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Abstract: Modern fabrication techniques such as additive manufacturing can be used to create 
materials with complex custom internal structures. These engineered materials exhibit a much 
broader range of bulk properties than their base materials, and are typically referred to as 
metamaterials or microstructures. While metamaterials with extraordinary properties have many 
applications, designing them is very difficult and is generally done by hand. We propose a 
computational approach to discover families of microstructures with extremal macroscale 
properties automatically. Using efficient simulation and sampling techniques, we compute the 
space of mechanical properties covered by physically realizable microstructures. Our system 
then clusters microstructures with common topologies into families. Parameterized templates are 
extracted from families to generate new microstructure designs. We demonstrate these 
capabilities on the computational design of mechanical metamaterials and present five auxetic 
microstructure families discovered by our algorithm. Our study opens the way for completely 
automated discovery of extremal microstructures across multiple domains of physics, including 
applications reliant on thermal, electrical and magnetic properties. 
One Sentence Summary: We propose the first fully computational method for discovering 
microstructure families with extremal physical properties. 
Main Text: Microstructures can exhibit remarkable physical properties that extend beyond the 
properties of their constituent materials. Many microstructure types have been developed to 
demonstrate applications in mechanics (1-6), acoustics (7,8), and electromagnetics (9-11). These 
microstructures are typically designed by domain experts using time and labor intensive manual 
processes. These designs are often programmable in the sense that they have a small number of 
parameters to generate a family of geometries. A given microstructure family can be tested by 
performing simulations or experimental measurements on a set of samples drawn from it. The 
mapping between parameters and physical properties discovered in this testing process helps 
uncover the underlying design principles that drive these correspondences. In practical 
applications, mapping the parameter space also allows for the selection of a family member that 
has a desired tradeoff of physical properties, allowing it to achieve some desired performance 
objective (12). Unfortunately, it is rare for manually designed microstructure families to reach 
extremal properties. This is because the space of possible microstructure designs is combinatorial 
and therefore impossible to explore exhaustively. One common approach to bypass this design 
challenge is to use computational methods, such as topology optimization (13-15), with a 
computer simulation in their inner loop to find a microstructure with a desired tradeoff of 
physical properties. Unfortunately, constructing parametric models from these optimized 
structures has heretofore required further expertise and manual design effort (16). In contrast to 
previous work, we present the first computational method to automatically explore the space of 
microstructure designs and discover parametric families optimized for competing properties. 



While our methodology is not limited to specific physical properties, this study applied 
our method to design of mechanical microstructures. Specifically, we set our algorithm to search 
for a particularly interesting type of mechanical microstructures: auxetic materials, which have a 
negative Poisson’s ratio. These materials have the unusual property of becoming laterally thinner 
under axial compression. 2D auxetic structures are well understood due to their relatively simple 
geometry such as reentrant structures (17, 13), chiral structures (18, 19) and rotating mechanisms 
(20-22). Generalizing existing 2D structures to 3D is challenging since a naive arrangement of 
2D mechanisms often results in orthotropic or other anisotropic structures with low shear 
resistance. Such structures will prefer shearing deformation when the load is not aligned well 
with the auxetic direction. Additionally, since Poisson’s ratio for orthotropic structures is 
unbounded, orthotropic auxetic structures are much easier to find than isotropic ones (23). Lakes 
(17) fabricated and tested the first isotropic 3D auxetic structure. However, designing 
manufacturable 3D auxetic structures remains a challenging task due to its complexity. Only a 
handful of 3D design patterns have been fabricated and measured (23, 24). This case study led to 
the discovery of five families with negative Poisson’s ratio and tunable shear resistance. 

Our discovery pipeline has four steps (figure 1). The first step estimates the material 
property gamut, which is the range of material properties achievable by the microstructures. Here 
a microstructure is defined on a 3D regular grid composed of hexahedral voxels. The design 
space includes all possible material assignments to the voxels. Since exhaustively simulating all 
possible microstructures is impractical, this step computes a set of sample microstructures. The 
sampling algorithm alternates between topology optimization and stochastic discrete search to 
progressively expand the gamut (25). The topology optimization stage pushes structures past the 
explored gamut boundary along gradient directions. The stochastic stage introduces discrete 
changes to escape local optima. 

In the second step, common geometric traits are identified among microstructures near 
the gamut boundary. Geometrically similar structures are grouped into families using nonlinear 
dimensionality reduction (NLDR). Isomap (26) is used as the reduction method because it can 
discover long sequences of related structures while keeping distant points separated. The 
effectiveness of NLDR depends on the distance metric that measures geometric difference. A 
smoothed Euclidean norm is chosen for robustness (figure S1). NLDR outputs an embedding of 
the microstructures in a low-dimensional space where similar structures are closely packed. 
Microstructures in the embedding space are clustered using a Gaussian mixture model (27) 
where each cluster corresponds to a family. Families with a significant number (>200) of 
members are extracted for further analysis. 

The third step in our process constructs templates for each microstructure family. We 
observe that most of the extremal structures are composed from beams, plates and blocks. All of 
these structures can be represented as cuboids with different edge lengths. We therefore chose 
cuboids as the building blocks for microstructure templates, and note that some structures near 
the boundary do not fit the cuboid representation (figure. S4). To find a template from a family 
representative, its topology is computed using a morphological skeleton (28). The morphological 
skeleton is a set of connected edges that largely preserves topological and branching 
characteristics of the structures. The skeleton is converted into a graph in order to represent a 
template. A cuboid is placed on each edge of the graph with optimized sizing and orientation to 
best match the representative structure. More details of the process are available in the 
supplementary text. 



Finally, reduced parameters are computed to allow an intuitive navigation in the material 
property space. Since the templates from the previous step contain tens of parameters that do not 
directly correspond to material properties, it is still difficult to understand the key design 
principles. The reduced parameters allow for direct tuning of each material property. For a given 
parametric template, its parameters are fitted to all structures of the corresponding family. To 
avoid outliers, microstructures leading to large fitting errors (>5% voxel difference) are 
excluded. Principal component regression (PCR) is then performed on the set of fitted template 
parameters to find principal directions in the template parameters space. Varying the parameters 
in a direction corresponds to moving on the gamut boundary in a certain direction. A reduced 
parameter is assigned to each direction to control amount of change along that direction. 

The results of this study focus on elastic material properties: Young’s modulus, Poisson’s 
ratio and shear modulus. The elastic material property gamut is estimated from 15,000 3D cubic-
symmetric microstructures at a voxel resolution of 643 (29). The voxel resolution is a power of 2 
because that is necessary to achieve optimal performance of our multigrid FEM simulation. The 
specific resolution 643 is chosen because it is sufficient for discovering auxetic structures with a 
wide range of relative shear modulus while 323 structures cannot achieve comparable complexity 
or property ranges. The macroscopic elastic parameter of each microstructure is computed using 
homogenization theory (30, 31) assuming a periodic boundary condition, (i.e. the structure is 
repeated infinitely). Each microstructure consists of a per-voxel binary material assignment. Due 
to manufacturing limits on minimum feature size, sensitivity filtering (32) is applied in gamut 
sampling step to avoid structures with overly thin features. 

Here we report deeper analysis for auxetic structures from the gamut since families with 
positive Poisson’s ratios are relatively simple (figure S2). Five families with significant number 
of members (figure. 2B) are discovered using three Isomap embedding dimensions. We 
confirmed that Isomap associates seemingly distant structures through intermediate structures. 
For example, structures 5-1 and 5-3 from family 5 have very different beam thicknesses resulting 
in large geometric distance. However, the embedding reveals that there is a sequence of 
structures such as 5-2 that make the connection between them. 

Parametric templates are constructed for all five families. The initial topology of the 
templates is extracted from morphological skeletons (figure 3B). While the topologies are 
visually complex, they are generated by mirroring a small number of beams (highlighted in red) 
reflected according to cubic symmetry (Table S2). The most complex template 5 contains only 6 
control beams. The five families cover similar ranges of Young’s modulus and Poisson’s ratio. 
However, they span different ranges of shear modulus. Inspired by classical linear elasticity 
theory, we compare the shear modulus ratio defined as 
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where G is shear modulus, E is Young’s modulus and ν is Poisson’s ratio. For traditional 
isotropic materials, the theoretical ratio is one. A low ratio indicates low resistance to shear 
deformation. For auxetic materials, lower ratios are much easier to obtain than higher ones. Even 
with foam structures assumed to be isotropic, experimental data from previous work indicates 
that the ratio is less than one (33). 

Template 1 resembles the conceptual sketch by Lakes (17) and belongs to the reentrant 
class of geometry. The difference is that our template has only two beams mirrored by cubic 



symmetry while Lakes’ sketch contains three (Fig. S6). It is the simplest auxetic template that we 
identified, as our microstructure database does not contain any single-beam auxetic structure. 
The shear modulus ratio of this family falls in the range between 0.07 and 0.24, which is the 
lowest among all five families. Templates 2 and 3 are similar to each other and differ by a 
diagonal beam in the face center (highlighted in green in template 3). Since their geometric 
difference is small, they are adjacent in the Isomap embedding space. The central beam is 
responsible for increasing the shear modulus of the structures. For structures with ν around -0.5, 
the additional beam increases the maximum shear modulus ratio from 0.34 to 0.90. Templates 4 
and 5 also differ by a single beam. Even the most complex template 5 is optimized from a simple 
cube frame through our continuous optimization step as shown in our supplemental material 
(video S1). The additional beam in template 5 makes the family stiffer overall. Both families can 
achieve shear modulus ratio greater 1 for ν<-0.5. 

For each family, principal directions of template parameters are extracted using PCR. The 
templates and reduced parameters are included with the report (29). Two significant directions 
correspond to change in Young’s modulus and shear modulus are kept for tuning structures. 
These directions reveal that for families 2 and 3, the thickness of the slanted column (Fig. 4a 
highlighted in red) is crucial for Poisson’s ratio where the Poisson’s ratio increases quickly with 
increasing beam thickness. For families 4 and 5, the thickness of the rotating triangle (figure 4B) 
affects the tradeoff between Young’s modulus and shear modulus (figure S5). 

While our cuboid-based templates are very simple, they are sufficient for replicating the 
auxetic behavior of the corresponding families. We validated the auxetic properties of the fitted 
microstructures using simulation. New structures are generated by varying template parameters. 
300 new structures are sampled from each family along two PCR coordinate directions. The 
coverage of the templates in the microstructure gamut (figure 2B) shows that the templates can 
generate microstructures on the gamut boundary  

So far all of our simulations are carried out assuming linear elasticity, which is only 
accurate for infinitesimal deformations. We also make the common assumption that there is no 
self-collision. This assumption also imposes a limit on the maximum compressive strain we can 
apply to our structures before self-collision occurs. Representative structures from Families 4 
and 5 have the lowest limit at 7% compressive strain. In practice, non-linear deformations such 
as bending and rotation are prevalent in our auxetic structures. Such deformations can cause 
linear elasticity to incorrectly predict significant volume expansion of rotated parts (up to 20% 
percent in our test cases). Thus, we tested our structures using a nonlinear deformation model to 
understand their behavior under large deformations. We simulated nonlinear deformation 
behavior using Neo-Hookean material model (34). At maximum allowed strain of 7%, linear 
elasticity and Neo-Hookean model still has acceptable agreement with an average error of 16% 
in computed Poisson’s ratio. In addition to simulation, we also manufactured three example 
structures from each family with varying Young’s modulus and material ratio. All the structures 
are printed using a single elastic material (35). Our structures demonstrated consistent auxetic 
behavior (videos S3) even though they are optimized with linear elasticity assumption. Our 
structures do not rely on structural instability (36) for auxetic behavior and shrinks uniformly as 
load increases. This means that their deformations consistently follow the same pattern for 
different trials. 

Our process automatically discovered two types of auxetic mechanisms: slanted columns 
and rotating triangles (figure 4). The slanted column mechanism transforms vertical compression 



to horizontal motions. The rotating triangles transform vertical compression into a winding 
deformation that pulls the right end of the mechanism towards the center of the microstructure. 
Their motions are shown in supplementary video S3. While rotating triangles bear resemblance 
to existing 2D structures (37) known as chiral structures (figure S6D), its extension to 3D cubic 
structure with large shear modulus has never before been constructed. Additionally, the entire 
mechanism is discovered entirely automatically without imposing any artificial design 
restrictions – all microstructures are built from hexahedral voxels. To inspire future applications 
of these mechanisms, we report the loading behavior of the mechanisms. These auxetic 
mechanisms are the most active parts in the microstructures. They act like joints that connect the 
more rigid scaffolding in microstructures. Because of this, they undergo the most deformation 
and concentrate a large amount of stress. For the rotating triangles, the stress is concentrated on 
the connections around the triangle. We computed the maximum principal strain in the structure 
with respect to the vertical compressive loading to provide insights into the strength of the block. 
At the maximal compressive loading (7%), the maximum principal strain in the structure is 7%. 
Calculation using a reported Young’s modulus of 80MPa yields a von Mises stress of 6.72MPa 
(figure 4E) while our print material has a reported strength of 8.5MPa. The printed structures are 
approaching the strength limit under the load. Since the available material is relatively weak 
even compared to common materials such as ABS plastics and rubber, we believe that structural 
strength can be improved significantly with future manufacturing materials. 

We have shown a computational method that combines discrete sampling, continuous 
optimization and dimensionality reduction methods for automatic discovery of new 
microstructure families and mechanisms that would have been challenging to design manually. 
The discovered structures are suitable for manufacturing as they avoid thin features and 
distribute deformation over beams instead. They also span a wide range of shear moduli, 
allowing engineers to balance between different macroscopic properties. While our case study 
focuses on elastic material properties, the technique may be applied to other physical properties 
whenever predictive simulation exists. Our computational pipeline paves the way to discovery of 
structures that balance mechanical, thermal, optical, acoustic and electromagnetic properties. 
Moreover, it advances the understanding of underlying mechanisms that are key to extremal 
properties. 
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Fig. 1. A computational process for discovery of extremal microstructure families. Given a set of 
physical properties and design constraints, we estimate the material property gamut using 
stochastic sampling and topology optimization. Structures near the gamut boundary are grouped 
into families using nonlinear dimensionality reduction. A representative from each family is 
fitted with a template represented as a skeleton. Beams are placed on the skeleton edges with 
optimized parameters to fit the original structure. Structure variations with the same topology can 
be generated by varying the beam parameters. Finally, reduced template parameters are 
computed to reveal domain-specific design principles. 
  



 

Fig. 2. Five microstructure families identified by nonlinear dimensionality reduction (NLDR). 
Structures with similar properties in the gamut (A) are selected to study their commonalities. We 
focused on structures with negative Poisson’s ratio (auxetics) since they exhibit more complex 
structures. Auxetic families are identified in the embedding space numbered from 1 to 5 (B). 
Families with similar topologies are located closer in the embedding space. Three example 
structures from family 5 show underlying connection between seemingly distinct structures 
through gradual morphing of shape. 
  



 

Fig. 3. Sampled coverage of microstructure templates in the gamut. (A) Extracting a skeleton 
(middle) from a representative structure (top). The skeleton represents the topology of the 
structure. A beam network is derived from the skeleton by placing a cuboid on each edge of the 
skeleton. Since we enforce cubic symmetry, the beams in a single tetrahedron determine the 
entire beam network. A template can generate a new structure (bottom) that approximates the 
original structure. (B) Coverage of each template in the material property space. (C) Reducing 
template parameter dimensions with principal component regression. The first two reduced 
parameters approximately correspond to varying the Young’s modulus and Poisson’s ratio of a 
structure.  
  



 

Fig. 4. Discovered auxetic mechanisms. Two mechanisms capable of producing auxetic behavior 
are discovered from our microstructure families. The slanted column (A) transforms vertical 
stress into horizontal displacement. The rotating triangle mechanism (B) pulls the outer tip of the 
joint towards the center of the structure, reducing the macroscopic volume. (C) The relationship 
between vertical strain and rotation of the triangle joint. The rotation is observed in printed 
samples under vertical load (D). Stress is concentrated at the lower end of the triangle joint (E). 
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