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The problem of producing a colored image from a colored original is analyzed. Conditions
are determined for the production of an image in which the colors cannot be distinguished
form those in the original by a human observer. If the final image is produced by superposition
of controlled amounts of colored lights, only a simple linear transform need be applied to the
outputs of the image sensors to produce the control inputs required for the image generators. In
systems which depend instead on control of the concentration or the fractional area covered by
colored dyes, a more difficult computation is called for. This calculation may for practical
purposes be expressed in table lookup form. The conditions for exact reproduction of colored
images should prove useful in the design and analysis of image processing systems whose final
output is intended for human viewing. Judging by the design of some existing systems, these
rules are not generally known or adhered to. Modem computational techniques make it
practical to tackle this problem now. Adherence to design constraints developed here is of
particular importance where colors are to be judged when the original is not directly accessible
to the observer as, for example, when it is on another planet.

1. INTRODUCTION

Much is known about psychophysical and neurophysiological aspects of color
perception [1-20]. A number of old works [21-27] and recent books may be
consulted regarding the subject of human color vision [28-37]. Here we will sidestep
the difficult issue of what color is seen, concentrating instead on indistinguishability
of a reproduction from the original. Work on colorimetry and color science is
relevant in this context [38-45, 77].

Systems for the reproduction of colored images have evolved considerably since
they were first invented and several hold the potential for accurate reproduction of a
major portion of the gamut of possible colors [46-66]. Such systems may be
conveniently thought of as consisting of the following parts: a set of image sensors
exposed to the original image, a set of image generators producing the final image,
and a computational subsystem mapping the image sensor outputs into suitable
inputs for the image generators (Fig. 1). The image sensors may be photoelectric
devices or compounds which undergo chemical changes when exposed to light. The
image generators may be controlled light sources or phosphors, or light-absorbing
substances whose concentration or fractional area coverage is controlled. The
computational subsystem may b& nothing more than a direct coupling between
photosensitive substances and other chemicals which can be developed into light-
absorbing dyes. It will be shown, however, that in all but the simplest cases the
computations to be performed are more complex than those which such a simple
system is able to support. The availability of modem electronic and digital tech-
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FIG. 1. Stages in image reproduction showing subsystems.

niques provides us with the tools required to overcome the obstacle presented by the
limitations of the straightforward analog or "chemical" computation.

Since such computational techniques did not exist when presently used methods
of reproduction were developed, we have come to accept the limited fidelity possible
with simpler schemes. It is also often the case that color reproductions are judged
more on their appeal to the viewer than on their faithfulness, particularly since the
original is not usually available to permit detailed comparisons. Most systems for
the reproduction of colored images do obey two fundamental rules nevertheless: the
system must have three types of image sensors (with linearly independent spectral
response curves) and three types of image generators (again with linearly indepen-
dent spectral curves). These rules reflect the trichromacy of human color vision,
which is illustrated by our ability to match an arbitrary colored light with one made
by addition of varying proportions of three test lights [28-36].

This observation leads to the assumption that humans possess three types of
light-sensitive receptors, presumably the cones in the retina, with linearly indepen-
dent spectral response curves. These curves are quite similar for a large fraction of
the population, with a few exceptions, where one of the three sets appears to be
nonfunctional and a few even rarer cases where one of the sets of receptors has
altered spectral response curves [18-20]. Experiments further show that these
response curves are remarkably stable and that their general shape is unperturbed by
adaptatibn or overexposure. That is, colors may appear different when viewed with
the eye adapted differently, but color matching is not disturbed.

2. PREVIEW

The problem of the reproduction of colored images is analyzed. Conditions are
determined for the production of an image in which the colors cannot be dis-
tinguished from those in the original by a human observer. By taking point-by-point
equality of stimulation of receptors as the criterion of indistinguishability, com-
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plicated questions of human color perception are avoided, and it is shown that the
spectral response curves of the image sensors must be linear transforms of the
spectral response curves of the human visual system.

Having established this design constraint on the image sensors, the computation
of control inputs for the image generators is studied. This computation depends
strongly on the method chosen for producing the final image. If, for example, a set
of controlled light sources is superimposed, as in color television, it turns out that a
linear transform of the image sensor signals is all that is required. This transform is
exhibited as a function of the properties of the human visual system, the system's
sensors, and the light sources.

In practice, the range of control of the image generators is limited. In the present
case, for example, there is clearly a constraint imposed by the impossibility of
negative light intensities. When manipulating absorbing dyes, one is similarly limited
to nonnegative absorption values. In both cases such constraints lead to limitations
on the gamut of colors which can be accurately reproduced. This gamut can be
extended by using more than three image generators. The calculations needed to deal
with this case are also developed. It is shown that techniques for the solution of
linear programming problems are appropriate.

Color reproduction techniques depending on light absorbers rather than light
sources are analyzed next. These include ordinary photographic processes, where the
concentration of dyes in superimposed layers is controlled, and lithographic meth-
ods, where the fractional areas covered by dyes are manipulated to achieve the
desired effect. It is shown that in general the computations are quite complex, unless
unrealistic assumptions are made about the spectral curves of dye absorption.
Photographic techniques do not permit the required cross-coupling between layers.
That is, each sensitive layer controls only one dye layer in the reproduction.
Similarly, color separation and masking techniques for lithographic reproduction
cannot cope with the nonlinearities due to superposition of nonideal inks. Curiously,
it is usually claimed that masking is required to deal with ink imperfections. Thus
typical practical systems are seen to fall short of the ideal.

The exact calculations proposed here need only be carried through once and the
results can then be saved as a three-dimensional lookup table. This table produces
the correct control inputs for the image generators so that they give rise to the
desired stimulation in the human observer.

When the observer views the reproduction under conditions of adaptation differ-
ent from those under which the original might be viewed, it becomes necessary to
adjust the system so that the observer will still be able to correctly judge colors. The
proper point for this adjustment is identified in the system, based on a simple model
of the effect of chromatic adaptation. In traditional systems, adjustments for these
effects are introduced at somewhat arbitrary points.

Many of the images we view, such as color television pictures, reproductions in
magazines, and motion picture film, have been through many reproduction steps. It
is therefore important to understand this duplication process. Naturally, systems that
accurately reproduce arbitrary images will also correctly reproduce reproductions. It
is shown, however, that this task is simpler. In particular, it turns out that the sensor
spectral response curves for such systems need not be linear transforms of the
human spectral response curves. Unfortunately color reproduction systems are often
designed to satisfy the criteria for duplication only.
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Many different methods have been used for the reproduction of colored images
(Fig. 2). These can be categorized in a number of ways. One can distinguish between
those which use controlled intensities of superimposed light sources with different
spectral distribution (as in color television) and those which depend on controlled
amounts of absorption by pigments or dyes. The latter can be further divided into a
group which requires light to be transmitted through the absorbing layers (as for
photographic transparencies) and a group which depends on light reflected from a
substrate (as in lithographic reproduction). Along another dimension, one can
distinguish methods which depend on addition of lights and others which depend on
multiplication of absorption values when dye layers are superimposed or pigments
are mixed (also called "subtractive" mixtures). In the latter case, one can further
separate methods according to whether control is achieved by means of changes in
the concentration or amounts of dye or whether different colors are obtained instead
by varying the fraction of the total area covered by a dye of fixed composition. Only
three cases are analyzed in any detail in this paper. In order to make it possible to
easily generalize to the other techniques, however, one method was chosen from each
column and each row in Fig. 2.

3. IMAGES, TRANSPARENCIES, AND PRINTS

An image can be thought of as a two-dimensional distribution of light irradiance.
Similarly, a transparency corresponds to a two-dimensional distribution of light
transmission, while a print can be modeled as a two-dimensional distribution of light
reflectance. These three variables—irradiance, transmission, and reflectance—obvi-
ously are also functions of wavelength. The three reproduction systems analyzed in
detail in this paper have been chosen so that each of the above cases is represented.
However, even though the end product of a reproduction process may be a material
entity such as a transparency or print, it is the image on the observer's retina which
produces the stimulation of the receptors in his visual system. Consequently the light
used to illuminate the transparency or print must be taken into account. It is simpler
then to use as the common denominator in all these discussions this final image and
to discuss the reproduction of colored images, rather than the other types of end
products. In fact it is impossible to make reproductions which will be indistinguish-
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FIG. 2. Classification of methods for reproduction of colored images. The three boxed methods are
analyzed in detail.
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able from the original under all possible illuminating conditions without actually
duplicating the exact spectral curves in the original. It is thus important to specify
the lighting of the reproduction for which the reproduction is meant to be exact.

4. A MODEL FOR A COLOR REPRODUCTION SYSTEM

The image reproduction system consists of a set of image sensors viewing the
original, a set of image generators producing the final image, and a computational
subsystem mapping image sensor outputs into image generator inputs (Fig. 1). There
are three types of image sensors with different spectral response curves and three
image generators with different spectral output curves.

Since we are aiming at point-by-point equality of stimulation, we can concentrate
on a particular point in the original and the corresponding point in the reproduction.
Let the spectral distribution of light irradiance in the original be s(\); that is, the
power emitted from an area 8A in a spectral band of width 8\ centered at
wavelength \ is s(\) 8A 8\. Let the spectral distribution of light irradiance at the
corresponding point in the reproduction be o(\).

It is important to note that it is not necessary for o(A) to equal s (A) for every
wavelength X. All that is needed is that these two spectral distributions be metameric,
that is, indistinguishable to the human observer. In other words, they should
produce the same stimulation levels in the three types of light sensitive receptors of
the human visual system. Now suppose that the spectral response curves of the
observer's visual system are e^(\), e^(\), and ey(\). Then the stimulation levels in
the three types of sensors will be equal to £p E^, and £3, defined as follows:

£,=fS(A)e;(A)^ for; =1,2,3.
^0

Here Ag and Ai are the limits of the visible part of the electromagnetic spectrum. If
we call the corresponding stimulation levels when viewing the reproduction E,', then
we must design the system so that E[ = £, (for ; = 1,2,3) for all possible input
spectral distributions s(\).

5. VECTORS—A USEFUL NOTATION

In what follows it will be convenient to think of various spectral distributions as
vectors [67-71] in an infinite dimensional vector space V. To introduce this idea,
imagine that we have measured s(\), say, in each wavelength interval of width 10
nm (namometer), between 380 and 760 nm. The resulting 38 numbers can be
thought of as components of a vector. Different spectral distributions correspond to
different vectors. If we increase the resolution of our measurements, we approach the
situation where the vector can be imagined to have infinitely many components [68,
p. 175; 69, p. 81]. (We may think of the "components" of such a vector as the values
of the spectral distribution at particular wavelengths.)

We will restrict our attention here to continuous sensor spectral response curves,
not only because these are the distributions found in practice, but because they
simplify the mathematics. In particular, we do not then have to deal with sensor
spectral response curves that have zero integral over the visible range of wavelengths,
yet are nonzero for some wavelengths in this range. As a result, we can avoid
repeated use of phrases of the form "equal almost everywhere," when referring to
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functions which differ only by a "trivial function" [69, p. 83]. A number of useful
theorems which normally apply only to finite dimensional vector spaces also apply in
this case.

6. INNER PRODUCTS

If we know e,(\), say, for the same wavelength intervals as those used above to
introduce the idea of an infinite dimensional vector space, the integral for the
stimulation levels of the three types of receptors in the human visual system can be
approximated by a sum of products,

37

E, » E 5(385 + k X 10) e, (385 + k X 10).
*-o

This sum has the familiar form of an inner or dot product of the corresponding
vectors. Once again we may increase the resolution. As we do this, the sum
approaches the integral given in the previous section, and we can therefore conveni-
ently think of this integral as the dot product of two infinite dimensional vectors [67,
p. 152; 68, p. 175],

E,= f\(\)e,{\)d\=s-e,.
\

Similarly, if the spectral response curves of the image sensors are r^(\), r^(\), and
7-3 (\), we can express their outputs R^, R^, and R^ as

R,=f\(\)r.(\)d\=s-r,.J^

This shorthand notation will simplify the determination of the conditions required
for exact reproduction of arbitrary images. For the moment we will ignore the fact
that spectral distributions will be nonnegative for all wavelengths and that conse-
quently not all points in the vector space V correspond to realizable spectral
distributions or possible sensor response curves.

Most of the mathematical tools we need are available in discussions of "Inner
Product Spaces" [67, 70], "Euclidean Vector Spaces" [68], "Function Spaces" [69],
and "Hilbert Spaces" [71]. Since the basic results needed are not available in the
form required here, however, they are derived in the Appendix.

7. ORTHOGONAL COMPLEMENTS

Consider all spectral response curves that can be made from linear combinations
of the spectral response curves of the image sensors. Clearly this set, when the
spectral response curves are viewed as vectors in V, forms a subspace of V. This
subspace will be called S^, and it is spanned by the set of basis vectors (r,},

Sr- r|r= ^a,r,;a,eR\
\ 1-1 I

where R is the set of real numbers. The subspace 5,. is clearly three dimensional,

Salts',:- T . • . -.srisfci&Effl̂ sa f̂ea^
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since there are three degrees of freedom in choosing the coefficients a^, a^, and 03.
Proceeding in a similar fashion, we can define a three-dimensional subspace S^,
spanned by the set of basic vectors (e,}. We will later show that these two subspaces
must be identical,

A very useful notion in this regard is that of perpendicularity. Two vectors are
considered orthogonal if their dot product is zero. Now consider a vector v which is
orthogonal to all vectors in 5,.. We may say that the vector v is orthogonal to the
subspace 5,. This motivates the definition of the orthogonal complement, V,, say,
composed of all the vectors orthogonal to 5,.. One writes V^ = 5'/-. The orthogonal
complement is also a subspace of V; it is, however, infinite dimensional, quite unlike
S,. It is shown in the Appendix (Lemma 1) that

F, = {v|vr;= 0, for each of; = 1,2,3}.

This then is the subspace of all spectral distributions which produce zero outputs
from each of the image sensors. Note that it is only because we have allowed
negative components in spectral distributions that this subspace is nontrivial (that is,
contains any but the zero vector). Proceeding in a similar fashion, we can define V^,
the subspace orthogonal to 5g, containing all the spectral distributions which
produce no stimulation in the observer's visual system.

8. CONSTRAINTS ON THE IMAGE SENSORS

Before we consider the image generators and the computational subsystem, we
must decide whether or not the image sensors may have arbitrary spectral response
curves. It is quite clear that if the image sensors have the same spectral response
curves as those in the observer's visual system, then colors which are metameric will
produce equal outputs in the image sensors. Similarly, colors which produce the
same outputs from the image sensors cannot be distinguished by the observer. This,
however, is more restrictive than needed, since the same result holds if the image
sensor's response curves are linear transforms of the spectral response curves of the
observer. That is, if

r , ( \ )=£f l , , e , (A) fory= 1,2,3.'y'V'/ ^ "(/v

i-1

Or,

(r,) = A(e,)

where A is the matrix (a,j), and (e,) is the column vector whose components are e^,
e^, and 63. Similarly, (r,) is the column vector whose components are rp r;, and 13.

THEOREM 1. The spectral response curves of the image sensors must be linear
transforms of the spectral response curves of the human visual system.

Proof. If the system is to accurately reproduce arbitrary colored images, then
spectral distributions which a human can distinguish must produce different outputs
from the image sensors. Conversely, spectral distributions which cannot be dis-
tinguished from the outputs of the image sensors must be metameric, that is,
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indistinguishable as far as the observer is concerned. If we call the two spectral
distributions s^ and s^, we have

s! ' r; = s!' ri(a^l) implies Si • e, = s; • e, (all;').

Now let s = Si - 83; then

s • r, = 0(all i) implies s • e, = 0 (all;').

That is, a vector perpendicular to r^, r;, and r^, must also be perpendicular to e^, e^,
63. Stated another way, any vector v e V, must also be in Fg, or V^ c V^. Now,
according to Lemma 2 in the Appendix, this implies that F/ c ̂  • Further, if
sensor spectral response curves are continuous, Lemma < in the Appendix shows
that V^- = S, and V^- = Sg. Therefore 5,, c S,.. At this point we note that the two
subspaces 5g and S^ are of equal dimension, and by Lemma 7 in the Appendix this
implies that actually >Sg = 5,.. We have two bases for this vector space, (e,} and (r,}.
There must then exist a linear transform between these two sets of vectors [70, p.
119]. We may represent this linear transformation by mens of a matrix, A. Then

(«•,)= A(e,).

Note: It should be apparent that the decision to permit spectral distributions with
negative components simplified the derivation, because it permitted the representa-
tion of differences of spectral distributions.

COROLLARY 1. Metameric spectral distributions produce identical outputs in the
camera.

Proof. Since 5^ = 5,, we have 5, c S,, and therefore ^ c V,. That is,

s • e, = 0 (all i) implies s • r, = 0 (all;).

Note: The spectral response curves of the human visual system are not themselves
known with great accuracy, although a large variety of experiments hint at their
general shape [2,13, 20]. Extensive color matching experiments have, however, led to
agreement on what are called standard observer curves [38-44]. These are con-
structed in such a way that spectral distributions which match in terms of the
standard observer curves will be metameric. Since the C.I.E. standard observer
curves represent the average of many experiments with many different subjects,
while the human cone response curves are not yet known with the same precision,
the following result will be useful.

COROLLARY 2. The C.I.E. standard observer curves are linear transforms of the
spectral response curves of the human visual system.

Proof. Immediate, if one replaces the image sensor spectral response curves in
the previous theorem with the standard observer curves.

As a result we may restate the constraint: The spectral response curves of the image
sensors must be linear transforms of the standard observer curves.
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9. WHAT TO DO IF THE SENSOR RESPONSE CURVES ARE NOT QUITE RIGHT

In practice, it is not possible to design devices with arbitrary spectral response
curves. In order to select sensors with known spectral response curves, one would
like to know what the "nearest" linear transform of the response curves of the
human visual system is and how "near" to it the given response curve is. If one gives
a least-squares interpretation of the term "near," the answer is quite simple. The
spectral response curve which is a linear transform of the spectral response curves of
the human visual system and which is closed to the given response curve, v say, is the
perpendicular projection, s say, of v onto Sg. The error is measured conveniently by
the perpendicular distance between v and Sg. As the problem is stated it amounts to
minimization of (v - s) • (v - s), when s e 5g. That is, s can be written as a linear
combination of the'basis vectors of Sg,

3
s = E a,e,.

1=1
Using the methods of Lemma 3 in the Appendix, one finds that s is the perpendicu-
lar projection of v on S,, and that

(a,) - Q-^ • e,)

where the matrix Q has elements q,, = e; • e . Next, by Lemma 4, the vector (v — s)
is perpendicular to Sy and so (v - s) • (v - s) = v • (v - s) = v • v - v • s. When
comparing different sensors one should normalize this "error" by the total sensitivity
of the sensor. This produces a "quality factor"

v • s/v • v
which will be equal to 1 for a perfect sensor.

10. A SYSTEM WHICH USES SUPERIMPOSED CONTROLLED LIGHT SOURCES

Now we turn our attention to the image generators and the computation required
between the outputs of the image sensors and the inputs to the image generators.
Here, we first consider the simplest system, one which superimposes three colored
light sources whose intensity can be individually controlled. Color television [46-50]
represents the most widely known instance. The light sources in this case are the
phosphor dots on the screen whose intensity is controlled by the current in the
incident electron beam. The light sources, while not actually in the same place,
appear essentially superimposed at normal viewing distance.

Let j»i(A), p^(\), and py(\) be the spectral distributions of the light emitted by
each of the three light sources. Further, let ?i, P^, P^ represent their absolute levels
(these are the control inputs to the image generation system). Then, the total spectral
distribution of light coming from a particular point can be found by simple addition,

o(\) = P,p,(\) + P^(\) + P,p,(\)
or

o = E P^.
J-i

From this we can calculate the stimulation of the receptors in the observer's visual
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system when viewing the reproduction as follows:

^=o.e,=I:^(e,-P,).
y'='

This suggests that one defines a matrix C = (c, ) say, where c, = e, • p. Then

(£/) = C(P,).

Note: Since the spectral distributions/? (A) and the spectral sensitivities e,(\) are
nonnegative, all terms c, in the matrix are nonnegative. This has implications for the
inverse of the matrix C. Some elements of the inverse matrix must be negative, for
example.

THEOREM 2. The mapping of image sensor outputs to image generator inputs can be
achieved by means of a linear transform if A and C are nonsingular. This linear
transform can be represented by a 3-by-3 matrix B = (AC)~1 == C"1^"1.

Proof. If the final image is to be indistinguishable from the original, E{ = E-y,
E^ = E^, and £3 = Ey. Now if C is nonsingular,

(P.) = C-\E.).

Finally, one has to find the stimulation levels (E,) from the image sensor outputs
(7?,). If A is nonsingular,

t v \ - A-^( v \(^,)=-4-W

so

(P,)=C-lA-W=(AC)-lW.

Thus the calculation can be performed by a simple linear transform, which can be
represented by a 3-by-3 matrix (Fig. 3).

COROLLARY 3. The set of vectors (r;} must be linearly independent, as must the set
(ft).

Proof. It follows from the trichromacy of human color vision that the set of
vectors {e;} must be linearly independent. Now (r,) == A(e,), so if the set {r,} were
linearly dependent, the rows of the matrix A would be. The condition that A is
nonsingular thus implies that the set of image sensor spectral response curves (r;} be
linearly independent.

Next, note that one can write the matrix C as the product of a column vector (e,)
and a row vector (p,)^ If the set {p,} were linearly dependent, so would the columns
of C. The condition that C is nonsingular thus implies that the set of image generator
spectral curves {p,} be linearly independent.

Note: The linear independence of each of these sets of spectral curves is necessary,
but not sufficient. The requirement that the matrices A and C be nonsingular is more
stringent.
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FIG. 3. Computation of image generator inputs from image sensor outputs in a system which uses
superimposed light sources.

COROLLARY 4. The light source spectral distributions, p,(\), need not be linear
transforms of the spectral response curves of the human visual system.

Proof. This is clear from the proof of the previous theorem, since the matrix B
can be found for arbitrary nonsingular matrices A and C.

COROLLARY 5. In determining the transform B, we can use matrices A' and C'
based on the standard observer curves, instead of the matrices A and C, based on the
actual spectral response curves of the human visual system.

Proof. We have already shown that the C.I.E. standard observer curves represent
a linear transform of the spectral response curves of the human visual system. Let us
represent this transformation by the nonsingular matrix M = (w, ) say. Then if we
let e,'(A) be the standard observer curves,

(e;) = M(e<),

Consequently,

(r,) = A (e,) = AM-1 (e;). So A' = AM-1.
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Next, note that C = (e,)(p,)7' and that similarly C = (e;Xp;)7'. Since (e;) = M(e;),
C' = MC. As a result,

(A'c'y1 = {AM-^MC)^ = (Acy1 = B.
This is very convenient, since the standard observer curves have been determined
with fair accuracy, while there is continuing debate about the exact form of the
spectral response curves of the human visual system. That is, the linear transform
between the two has not been pinned down as accurately as one would wish.

COROLLARY 6. The image sensor outputs may be connected directly to the image
generator inputs if and only if AC = I, the 3-by-3 identity matrix.

Proof. The direct connection implies that B = I. The result follows since B =
(AC)-1.

Notice that this condition is very restrictive, and the exact condition is unlikely to
be met in practice if one keeps in mind the limitations imposed on possible image
sensor and image generator spectral curves. Nevertheless, some present-day systems
for the reproduction of colored images (as, for example, photography) use such
direct connection and do not permit correction for possible cross-coupling terms! In
lithography cross-terms can be taken care of by "masking" in the color separation
step. It will be shown later, however, that other inaccuracies occur in this case.

11. CHROMATIC ADAPTATION

The human visual system adjusts to varying lighting conditions. While there is as
yet no general agreement on the exact nature of the processes involved, or where in
the visual system it takes place, adaptation is often modeled as a change in gain of
the channels [5, 6, 29, 30]. So, for example, it is likely that an observer viewing
objects illuminated by incandescent light is compensating for the strong illumination
in the long wavelength end of the spectrum by means of a reduced gain in the
receptor channel most sensitive to long wavelengths and by an increased gain in the
receptor channel most sensitive to the short wavelengths.

Systems for the reproduction of colored images may take this effect into account
by introducing corresponding gain changes in order to deal with the fact that the
viewer is likely to be adapted differently, when viewing the reproduction, than when
viewing the original. To some extent this is already done in existing systems to deal
with the limited range of values available in the image generators. So, for example, in
color photography, one would use a film that is "balanced" for the incandescent
illumination—that is, a film that has reduced sensitivity in the long wavelength
sensitive layer and increased sensitivity in the short wavelength sensitive layer. The
sensitivities in such a film are adjusted so that a white surface illuminated by a
tungsten lamp of the specified color temperature will be reproduced as a white or
neutral color in the final image. In this way the range of intensities in the original
scene can be fitted into the limited dynamic range of the film. Each of the three dye
layers in the film (to be described in more detail later) is called upon to produce a
similar range of absorbing densities.

Most systems for the reproduction of colored images introduce this gain change
into the channels directly connecting image sensors to image generators. This,
however, does not usually produce the correct transformation.
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THEOREM 3. The gain changes required to compensate for the observer adaptation
level must be introduced between the linear transform A~1 and the linear transform
C-1.

Proof. If adaptation can be modeled as gain changing in the receptor channels, it
can be compensated for by applying the inverse gain changes in the reproduction
system. To do this, we must first calculate the receptor stimulation levels from the
image sensor outputs,

(E,)=A-\R.).

At this point we multiply by the gain factors gi, gz» an(! 83- Finally we calculate the
image generator control inputs as before,

(P.) = C-^E,)

where G is the diagonal matrix with elements gi, g^, and gy. The two linear
transform and the gain factors are shown graphically in Fig. 4.

Fio. 4. Gain factors used to adjust for chromatic adaptation should be introduced in the linear system
after the recovery of the observer stimulation levels and before computation of the image generator
control inputs.
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COROLLARY 7. Applying the gain factors to image sensor outputs or image genera-
tor imputs will not in general result in correct compensation for adaptation.

Proof. According to the previous theorem, the overall transfer function of the
system from image sensor outputs to image generator inputs should be C'^GA'1. If
we try to achieve the same effect by modifying the image sensor outputs first, we
obtain instead C'^A^G', where G' is a new diagonal matrix. If the transfer
functions are supposed to be equal, we find that

GA~l=A~lG' or AG==G'A.

One can see the impossibility of this in the general case, since the matrix on the left
is obtained from A by scaling its columns while the matrix on the right is obtained by
scaling its rows. Put another way, G' = AGA"1, which is not diagonal unless A is
diagonal.

The same sort of argument shows that applying gain factors to the image
generator inputs will not do, since one then obtains G^C"1^"1 and so requires that
C-^G = G"C~\ Therefore one finds G" = CGC~1 and so has the same difficulties
unless C is diagonal (which is not the case because of the overlap of the spectral
response curves of the human visual system).

Note: So far we have been able to use the C.I.E. standard observer curves in our
derivations. Here, however, we actually have to get at the underlying receptor
response curves, since the gain factors are to be interposed between A~1 and C~1.
This is quite reasonable, since in fact chromatic adaptation experiments represent
one technique for estimating the actual receptor response curves.

12. CONSTRAINTS ON IMAGE GENERATOR CONTROL INPUTS

For certain image sensor outputs, the calculation presented so far may result in
negative control inputs to the image generators. This is an indication that the correct
stimulation levels of the human visual system cannot be achieved by adding
nonnegative amounts of the three light sources. Since negative intensities cannot be
realized, we conclude that the image generators can produce only a limited gamut of
observer stimulation levels and that consequently some spectral distributions cannot
be reproduced correctly.

THEOREM 4. The set of observer stimulation levels (E,)7 that can be produced using
nonnegative light-source levels forms a convex subset of the space of all possible
stimulation levels.

Proof. By adding light-source intensities, arbitrary positive linear combinations
of stimulation levels can be produced. That is, if

then

(£,)i = C(P,)i and (E,), = C(P,),

a(E,\ = (1 - a}{E,\ = C[a(P,\ +(1 - a)(P.),}.

The possible stimulation levels thus form a convex set.
Obviously, it would be to our advantage to make this subset as large as possible.

We are limited in our attempt to do this by the next result.
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COROLLARY 8. The subset of stimulation levels possible with arbitrary nonnegative
spectral distribution is itself convex, and bounded by the stimulation levels produced by
monochromatic light sources.

Proof. This follows from the fact that arbitrary nonnegative spectral distribu-
tions can be thought of as sums of scaled monochromatic spectral distributions. That
is,

s(\) = f\(\')8(\' - \)8\'.
"°

The set of stimulation levels that can be produced using three fixed light sources is
clearly a subset of this set. To make it as large a subset as possible, one ought to use
monochromatic light sources if possible, since these produce stimuli lying on the
boundary of the convex set. There is, however, no set of monochromatic light
sources which will make the subset of stimulation values covered by the image
generation system equal to the set of all possible stimulation levels (this is a result of
the overlap of human spectral response curves).

A very large portion can be covered, however, by choosing a source from the short
end of the spectrum (between 400 and 460 nm), one near the middle (between 500
and 540 nm), and one near the long wavelength end (between 620 and 700 nm).
Unfortunately, there is a further constraint: at the extremes of the visible region of
the spectrum, the eye is relatively insensitive, and large light-source intensities are
needed to produce given stimulation levels. For this reason, the phosphors used in
color television represent a compromise between a desire to cover as large a gamut of
stimulation levels as possible and the need to produce adequate screen brightness
[48, 50].

13. USING MORE THAN THREE LIGHT SOURCES

In order to span a larger range of possible stimulation levels, one may chose to use
more than three light sources in the projector. Clearly nonnegative intensity levels
still create a convex subset of stimulation levels, but this subset can be made larger
than it would be with only three light sources. If we have n light sources, the vector
(P;) of outputs to the projector will have n components and we can write, much as
before,

(£/) = C(P,)

where C, however, is no longer square. That is, we have n > 3 unknowns and only
three equations. The solution (P,) is clearly nonunique and many light-source
amplitude combinations will produce the same stimulation levels.

Any solution can be expressed in terms of a generalized inverse X of the matrix C
[72, 73]. That is, if CXC = C, then C(P,) = (£,) has a solution only if CX(E;) =
(£/), in which case the general solution is

(P,)=X{E.'}+(I-XC)(Y,)

where (Y,) is an arbitrary vector.
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To pick a particular one of this set of possible solutions, one may look for the one
with the minimum norm, where the norm may be defined as the sum of squares of
the image generator inputs or (P;)^?;). The solution can be found using the pseudo
inverse [72, p. 113] of the matrix C (see Lemma 8 in the Appendix):

I v\ - (^Tr'\-^r'T( pt\(P,) = (C^)-1^/)

or

-^T^-l/(P,)=(CTCrlCTA-l(R,).

While this solution fits in nicely with our system so far if we simply let B =
(C7^')'^7^"1, it does not guarantee nonnegative outputs to the projector for all
points in the convex subset available to us.

Introducing the nonnegativity constraints on the image generator control inputs
leads naturally to a linear programming problem which will be discussed next.

THEOREM 5. The problem of the determination of suitable image generator control
inputs when there are more than three light sources can be posed as a problem in linear
programming. For given stimulation levels of the receptors of the observer, only three of
the light sources need be used at a time.

Proof. Three linear constraints must be satisfied in order for the stimulation of
the receptors in the observer's visual system to be correct,

W = C(P,).
Further, there are n inequalities of the form P, >. 0. In order to pick one of the many
possible solutions, one may introduce a cost function

£;-i k,P,.

A convenient example would be a cost function equal to the total energy used by the
light sources (i.e., fe, = 1 for all 0. The solution which minimizes the cost function
can be found by standard linear programming techniques [74-76].

A feasible solution is any solution which satisfies the linear constraints and the
nonnegativity constraints. A basic solution is a solution which contains only m
nonzero variables, where m is the number of structural constraints (three in this
case). An optimal solution is a feasible solution which minimizes the cost function
[75, p. 94]. The fundamental theorem of linear programming states that if there is an
optimal solution, then there is a basic optimal solution. This implies that an optimal
solution can be found in which only m variables are nonzero. In the situation here
this simply means that a given set of stimulation levels of the observer's visual
system can be achieved using no more than three of the light sources at a time.

14. FINDING A BASIC FEASIBLE SOLUTION

Before one can apply the well-known SIMPLEX method for solving this linear
programming problem, one must find some basic feasible solution. Usually, for
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problems with the constraints given in the form of inequalities, this is straightfor-
ward since the "slack variables" can be used. In this situation, however, since the
three constraints are equalities, it is necessary to introduce so-called "artificial
variables," A^, A^, and Ay, [75, p. 132].

Actually, the easiest way to proceed is to consider the four solutions obtained by
forcing one of the unknowns to be equal to zero. One then chooses among the
solutions which have the remaining three unknowns nonnegative. If the color lies
outside the range of colors which can be produced in the system, then there will be
no such solution.

15. REPRODUCING REPRODUCTIONS

The system described so far will clearly correctly reproduce reproductions, that is,
images produced by a similar system. It is possible to do this with a simpler system,
however, since the input sensors do not now have to deal with arbitrary spectral
distributions. In fact, the space of possible input spectral distributions is finite
dimensional. It will be shown that a system for duplication need not have spectral
response curves which are linear transforms of the spectral response curves of the
human visual system.

This is of great practical significance, since many duplication steps typically lie
between the original and the image finally presented to the viewer. The final result
would be poor indeed, if at each stage the image were further degraded by our
inability to build image sensors which have response curves that are exactly equal to
some linear transform of those of the human visual system. At the same time, this is
the root of considerable confusion, since such systems can be designed around any
convenient sensor response curves and image generator spectral curves, while the
system viewing the original image must be quite special as has been shown.

THEOREM 6. For the reproduction of reproductions, the spectral response curves of
the image sensors need not be linear transforms of the spectral response curves of the
human visual system.

Proof. Consider an image made by superimposing various amounts of light from
three light sources. Let the spectral outputs of the light sources be /i(\), f^(\), and
fy(\), and their intensity Fp F^ and Fy

Then the spectral distribution of light intensity of the input to our system will be

^)= E^(^).
i-1

Consequently, the image sensor outputs will be

^=s.r ,=E^f,-r , or (R,)=H(F,)
i-l

where the matrix H has elements h,j = r, • fy. Similarly

£, = s • e, = E F,i, • e, or (£,) = G(F,)
1=1
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where the matrix G has elements g;y = e^ • f ^ . Clearly then

(R.f = HG-\E,) or (£,) = GH-\R.).

That is, we can determine (£,) from (7?,) even when the r; are not linear transforms
of the e,. So the previous analysis applies if one lets A = HG~1.

COROLLARY 9. // the image presented as input to the reproduction system was
originally made on the system used now to reproduce it, then the linear transform takes
on a particularly simple form—namely, B = H~1.

Proof. In this simple case, f; = p,,and so G = C. As a result

(E;) = CBA(Ei) = CBHC~l{Ei)

so that, if C is nonsingular
C-^E^-BHiE,).

Since C'^C = I , BH = I for exact reproduction. That is, B = H~1.
Note: Curiously in this case the system can be designed without any reference to

the spectral response curves of the observer! That is, B can be found from H, which
does not depend on the observer's visual system in any way. The reason this is
possible is that this system can actually duplicate the exact spectral distributions of
intensity at each image point, since the light sources it uses are just the same as those
used to make the input image.

If H happens to be diagonal, that is, if each sensor is carefully designed to pick up
only one of the image generator inputs, then B can be diagonal. This usually can be
achieved only with rather narrow sensitive bandwidths and if there are regions of the
spectrum where only one light source contributes.

All these conditions are quite restrictive and unlikely to be met in practice, yet this
corresponds to a technique used quite commonly for reproduction of photographic
transparencies, where the film carrying the new image is exposed successively
through three narrow-band filters with the old image.

16. SYSTEM WHICH USES CONTROL OF DYE CONCENTRATIONS FOR
REPRODUCTION

We next turn to a somewhat more complicated (and nonlinear) case where three
layers are superimposed, each with a different absorbing dye whose concentration
can be controlled on a point-by-point basis (Fig. 5). Photographic transparencies
[51-56] certainly fit this description. If we let p,(\) be the transmission of unit
concentrations of one of the three dyes, and C, the actual concentration of this dye
at a point, then the overall transmission T(A) of the sandwich is

TW-n.kwp.
Sometimes it is more convenient to calculate the density instead, where the density is
the logarithm of the inverse of the transmission,

D{\)= E^logio[l/^)].
j=l
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I (A)
Dye-transmission Concentration

P,(A)

P2<A)

P3<A)

C,

C2

Ca

T(A)lO)

FIG. 5. Model of photographic film sandwich used in color photography. The concentrations of the
dyes in each layer are controlled by the exposure.

Thus the overall density is a linear combination of the densities of the individual
dyes at unit concentration. This, however, helps little when one is calculating the
stimulation levels in the observer's visual system when (s)he views the transparency
using a light source with spectral distribution l(\),

E^f'i^W^lWe.WdX.
"0 ;•-;•"o j ~ i

The stimulation levels are clearly related to the dye concentrations in a quite
nonlinear fashion, and the inner-product notation introduced earlier is of little help
in analyzing this situation. While we can still produce a three-dimensional range of
stimulation levels, it is difficult to determine without some computation what
concentration levels (C,) are required to achieve a particular observer stimulation
W.

17. AN IDEALIZED MODEL FOR PHOTOGRAPHIC TRANSPARENCIES

In order to get some ideas of how to pick the dyes and how to control them, one
can select conditions which will linearize the model to the point where previous
methods for producing input controls to the image generation system apply. To do
this, the following constraints must be applied.

1. To avoid multiplicative interactions between the three layers, at most one
dye should absorb at a given wavelength. That is, i f^ ; (A)< 1, then^(X) = 1 for
i ^ J -

2. To be able to produce "black" or very low transmission at all wavelengths,
at least one dye should absorb at a given wavelength. That is, for every X, at least
one of the p,(A) is less than 1.
These two conditions together imply that exactly one dye will absorb at a given
wavelength. We can consequently divide the visible region of the spectrum into three
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sets, AI, A^, and A3, such that^i(X) < 1, for \ <= A^, while/^(A) < 1 for \ e A 2
andp^(\) < 1 for \ e A3.

3. To ensure that each dye affects each of the three image sensors in constant
proportion independent of concentration, the transmission should be a constant less
than 1, for those wavelengths where it is not equal to 1. Let this value bej»,g for unit
concentration of the ;th dye (Fig. 6).

4. Finally the inputs to the image generator system must be transformed
logarithmically to achieve linear control. That is, let C; = log(P,)/log(^,o).

We can now calculate the transmission of the sandwich. If \ e A,, then

T(\}=[p^]los(pi)/lo&(l"o)=P,.

It is now convenient to split /(\) into three functions /i(X), l^(\), and l^(\), where
/,(X) = l(\) if \ e A; and /,(\) = 0 otherwise. Then

iw-iw-
y-i

-~i

-PIO
P,(A)

Ao A,

p2<A)
-P20

A,

P3<^

--P30

Ao A,

FIG. 6. Highly idealized dye transmission curves needed if the model of color photography is to be
linearized.
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The stimulation levels can be calculated as follows:

E.^f^TWiWe.WdX
^0

E^f^i^We.WdX
^o j=i

E; = L I, • e,-P,.
/-i

That is,

(£/) = C(P,)

where the matrix C = (c,,) and c, = e, • 1 . Note that 1, here corresponds to P; in the
model that was analyzed earlier. Finally, the model has been idealized to the point
where our previous methods apply directly. This has been achieved mostly by
hypothesizing rather special dye-transmission curves which decouple and linearize
the system.

It should be noted that in practice dyes definitely do not obey the above-
mentioned restrictions and that as a result one ought to use the more precise model if
accurate color reproduction is the goal. What is more, photographic film has further
deficiencies which invalidate even the idealized model analysis. First of all, each
sensitive layer is directly coupled to a dye layer, and no provision is made for
cross-coupling as required in implementing the linear transform matrix B. Second,
the spectral sensitivity curves of the photosensitive chemicals are not linear trans-
forms of the human spectral response curves. Third, the dye densities are not linearly
related to image intensities—in fact the reproduction invariably has higher contrast
than the original. It is perhaps a little astonishing that one nevertheless finds color
transparencies very pleasing!

18. DUPLICATING PHOTOGRAPHIC TRANSPARENCIES

After the slightly pessimistic results of the previous section it is perhaps worthwhile
to point out that once again duplication can be performed with fair fidelity despite all
the difficulties in reproducing arbitrary colored images. That is, despite the peculiar
changes in the transmission of the layered film with changes in the concentrations of
individual dyes, it is quite straightforward to determine the concentration of
individual dyes. This follows from the linearity of the equation for density. Assume
that one may use monochromatic light sources of wavelength \p \^, and ^3 to
sample the film; then one obtains a number of measurements of film density,

U= Ec,iogio[i/^)].
;-1

If we define a matrix T = (t^), where ?y = logio[l/p,(\)], then

(A) = T(C,).
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If this matrix T is nonsingular we can obtain the concentrations quite easily from the
measured densities at the three test wavelengths, using T~1. Note that we effectively
use image sensors with very narrow-band sensitivities, quite unlike the general case,
where we are forced to look for image sensors whose spectral response curves are
linear transforms of the human spectral response curves.

By choosing the dyes carefully, it may further be possible to arrange for the matrix
T to be diagonal by proper selection of the test wavelengths. That is, concentrations
of one dye can be determined directly using density measurements at those wave-
lengths at which the other two dyes are transparent.

Further, it may be possible to arrange for the sensitive chemicals in the film which
is to carry the reproduction to be separately sensitive to the three-test wavelength. In
this case accurate duplication can be achieved (within the limits of nonlinearity and
nonrepeatability of photographic materials) simply by exposing the film with an
image of the original successively through three narrow-band filters.

19. A SYSTEM WHICH USES CONTROL OF THE FRACTIONAL AREA
COVERED BY INKS

Instead of controlling the concentration of the dyes on a point-by-point basis as in
photographic methods, we may use dyes or inks of fixed concentration and instead
vary the fraction of the surface covered with each ink. This may be attained by
varying the dot size of ink dots spaced in a regular pattern. This of course is the
method used in lithographic reproduction [57-66] of colored material. First consider a
single ink. Assume that the transmission of the ink is p,(\) and that a fraction A, of
the area is covered with the ink. If this dot pattern has been applied to a substrate of
reflectance Ro(\), the average reflectance will be

R(\)-R,(\)[(l-A,)+A,p,(\)}.

This is so since a fraction A, of the surface is covered with ink, while a fraction
(1.- A,) is bare. The dots are usually spaced such that they are near the limits of
resolution at normal viewing distance, and the dots corresponding to different inks
lie on rasters which are rotated relative to one another to avoid the appearance of
repeating patterns. The result is that dots of different inks overlap in different ways
in various regions of print. Consequently, one may calculate the average reflectance
of the completed print by multiplying the substrate reflectance and the transmission
of each of the ink layers,

R(\)=RMYH(l-^)+A^(\)].

An alternate way of arriving at the same result is based on a calculation of the
fractional areas covered by none of the inks, each of the inks in turn, two inks, and
finally all three inks (Fig. 7). We can now proceed to calculate the stimulation levels,
given that the print is illuminated by a light source with spectral distribution /(A),

E,' = r1!3! [(1 - A,} + A^(\)] R,(\)l(\)e,(\) d\.
"Xo j=i
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FIG. 7. Illustration of the fractional areas covered by one, two, and all three of the dyes in
lithographic halftone reproduction.

Once again it is clear that the stimulation levels are related to the fractional area
coverage factors in a nonlinear fashion. We can certainly produce a three-dimen-
sional range of stimulation levels, but it is nontrivial to determine what fractional
area coverage values, (A,), will produce a particular set of stimulation levels (E,).

20. AN IDEALIZED MODEL FOR LITHOGRAPHIC REPRODUCTION

Here again we may approximate the nonlinear model to get some ideas on
appropriate choices for the inks and methods of control. To do this, the following
constraints must be applied.

1. To avoid interactions between the effects of the three printers, at most one
ink should absorb at a given wavelength.

2. To be able to produce "black" or very low reflectance at all wavelengths, at
least one ink should have zero transmission at a given wavelength.

These two conditions imply that exactly one ink will absorb at a given wavelength,
and that it will absorb completely. Once again we can divide the visible spectrum
into three regions A^, A 2, and A3, such that one dye absorbs in each region (Fig. 8).

3. Finally, the inputs to the image generator are complemented, that is, let
A,;= 1 - P..

Then, if \ e A,,

R(\) = R^\)P,.

It is convenient again to define a set of functions /,(\), in this case equal to
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p,(A)

An
+
A,

P2<A)

An A,

p3(A)

Ar A,

FIG. 8. Highly idealized dye transmission curves needed if the model of color lithography is to be
linearized.

Ry(\)l(\) if \ 6 A;, and equal to zero otherwise. Then

RoWiW-Zi.W-

The calculation of the stimulation levels proceeds as follows:

E^f'RWiWe,^)^.̂
^0̂o

E,'= ̂  iw^.w d\

^-Ei,-^.j = i
That is.

(£/) = C(P,}
where C = (c, ) and c, = e, • 1.
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Note that again the spectral distribution 1; corresponds to the light-source spectral
output P, in the first model that was analyzed.

Finally then, the model has been idealized to the point where our previous
analysis applies. In order to do this, rather drastic assumptions had to be made
regarding dye transmission functions. For exact reproduction the more precise
model shown earlier must be used instead.

21. COLOR SEPARATION PHOTOGRAPHY AND MASKING

Modem lithographic reproductions of colored originals are of remarkably high
quality. An important factor in achieving this high quality has been the realization
that color separations photographed through three different filters should not be
used directly to produce the offset plates. Instead each plate is made from a
combination of the separations by a technique called "masking" [57-59].

The most commonly used method depends on the superposition or "masking" of
the film with a negative made by exposure through one filter, while the film is being
exposed through another filter. Ignoring the nonlinearities of the photographic
process, this corresponds to subtracting a fraction of the image made through one
filter from another. By controlling exposure times and thus film densities, various
amounts of "subtraction" can be achieved. Each final plate is as a result (approxi-
mately) a linear combination of the original images obtained through the three
filters. That is, the dot sizes at corresponding points in the three plates represent
(approximately) a linear transform of the image intensities of the three filtered
images.

This linear transform corresponds to the matrix B = (AC)~1, which is needed
between the image sensor outputs and the image generator inputs in the idealized
linear model. Masking thus accounts for the off-diagonal terms in the matrix B,
which in turn are a function of the filter curves, the spectral response curves of the
human observer, and the (idealized) ink transmission curves. It is often (falsely)
stated that masking is required to deal with imperfections in the ink transmission
curves—whereas it has just been shown that masking is required with "ideal" inks.

Imperfections in the ink, in terms of departures from the ideal model presented in
the previous section, are not taken care of by masking. As a result of the nonlinearity
of the general case, reproduction can only be exact for a small number of ink
combinations, and will be approximate for others. In fact, the masking variables (the
exposure time required for each "mask") are usually determined empirically by
using a standard original with several color patches. The exposures are adjusted until
these are reproduced correctly. The color patches usually include the three printing
inks, three patches in which two inks are superimposed, and three or so "neutral"
colors (white, gray, and black).

Note, that as a result, the system is actually tuned for duplication. As was shown
earlier, this is satisfactory for reproduction of arbitrary originals only if the input
sensitivity curves are linear transforms of the human spectral response curves. In
some cases it may be satisfactory to tune the system instead to reproduction of a
particular kind of input material, for example, a particular make of photographic
film [57-59].

This discussion of masking has of necessity been oversimplified and has ignored
such techniques as highlight premasking and unsharp masking, techniques which
help overcome the nonlinearities and dynamic range limitations of the process.
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22. COMPUTATIONAL METHODS

For each of the models of image reproduction systems presented, an expression
was exhibited for the stimulation of the observer's visual system as a function of the
control inputs to the image generators. The three expressions were

^1 /t \ - C\ \ ->•>2?/=EPj\(x)e,(x)^
j - i ^o

^/''nh/A)]^)^)^
r^.3

E,' = f l n [(1 - ̂ ) + A^(\)} R,(\)l(\)e,(\) d\.
"\o j - i

The control inputs are (P,)—the light-source irradiances, (C,)—the dye con-
centrations, and (A,)—the fractional areas covered by ink. Only in the first case is it
possible to solve directly for the control inputs given the desired observer stimula-
tion levels (JS,). In other other cases, one has to resort to trial-and-error or
hill-climbing search techniques, unless one chooses to accept inaccuracies in order to
linearize the model. It would be very inefficient to do this computation afresh every
time a new point in the image is analyzed.

Accordingly, one may imagine performing this calculation ahead of time and
recording the results in some sort of look-up table. This implies, however, that only a
finite number of possible stimulation levels can be explored and then replicated.
That is, the three dimensions have to be quantized suitably. This may be a problem
in a high-quality system, since one might have to divide the intervals quite finely and
the look-up table may become unwieldy. If, for example, it is found that the quality
of the process is such that a hundred divisions are needed along each of the three
dimensions, then the total look-up table would contain a million entries. Each entry
is a set of three numbers to be used as settings for the control inputs to the image
generators. The table is entered at a location that corresponds to the desired
observer stimulation levels (Fig. 9). This table is quite large, and even with modern
day storage methods may be too costly.

At the expense of slightly increased computation, the table can be substantially
shrunk by using a much coarser quantization and simple interpolation between
entries. If, for example, this allows one to divide each dimension into only 10
intervals, then the whole table contains only three times a thousand numbers and
can easily be accommodated in a small read-only-memory (ROM) module, for
example. Electronics must, however, then be added to perform the interpolation, and
eight table entries are accessed for every look-up operation.

If the table is organized with the observer stimulation as its axes, it will be quite
general and work with any image sensing system, as long as the linear transform A-1

is first applied to the outputs of the image sensors. Alternatively, the table can be
organized directly with the image sensor outputs as axes. Since not all combinations
of observer stimulation levels are possible, regions of the table will be blank.
Similarly, not all combinations of image sensor stimulations will be possible. One
may be able to achieve some storage economy by compacting the table accordingly,
or else using these areas of the memory to store other information.
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FIG. 9. Representation of the three-dimensional lookup table indexed by the desired observer
stimulation levels. Each entry in the table contains the needed image generator control outputs.

The entries in the table may be filled in as indicated above by calculations based
on the models. In practice, there are likely to be discrepancies between the model
and reality and it may be helpful to determine some of the points empirically. In
particular, it is possible that the exact dye absorption curves are not known, or that
interactions among inks take place that are not modeled. It is, however, impractical
to fill in the whole table in this way. Techniques may be used for interpolating
between empirically determined table entries using the structure supplied by the
equations derived from the model.

23. SUMMARY AND CONCLUSIONS

For accurate reproduction of arbitrary colored images, the image sensor's spectral
response curves must be linear transforms of the spectral response curves of the
human visual system. Aside from this general constraint, a system for the reproduc-
tion of colored images must be designed in such a way that the image generators
produce the appropriate excitations in the receptors of the observer's visual system.
Three specific systems were analyzed and the necessary computation of image
generator inputs from image sensor outputs was detailed.

In only one case, color television, could this computation be accomplished
analytically, and in this case it turned out to be a simple linear transformation. In
the other cases studied, photographic transparencies and lithographic printing, the
computations were straightforward only when simplifications were introduced in the
form of unrealizable dye absorption curves. It was suggested that point-by-point
computation of image generator inputs is now feasible and this is in fact the only
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way to achieve accurate reproduction with practical dyes or inks. The well-known
color separation and masking operation is seen to be only the linear transform which
applies when inks with idealized absorption curves are used, and does not deal with
"ink imperfections."

Other topics dealt with include the proper point for adjustments to compensate
for observer adaptation, the use of more than three image generators, and the
duplication of colored images. Such inexact notations as "primary color," "sec-
ondary color," and "complementary color" were studiously avoided.

These techniques will be of immediate importance where images are already
scanned and transmitted, since the simple table look-up computation developed here
can be easily incorporated in such a system. These methods will also be of
importance when colors are to be judged in images which are transmitted from
locations inaccessible to people, such as other planets.

APPENDIX

Review of Some Relevant Properties of Infinite-Dimensional Vector Spaces

DEFINITION. Let V be a vector space over a field F. Then the orthogonal
complement A "L = of a subspace A of V is the set of vectors perpendicular to all
vectors in A. That is,

Al= {x|x • a= 0 for all a e.A}.

LEMMA 1. If A is a finite-dimensional subspace of dimension n with basis {a,} in V,
then the orthogonal complement A± is the set of vectors perpendicular to all basis
vectors. That is,

A±= (x[x • a, = 0 for;' = 1 to n}.

Proof. If A is finite dimensional, every vector a e A can be expressed as a sum of
scaled basis vectors as follows,

n

a = £ ".a;-
1=1

where the a, are in the field F. A vector x perpendicuTaTto^each-ofthe a, will clearly
be perpendicular to any a e A. Conversely, a vector x perpendiculai^to each a e A,
will certainly also be perpendicular to each of the basis vectors a;. ^

\
LEMMA 2. I f A and B are subspaces of the vector-space V and A 3 B, then

A±cB^.

Proof. Consider a vector x e A±, then x - a = 0 f o r a l l a e ^ . Since A =) B, this
implies that x • b = 0 for all b e B as well. Therefore x e B1. Consequently,
A^B^.

DEFINITION. The perpendicular projection of a vector v e V on a finite-dimen-
sional subspace A is the vector a e A, which is closest to v, that is, the vector which
minimizes (v — a) • (v — a).
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LEMMA 3. The perpendicular projection of a vector v e V on a finite-dimensional
subspace A is the vector a given by

n
a = ^ a,a; where (a,) = Af'^v • a;).

;-i

\ Here (a,) is a basis for A and M = {m,j} is the symmetric Gram or normal matrix,
with m,j = a, • ay.

Proof. We wish to minimize (v - a) • (v - a) = v • v - 2a • v + a • a. That is,
n n n

v • v - 2 E a,(v • a,) + E E ",o/(a, • a,.).
1=1 i-l j-l

That is, (v • a,) = Af(a;). The result follows, since the basis vectors are linearly
independent and At is therefore nonsingular and consequently has an inverse M~1.

LEMMA 4. If a is the perpendicular projection of the vector v e V on the finite
dimensional subspace A, then x = v — a is in A^~.

Proof. From the previous lemma we have
n

v • &,, = E " î • aj = a • a^.
1-1

So, (v - a) • a^ = 0 for k = 1 to n. So x = (v - a) e ^-L .
LEMMA 5. I f A is a finite-dimensional subspace of dimension n of the vector-space

V, then any vector v e V can be mitten as the sum of a vector a e A and a vector
x e A± (that is, V = A C A -L , fAe A'rert 5«w o/^4 W ̂  -L).

Proo/ This follows directly from the previous two lemmas if we let v = a + x,
where a is as denned in Lemma 3 and x as in Lemma 4. (It is also clear that the
decomposition into a vector in A and a vector in A± is unique).

LEMMA 6. If B = A ± is the orthogonal complement of a finite-dimensional subspace
A and x • x = 0 implies x = 0 if x e B, then the orthogonal complement of B is A.
That is, (A J-)-1 = A.

Proof. Consider v e B ^ . By the previous lemma we can decompose v into a sum
a + x, where a e A and x e A -L . Then

. v - x = ( a + x ) - x = a - x + x - x .

Now v • x = 0, since x e B and \ e B±. Also a • x = 0, since a e A and x <= A • L .
» Therefore x • x = 0. By assumption this implies that x = 0. Therefore v = a, and so

v e A. Therefore B± = A or (A -L)-1- = A.
LEMMA 7. If A and B are finite-dimensional subspaces of a vector-space V, of equal

dimension n, say, and A c B, then A = B.
Proof. If A is finite dimensional, there must exist a set of n linearly independent

vectors {a,} which span A. If A c B, then these same n vectors are also in B. Since
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any n linearly independent vectors in B will form a basis for the vector space B,
these vectors will. That is, B is spanned by the vectors [a,,}. Therefore A = B.

LEMMA 8. Let A be an n-by-m matrix with n < m; then the underdetermined set of
equations

Ax = y

has a solution of minimum norm

K^A^AA^

where the norm is x • x.
Proof. We are to minimize x^ subject to the constraint Ax = y. Introduce the

Lagrangian vector \ and minimize instead

x^ + X^Ax - y).

Differentiating with respect to x we get

Ix+^^O

or

x = -i^x.

Now

Ax = - ̂ AA^ = y

so that

x= -i^AA^y
and so

x=AT(AAT)~ly.
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