOE simplifies to that of identifying clusters of
negative and positive depth values, and the corresponding FOE constraint lines.

4.7.1. A Recursive Method

It is somewhat easier to locate the FOE when it lies within the field of view than
when it lies outside. We first compute the sign of the depth values using an initial
estimate of the solution, T, in the brightness change constraint equation. We then
determine the cluster of negative depth values. Finally, we use the fact that the
centroid of this cluster is expected to lie halfway between the true FOE and the
assumed FOE. That is, because of the symmetry of the probability distribution, we
have for the expected position of the centroid

t=1(+7).

Then the position of the FOE can be estimated using:

—2%t-7.

-l

This estimate will be biased if the border of the image cuts off a significant portion
of the cluster. Nevertheless, a simple iterative scheme can be based on the above
approximation that updates the estimate as follows:

@ = 20" - @,
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where ()" is the centroid of the cluster of points with negative depth values
obtained using the estimate (¥)" for the FOE. The cluster will shrink at each
iteration, so in subsequent computations we may restrict attention to the image
region containing the major portion of the previous cluster rather than the whole of
the initial image region under consideration.

477.2. Intersection of FOE Constraint Lines

We can alternatively consider other methods which work even when the FOE is
outside the field of view. Suppose that we identify at least two FOE constraint lines
corresponding to two assumed FOEs. The intersection of these lines will be the
estimated FOE. In practice more than two FOE constraint lines are used to reduce
the effects of measurement error. These lines will no longer all intersect in a
common point because of noise in the images, quantization error, and error in the
estimate of brightness derivatives. It makes sense then to choose as the estimate of
the true FOE the point with the least sum of squares of distances from the
constraint lines. (In this case, there is no problem when the FOE is outside the field
of view; including the case t-% = 0, where the FOE is at infinity. The FOE
constraint lines simply intersect outside the image plane.)

4.7.2.1. Determining the FOE constraint lines. The axis of symmetry or axis of
least inertia of the clusters of positive and negative depth values for a particular
assumed FOE can be chosen as the FOE constraint line. Alternatively, we may
employ a direction histogram method. In this case, we need to determine the
direction of the line through the assumed FOE along which the largest number of
negative depth values are found on one side of the assumed FOE, and the largest
number of positive depth values on the other side.

Consider a circle of radius r centered at the assumed FOE, which does not
include the true FOE. We can construct a histogram of the number of image points,
within the circle, with negative depth values for every possible direction 0 < ¢ < 27
(In practice, we cannot have every angle because of quantization.) We expect the
peak of the histogram to correspond to the direction toward the FOE, this gives the
direction of the line passing through the assumed FOE that we choose as the FOE
constraint line. Generally, the solution may not be unique because the histogram
does not have a distinct peak; that is, we may obtain a range of possible angles
around the correct solution, denoted by ¢,. We can obtain a better estimate of ¢,
using the fact that ¢, + 7 is expected to correspond to a minimum in the histogram
(this is the direction with the most number of positive depth values). Let us denote
the number of negative (positive) depth values in a particular direction ¢ by N~
(N7), and let D = N™— N* denote the difference between the number of negative
and positive depth values in that direction. We can instead construct the histogram
of D(¢) — D(¢ + =) for all directions 0 < ¢ < 7. This new histogram is expected
to have a more distinct peak, corresponding to the direction of the FOE constraint
line.

The size of r, the radius of the circle, can be an important factor. If r is too small,
the histogram may not have a distinct peak due to noise or quantization errors. If »
is too large, the circle may include the FOE. In this case, the histogram may be
flattened particularly around ¢, due to the effect of points within the positive cluster
beyond the FOE.
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Alternatively, we can compute the center of mass of the negative points and the
positive points within the circle. For a symmetric cluster, these points are expected
to lie on the FOE constraint line. We then determine the line that best fits the
assumed FOE as well as the two centers of mass.

To summarize, we first choose arbitrary points in the image as estimates of the
FOE. For each assumed FOE, we determine the signs of the depth values at each
image point using the brightness change equation, and then the FOE constraint line
using either a clustering technique or a histogram method. Finally, we use the best
estimate of the common intersection of the constraint lines corresponding to the
assumed FOEs as the best estimate of the FOE.

The accuracy of the estimate of the location of the FOE will depend on the choice
of the assumed FOEs and the resulting shape and the size of the clusters of negative
and positive depth values. These, in turn, depend on the distribution of the
directions of the brightness gradient, that is, the “richness of texture” in the images.

5. UNKNOWN ROTATION

The problem of locating the FOE from gradient vectors has similar properties to
those encountered when estimating the location of the FOE from optical flow
vectors in the following sense: When the motion is pure translation, the FOE can be
determined rather easily from the intersection of the optical flow vectors (using the
fact that these vectors point toward the FOE for a departing motion and emanate
from the FOE from an approaching motion). Unfortunately, these vectors do not
intersect at the FOE when the rotational component is nonzero. Similarly, we expect
that the FOE constraint lines will not intersect at a common point when the
rotational component is nonzero (and is unknown).

An intuitively appealing approach is one that assumes some rotation vector in
order to discount the contribution of the rotational component before we apply the
method given for the case of a purely translational motion (Prazdny [21] suggested
this procedure to decouple the rotational and translational components of the
motion field). Obviously, the estimate we obtain for the FOE is likely to be very
poor if the rotational component is not chosen accurately. This, however, is exactly
the behavior we want if our method is to work in the general case. That is, in order
to have a distinct peak in the measure we use as a criterion for selecting the best
estimate of the FOE, we should have a large error when we assume a rotation far
from the correct one. The measure of “badness,” denoted e{w), can be the total
square distance of the estimated FOE from the constraint lines. Then the best
estimate of the motion parameters is the one that minimizes this error. It is not
possible to compute this function for every possible rotation. An approach for
dealing with this problem follows.

Suppose, an upper bound for each component of the rotational vector « is
available; for example, it is known that |w,| < o"*. If each interval from —wP* to
w™ s divided into n smaller intervals, we can restrict the search to the »n* discrete
points in w-space. Let us denote a point in this space by w, , for i, j, k =1,2,..., n.
For each possible point in this space (that is, for each «, ;) we estimate the location
of the FOE using the method given earlier. We store the value of the error e(w, ;)
for the best FOE in each case. The best estimate of the rotation corresponds to a
minimum of the error function. To obtain an even more accurate result we may
perform a local search in the neighborhood of w; ;.
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Fi16.7. A band-limited scene.

6. EXPERIMENTAL RESULTS

Negahdaipour and Horn [18] present two examples, using synthetic data, to show
that it is possible to determine the location of the true FOE from the distribution of
the clusters of positive and negative depth values around the FOE constraint lines.
Synthetic data was used so that the underlying motion is known exactly. In
addition, one can evaluate the performance, in terms of stability and robustness, of
the proposed methods in the presence of artificial noise added to the data. We will
present two examples using 64 X 61 real images of a band-limited scene (see Fig. 7).

6.1. Example One: Focus of Expansion in the Image

In this experiment, the camera was moved 0.5 in toward the scene; that is, the
focus of expansion is at the origin of the image plane. The corresponding image
motion varies from 0, at the FOE, to about 0.3 pixels on the image boundary.
Figure 8 shows the regions of negative (gray) and positive (black) depth values for
several assumed FOEs, which are shown as white points. We have obtained
essentially the same clusters for motions as large as 5.0 in (the image motion is as
large as about 3 pixels for boundary points). These results show that we can
estimate the location of the FOE with very good accuracy using the information
from the negative and positive depth clusters.

6.2. Example Two: Focus of Expansion Outside the Image

In this experiment, the camera was moved 0.25 in forward and 0.5 in to the right.
The FOE is out of the image, along the x-axis and about 4 pixels to the right of the
image boundary. The corresponding image motion varies from about 0, on the right
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F16. 8. The regions of negative (gray) and positive (black) depth values for several assumed FOEs:
true FOE is approximately a( the image origin,

boundary (along the x-axis) to about 0.5 pixel on the left boundary (along the
x-axis). The regions of negative (black) and positive( gray) depth values shown, for
several assumed FOEs, are shown in Fig. 9. In this example, the boundary to the
right of the image cuts out a large portion of the negative depth cluster; however,
there is still sufficient information to estimate the location of the FOE using the
negative depth regions. Again, very similar results have been obtained, for the same
FOE, for an order of magnitude larger camera motion, see Fig. 8. The regions of
negative depth regions. Again, very similar results have been obtained, for the same
FOE, for an order of magnitude larger camera motion.

7. SUMMARY

In this paper we have shown that one can exploit the positiveness of depth as a
constraint in order to estimate the location of the focus of expansion when the
motion is either purely translational (or the rotational component is known). There
is no need to compute optical flow, detect image features, or establish feature
correspondences.

The approach is based on the fact that when an arbitrary point in the image is
chosen as the FOE, the depth values that are computed based on the assumed FOE
tend to form clusters of positive and negative values around the line that connects
the assumed FOE to the true FOE; that is, the line that we referred to as an FOE
constraint line. These clusters can be used to determine the direction toward the
true FOE; that is, the orientation of the FOE constraint line. By finding the
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F16. 9. The regions of negative (black) and positive (gray) depth values for several assumed FOEs;
true FOE is outside the image along the x-axis,

common infersection of several such constraint lines, it is possible to obtain a
reasonable estimate of the true FOE.

We have described several possible methods for developing algorithms for recov-
ering the translational motion, which require simple computations. We have also
shown, through two selected examples using real images, that these methods can
give a good estimate of the location of the FOE.

When the rotational component is not known (and is nonzero), the FOE c¢on-
straint lines do not have a common intersection point. This is reminiscent of the fact
that motion field vectors do not intersect at a common point when the viewer
rotates aboul some axis through the viewing point as well as translating in an
arbitrary direction. In this case, we proposed a method based on discounting the
component due to rotation (by assuming some arbitrary rotation) before we apply
the method developed for the case of pure translation. Ideally, a reasonable estimate
of the FOE is obtained only when a correct rotation is assumed; this corresponds 1o
a distinct optimum solution. We have not implemented the method 1o evaluate the
accuracy of the solution; however, initial studies using synthetic data, have shown
some difficulties in estimating 3D motion accurately due to ambiguities in distin-
guishing rotations about some axis in the image plane from image plane translations
along the axis perpendicular to the rotation axis (appropriately scaled by the
average distance of the viewer from the scene). These interpretations, however, are
consistent with those obtained from the corresponding neisy 2-dimensional optical
flow estimate by other means.
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APPENDIX: IMAGE PLANE FORMULAE FOR THE FOE

Some of the results presented above have been expressed concisely using vector
notation. It is occasionally helpful to develop corresponding results in terms of the
components of these vectors. Consider, for example, the methods for recovering the
FOE from the brightness gradient at stationary points (where ¢ = 0). Let the FOE
be at T = (x4, y5,1)T. At a stationary point, s-t =0, and so s-t=0 (unless
t - Z = 0). This in turn can be expanded to yield

(x = x0)E, + (» = %) E, = 0

that is, the brightness gradient is perpendicular to the line from the stationary point
to the FOE.
Now suppose that we have the brightness gradient at two stationary points
(x, »1) and (x;, y,) say. Then
xoE, + WE, = x,E, + nE,,
xOEx2 -+ yoEy2 =xE, + yzEyz,

which gives us

xo(ELE E )= (xlExl +»E,)E, — (x,E, + yzEyz)Eyl,

X1 Y2 Xz N

yO( X1 )'2 EszJﬁ) = (xZExz + yzEYz)Exl - (xlExl + ylE}’x)Exz'

This in turn yields the location of the FOE directly, provided that the brightness
gradients at the two stationary points are not parallel. This result corresponds
exactly to

s, X s,

ft=———
(slxsz)'i

Next, consider the case were many stationary points are known. Suppose there are n
such points. Then we may wish to minimize

((onx,. +Y0Ey,) (x +y, ), ))2

i

{

Differentiating with respect to x, and y, and setting the results equal to zero yields,

xOZExZ,- + yOZEx,Ey,- = Z(xiEx,» + yiEy,)Ex,
xOZEy,-Ex,- +yOEE)?, = Z(xiEx, +yiEy,-)Ey,»

a set of equations that can be solved for the location of the FOE in a way similar to
that used to solve the set of equations above. (This produces a result that, in the
presence of noise, will be slightly different from the one given in vector form earlier,
since we are here enforcing the condition (f - Z) = 1 rather than (t - t) = 1.)
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