Artificial Intelligence Project--RLR and MIT Computation Center Memo 30 (Revised)--

TEP $\alpha \cdot \beta$ HEURTSTIT

by D. J. Edwards and T. P. Hart:

October 28, 1963
(This memo is a revised version of The Tree Prune (TP) Algozithm, AI Memo 30 Deceraber 4, 1961.)

The $\alpha-8$ Heurdstic
by D. J. Edwards and T. R. Hart

The $\alpha * \beta$ heuristic is a method for runing unneeded branches from the move tree of a game. The algorithm makes use of information gained about part of the tree to reject those branches which will not affect the principle vartation.

The reasonting behind the $c * \beta$ heuristic is as folloras:
a) if the mexlmizingoplayer finds a nove whose value is greacer than or equal to the velue of an alternate ninfmizing-player move found higher in the tree, he should not look further because the min player would certainly tale that altemate move.
b) if the min-player finds a move whose value is less than or equal to the value of an alternate mexplayer move found higher in the tree, he should not look further because the maxplayer would certainly take that altemnate move.

Case (b) may be illustrated by the above piece of tree. The maxplayer has investigated the branch with value α and has looked at an alternate move from the point at which this branch was found. At the time the
value v ft established the maximizing player fonose point of view we are taking) sees that if he takes the right branch from the top node he is giving the other player the opportunity to take the v branch, But this will result in his getting v or less, and since he can get o by taking the left branch, he f.nstantly decides that he won't make the rave to the xight under any elrcumstance.

The following deffintion express the $\alpha \cdots \beta$ heuristic:
vnax $[p o s ; \alpha ; \beta]=[$ if final $[p o s ; \alpha ; \beta]$ then evaluace[pos]
else vimax[sueclpos];c; β])
v. max[1is; $\alpha ; \beta]=$ [if null[1is] then α
else if vain[cer[lis); $\alpha ; \beta]$ \& β then β
else vlmax[cdr[1is];
nax|vmin $[$ car $[11 a] ; \alpha ; \beta \mid ; \alpha]$;
$\beta 1]$
$\operatorname{vain}[p o s ; 0 ; \beta]=[$ if final $[p o s ; \alpha ; \beta]$ ther evaluate[pos] else vimin[succ|pos];c:; β]]
vimin[11s; $\alpha ; \beta]=$ [if rull[1is] then β
else if vmak[car[1is]; $\alpha ; \beta] \leq \alpha$ then α else vimin[edx[lis];
$\alpha ;$
min\{ $\max [\operatorname{car}[14 s] ; \alpha ; \beta] ; \beta] 1]$
where;
poy stands for sone representation of the current position,
lis. is a list of position representations.
succ[pos] is a function which produces a list of positions which can be reached in one move from pos.
final $[p o s ; \alpha ; \beta]$ is a predicate which may decice chat: the search is not: to continue, e.g., when the end of the game has been reached.
fron the point of view of maximizing player).
α and β are inftially set at $-\alpha$ snd $\% \alpha$ respectively
This heuristic may readily be compared with a minimas seazch by observing that if the second clauses In the conditional expression for ylnax and ylmin are eliminated the zesulting function is just minimax.

It is importent to note that the ordering of the list of moves generated by succ is very inportant. The most gain is acbieved fron the heur istic when the right move is at the begioning of the list.

It turns out that at bast, that is, in the case of perfect ordering the $\alpha-\beta$ heuristic can cut a tree's exponential growth rate in half, thus allowing alnost twice the search depth for the same effoct. More precisely, we have the following theorem,

Theorem (Levin): Let n be the number of plies In a tree, and let b be the number of branches at every branch poznt. Then the number of termftral points on the tree is

$$
T=b^{n}
$$

However, if the best possible advantage is taken of the $\alpha-\beta$ heuristic then the number of terminal points that aeed be examined is

$$
\begin{array}{ll}
T=b b^{\frac{n+1}{2}}: b^{\frac{n}{2}}-1 & \text { for } \text { odd } n \\
x=2 b^{\frac{n}{2}}=1 & \text { for even } n
\end{array}
$$

