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Supplementary Text 
Cubic Symmetry 

All our structures are cubic symmetric by construction. This is enforced by defining 
structures inside a single control tetrahedron and mirroring it to 48 copies. To be more 
precise, we first define our structures to be in the interval 3]1,0[ . The material assignment 
at each point in the interval is controlled by a reference point in the control tetrahedron. 
First, a point ),,( 321 xxx  outside the interval 3]5.0,0[  is mapped to a point )',','( 321 xxx
inside the interval by the relationship ii xx −= 1'  to enforce orthotropic symmetry. Then, a 
point ),,( 321 xxx inside the interval 3]5.0,0[  is mapped to a new point )',','( 321 xxx  such 
that the new coordinates are a permutation of the original coordinates and ''' 321 xxx ≥≥ . 
Geometric symmetry guarantees that all structures have elastic tensors with only 3 free 
parameters: Young’s modulus E, Poisson’s ratio ν and shear modulus G. The symmetric 
stress-strain tensor C expressed using these free parameters is  
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For each structure, only two simulations (a stretching and a shearing deformation) are 
needed to determine the three parameters. This is much simpler than the generic case, as 
an orthotropic structure requires 6 simulations to compute all necessary elasticity 
parameters. 
Gamut Representation and Exploration 

The material gamut is represented and explored using the methods outlined in (26). 
We use a signed-distance function Ψ(x) defined on a background grid to represent the 
range of achieved material properties. The boundary of the gamut is the set of points 
satisfying Ψ(x)=0 while the interior is defined to be the set corresponding to Ψ(x)<0. The 
gamut exploration iterates between a discrete sampling stage and a continuous 
optimization stage. For both steps, a random subset of structures are chosen as seeds for 
expansion. Points near the current gamut boundary are preferred since they often have 
distinctive topologies. For each point, a target point in the material space is defined along 
the signed-distance gradient direction to expand the gamut. In the discrete sampling 
stage, a seed structure is randomly altered by adding or removing beams. In our current 
implementation of the discrete sampling step, candidate structures are generated purely 
based on geometry. To maintain the connectivity of the structures for single-material 
printing, disconnected components are removed and enclosed holes are filled before the 
structures are added to the database. It is possible to incorporate more information such 
as stress analysis of the seed microstructure into the discrete sampling step. The 
continuous optimization is similar to previous work (24) with modified objective 
functions and constraints. Specifically, we do not need to enforce any cubic symmetry 
constraint in the elasticity tensor since it is satisfied by construction. We do not have 
equality constraints for the shear modulus or the volume ratio either since our primary 
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goal is to explore the gamut of material properties rather than to find specific structure 
designs. The objective function to minimize is the squared distance to the target 
macroscopic material properties. Each quadratic objective term is weighted automatically 
to have the same value range between 0 and 1. To avoid overly complex structures and 
thin features, we use sensitivity smoothing with a radius of 3 voxels to limit the smallest 
feature size to 2 voxels. The minimization problem is solved using the method of moving 
asymptotes (40). Each optimization is set to run for at most 50 steps. We then convert the 
optimized continuous distributions to discrete distribution by thresholding. The threshold 
values step from 0.1 to 0.5 at an interval of 0.1. All thresholded discrete structures are 
automatically cleaned up and added to the gamut. 
Template Extraction and Fitting 

We have chosen to use a set of cuboids to represent a template. We provide the five 
auxetic templates reported in this work as a function that computes a discretized structure 
at specified resolutions given two reduced parameters (30). The set of beams can be 
voxelized and smoothed at arbitrary resolutions to generate new discrete structures. To fit 
the set of beams to a given structure, we use gradient descent with numerical 
differentiation to compute the gradients. We use Euclidean norm as the distance metric to 
measure the per-voxel material difference between a target structure and the generated 
structure. To avoid discontinuities in the objective function, we convert the material 
distribution of both structures to continuous variables and apply a smoothing filter. The 
filter has a radius of 4 voxels with linearly decaying weights. Since the objective function 
used for the template fitting is highly non-convex, we need a good initial guess for the 
number of beams and their initial arrangement. We use the morphological skeleton (29) 
of the target structure to help us find the initial beam configuration. The skeletonization 
step converts a 3D binary material assignment to a small subset of voxels that represents 
the skeleton of the structure (Fig. S3B). From the skeleton, we construct a graph by 
connecting neighboring voxels. The graph is then simplified by collapsing paths into 
single edges (Fig. S3C). A path is a sequence of connected vertices where all 
intermediate vertices have valence 2. We then iteratively add back the furthest vertices to 
the simplified path until no vertex in the original graph deviates away by more than a 
threshold of 0.02. The simplified graph is converted to a template by placing cuboid 
beams on each edge (Fig. S3D). To smooth the connections between the beams, we place 
dome-shaped caps at the endpoints of each beam. The cross-section sizing and orientation 
of each cuboid are initialized individually to minimize the Euclidean norm between the 
cuboid and the smoothed input structure. We then run gradient descent with central 
differencing to adjust all cuboid parameters including cuboid endpoint positions to arrive 
at a final fitted structure (Fig. S3E). In the gradient descent step the connectivity 
constraint between edges is relaxed to allow a vertex to be connected to the middle of 
another edge. 
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Fig. S1 
Smoothing for geometric difference metric. (A) Euclidean norm measured on exemplar 
2D structures at 642 resolution. Structures 1 and 2 contain a single vertical beam shifted 
by 3 voxels. Structure 3 is an empty structure. The Euclidean norm between structure 1 
and 2 is the same as the distance between 1 and 3. Nonlinear dimensionality reduction 
methods based on distance matrices will treat the three structures as equally different 
from each other.  However, structure 1 and 2 are much more similar in terms of shape 
and physical properties. (B) After applying a smoothing filter on the structures, the 
difference between 1 and 2 is significantly lower than 1 and 3. 3 can be separated more 
easily. 
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Fig. S2 
Examples of auxetic structures in addition to the five selected families in the main 
paper. Each structure is labeled by its relative Young’s modulus, Poisson’s ratio and 
relative shear modulus. (A) A 3D structure constructed by repeating on each cube face a 
2D cubic structure. Such 3D structures have low shear modulus due to the lack of internal 
structures that resist diagonal compression. The example structure has a low shear 
modulus ratio of 0.09. (B) A structure similar to (A) with more resistance to shear 
deformation. The rectangular components in (A) is replaced by a cubic core around the 
center of the structure. (C) A structure similar to those in Family 5 with good resistance 
to shearing. However, this structure has an overly complex core. (D) This structure is 
similar to those in Family 3 without the central core. The structure is relatively simple 
and has good shear resistance. However, this structure contains very thin connections that 
are not suitable for current fabrication technology as manifested by its low relative 
Young’s modulus. This example shows that there are more simple geometries worth 
exploring for future work. (E) This structure is similar to those in Family 4 without the 
core piece. It has a much lower shear resistance than the structures of Family 4. (F) An 
overly complex structure with intricate features obtained by topology optimization 
without filtering. Such structures are difficult to manufacture and thus are not selected for 
analysis. 
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Fig. S3 
Computing a microstructure template from a representative structure. For an input 
structure (A), we only need to analyze one tetrahedral slice (highlighted in red) of the 
whole structure due to its cubic symmetric construction. A morphological skeleton is 
extracted from the portion of the structure (B). The skeleton is a sequence of voxels. 
They are converted into a graph by connecting neighboring voxels. The graph is 
simplified (C) by merging paths into single edges while maintaining an error threshold. A 
cuboid (D) is placed on each edge of the simplified graph. The figure shows an example 
of a cuboid that lines up with the endpoints of its edge. In additional to coordinates of its 
endpoints, the cuboid is parameterized by side lengths (l1, l2) of the cross section and a 
tilting angle θ. (E) The final structure generated by the template using fitted parameters is 
shown. Its geometry closely resembles the input structure while its component are 
noticeably less curved. 
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Fig. S4 
Structures with large Poisson’s ratios (ν>0.3). The embedding is computed using 
Isomap with 3 dimensions while the plot shows the 2D projection of the embedding. 
Structures with a positive Poisson’s ratio have relatively simple topologies. Most 
structures are controlled by a single beam reflected according to cubic symmetry. 
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Fig. S5 
Microstructures that resemble designs from previous works. (A) A reentrant structure 
in our database similar to the conceptual sketch (B) proposed by Lakes (18). Both 
structures have very low shear modulus ratio (0.05-0.15). Our structure is simpler with 
only two control beams reflected by cubic symmetry while (B) has three beams 
(highlighted in red). (C) The rotating triangle mechanisms resembles 2D chiral structures 
(19). (D) An anti-trichiral lattice (36) has unit nodes most similar to our rotating triangle 
joints highlighted in red. 
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Fig. S6 
Reduced parameters for Family 4. The distribution of the parameters corresponding to 
Family 4 is shown as red points in (A). The two principal directions are shown as green 
arrows in (B). The first direction reduces the Young’s modulus and Poisson’s ratio by 
decreasing the joint thickness (C). The second direction increases the shear modulus by 
slightly rotating the triangle joints outward (D). An animation of the shape changes is 
shown in movie S2. 
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Fig. S7 
Test apparatus for measuring Young’s modulus and Poisson’s ratio. (A) Instron 
5944 for mechanical testing. (B)Tensile test of printing materials. (C) Compression test 
of microstructures. The Poisson’s ratio is calculated using vertical displacements and 
horizontal displacements. The vertical displacement is read from both the tensile test 
machine and the camera for redundancy. The horizontal displacement is measured using 
the camera only. 
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Table S1 

Auxetic families and templates. Column 2: cluster sizes for the five families found by 
the family identification step. Column 3: skeletons of the templates. Each template is 
obtained from mirroring a small number of control beams (Column 4) according to cubic 
symmetry. Column 5: number of parameters and control beams in each template. Each 
control beam has 9 parameters--6 for positions of its endpoints and 3 for the cross section 
size and orientation. Column 6: Number of reduced parameter directions for each family. 
Directions that change the material properties by more than 10% are stored for tuning the 
structures. Column 7: Range of shear modulus ratio is computed among structures with 
Poisson’s ratio -0.6 ± 0.05. 

# Sample 
size 

Template 
Skeleton 

Control 
Beams 

Template 
parameters 

Reduced Range of 
G’ 

1 424 

  

18 
(2 beams) 2 0.07-0.14 

2 367 

  

27 
(3 beams) 2 0.09-0.34 

3 751 

  

36 
(4 beams) 2 0.34-0.90 

4 881 

  

45 
(5 beams) 2 0.52-1.19 

5 878 

  

54 
(6 beams) 2 0.5-1.02 
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Table S2 

Simulated and measured Poisson’s ratios of example structures. Column 2: 
homogenized Poisson’s ratio; Column 3: Poisson’s ratio simulated with a Neo-Hookean 
material model at 7% compressive strain; Column 4: measured Poisson’s ratio of the 
printed structure at 7% strain. Due to fabrication variations including geometric 
thickening, printing orientation and incomplete support removal, we observe noticeable 
variance across the different measurements of the Poisson’s ratios. Measurement errors 
due to camera misalignment and incorrect block placement cause additional variations 
(±0.03) when we measure the same block multiple times. The linear material model is 
inaccurate in predicting the Poisson’s ratios under our loading conditions at 7% strain 
while the non-linear material model (Neo-Hookean) is more accurate. For example, for 
Family 1, the linear material model predicts a lower Poisson’s ratio than the measurement 
since the Poisson’s ratio decreases as the strain increases. For Family 2, the trend is the 
opposite of that of Family 1 and the Poisson’s ratio increases as the load increases. 

Family Linear 
simulation 

Neo-
Hookean 

Measured 
Poisson’s ratio 

1 

 

-0.58 -0.71 -0.78 ± 0.03 

-0.62 -0.71 -0.68 ± 0.04 

-0.64 -0.70 -0.68 ± 0.04 
2 

 

-0.68 -0.61 -0.61 ± 0.06 

-0.65 -0.57 -0.55 ± 0.10 

-0.73 -0.58 -0.58 ± 0.14 
3 

 

-0.63 -0.49 -0.49 ± 0.03 

-0.64 -0.48 -0.47 ± 0.03 

-0.62 -0.48 -0.45 ± 0.04 

4 

 

-0.62 -0.62 -0.62 ± 0.05 

-0.69 -0.67 -0.69 ± 0.13 

-0.52 -0.50 -0.45 ± 0.03 

5 

 

-0.51 -0.51 -0.62 ± 0.07 

-0.68 -0.68 -0.58 ± 0.04 

-0.61 -0.61 -0.52 ± 0.03 
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Movie S1 
Continuous search of a microstructure using topology optimization. The initial 
structure is a simple cubic frame with Poisson’s ratio = 0.03 and a relatively low shear 
modulus. The target material parameters of this example is to decrease Poisson’s ratio to 
-0.6 while increasing shear modulus. The optimized structure is a continuous distribution 
of materials where white means higher material density and black is lower density. The 
structure is thresholded at density = 0.5 to obtain a final discrete structure with Poisson’s 
ratio = -0.6 and nearly isotropic shear modulus. 
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Movie S2 
Shape variation of structures from Family 4 along principal directions. Since the 
shape variations (Fig. S6) are subtle especially along the second principal direction, we 
animate the gradual change of shape along the two principal directions. The first principal 
direction decreases the thickness of the rotating triangle joint while the second direction 
move the joint outwards. 
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Movie S3 
Compression testing and simulation of example from Families 1, 3, and 5. For each 
structure, we show a measurement footage played back at 20x speed and a closeup of 
simulation with nonlinear material model (Neo-Hookean). The deformation qualitatively 
matches the footage where the most significant deformations occurs at the joint locations. 
We also provide an overlay of simulation and measurement footages to show the high 
degree of simulation accuracy. 
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