
Memo 30 	Artificial Intelligence Project

RLE and COMPUTATION CENTER
Massachusetts Institute of Technology

Cambridge 39, Massachusetts

December 4, 1961

THE TREE PRUNE _(TP) ALGORITHM

by Timothy P. Hart
and

Daniel J. Edwards

Introduction

The Tree Prune (TP) Algorithm is an algorithmic method for prun-
ing unneeded branches from the move tree which is being searched by
the standard minimax method. The algorithm makes use of information
gained about part of the tree to reject those branches which will not

affect the principle variation.
The reasoning behind the TP Algorithm is as follows:

a) if the maximizing-player finds a move whose value is
greater than or equal to the value of an alternate minimizing-player
move found higher in the tree, he should not look further because the
min-player would certainly take that alternate move0

b) if the min-player finds a move whose value is less than

or equal to the value of an alternate max-player move found higher in
the tree, he should not look further because the max-player would
certainly take that alternate move.

Programming Description

The algorithm will be described with reference to a move tree

that starts at the top of a page and branches, downward (see example).

The top of the tree will be called the highest level and the many end

points the lowest level.

Rule 1: At any node you reach in the tree. keep track of the

minimax value of the next higher node.

Rule 2: If the current node is a minimizing node, and a value is

found which is less than or equal to the current value of the next

higher node, abandon the current node because its value cannot effect

the value of the next higher node,

-2

Rule 3: If the current node is a maximizing node, and a value

is found which is greater than or equal to the value of the next

higher node, abandon the current node because its value cannot effect

the value of the next higher node.

Rule 4: During the tree search keep two parameters Alpha and

Beta along with their associated levels. Alpha and Beta are initially

set to 404, and -.o respectively and associated levels to the lowest

value corresponding to the deepest you can go in the tree.

When a minimax value for a maximumizing node is found compare
the node level with the level associated with alpha. If the node level

is equal to or greater than alpha level, set alpha equal to the minimax

value and alpha level equal to the node level. If you have set alpha
compare alpha level with beta level,and if alpha level is greater than
beta level set beta to 00 and beta level to its initial value.

When a minimax value for a minimizing node is found, compare
the node level with the level associated with beta. If the node level

is equal to or greater than beta, set beta equal to the minimax value

and the beta level equal to the node level. If you have set beta

compare the beta level with the alpha level, and if beta level is

greater, then set alpha to -0o and alpha level to its initial value.

Rule 5: Upon reaching a maximizing node for the first time set
Its initial value equal to alpha.

Rule 6: Upon reaching a minimizing node for the first time set
its initial value equal to beta.

LISP Description

The above ideas can be translated into LISP using the following
M-expressions. .The v+ and v1+ functions are used for the maximizing
player, while the v- and v1- are for the minimizing player.

V-11p; drr ;13) 	(final[P; cw;o1 -+ value[p I ; T 	vi+(succ[P]; 417(;15)1

v1441ist;0(;01 	[null[list] 	oe; T -•
7\[(u];(u>0 -• u;

T 	v1-44cdr[11st];maXiu: oil;131]];
v-[car[list];0(;13]]

V-ip;oe ;Pi E- (final[p;0(;01 	value(P]; T -+ vi-(suec[P]; c1

vi."(list; 0(;(3] E. [null[list] -+ 13; T
Xl[u];(u4oe -4. u; T -*v1+(succ[Pl;c4;f3]1];

v4Icar[list];a.(;$]]

final[p;0(;13] is some terminating condition, i.e., depth[p] = nmax.

succ[p] gives a list of all legal successor positions from the current

position.

Note: This becomes the oqp-Heuristic of Prof. McCarthy if the final

function is defined final(p;cw;p] M [(opt[p]z. or]V[pess[p] <13]/
[depth(p] nmax]

where opt[p] is an optimistic value of this position (i.e., what is
the most I can hope for from this position) and pess[pi is a
pessimistic value (i.e., what is the least I can expect from this posi-

tion).

Comments

This algorithm preserves the principle variation and has been

conservatively estimated to prune from 1/2 to 3/4 of the minimax

search tree depending on the final depth to be searched. This algo-

rithm places a premium on heuristically ordering the moves to be

tried from any node so that the principle variation may be found

quickly and the rest of the tree pruned drastically.

2 4 I 8 7 3 L2i 1 6 1 3 5 	39,2 	j 52 123, 9 7 2 1 6 4 4- VALU E S

EXAMPLE MOVE TREE

2 min.

3 max H o 4 bk
5 	9

Ply No,

1 max.
- 00

4

0.0 	0O 	6 b 	 o 	 6

ALPHA BETA

Value Ply Value Ply.

- 99 ø 99
8 3
0.0 99 8
9 3
0.° 99 4 2
4 1 00 99

5 2
5 1 00 99

5 2 	i

denotes end
points examined.

Values at nodes are
In the order of
assignment.

Example Description

The tree is investigated from left to right.

Set the value of node A to - oe, from Alpha.
Proceed to B and set to 00 from Beta.

Proceed to E and set to -0.0 from Alpha.

Investigate the first variation and set value of E to 8 and alpha to
(8 max, level 3).

Investigate other two variations from E and return to B with value of
8 and set beta to (8 min, level 2).

Proceed to F and set to -00 .

Investigate first variation, get 9 and set the value of F to it.
Compare the value with the 8 at B and abandon F as it is greater.

Proceed from B to G and set to 	.
Investigate variations, finally setting G to 4 and return to B and set

beta to (4 min, level 2).

Return to A, set value to 4 and alpha to (4 max, level 1).
Proceed to C and set to 00 from beta.
Proceed to H and set to 4 from alpha.
Investigate variations and finally set H to 5.
Return to C with 5 and proceed to I.

Set I to 4 from alpha and investigate first two variations. When the
9 is found, it is greater than the 5 at C, so abandon I„

Proceed to J, set it to 4 from alpha, First variation yields 6 which
Is greater than the 5 at C, so abandon J, return to C, and return
to A with value 5.

Set A to 5 and alpha to (5 max, level 1).
Proceed to D, set to 00 from beta.
Proceed to K and set it to 5 from alpha.

Investigate the variations and return to D with the value still at 5.
Since 5 is equal to the value at A abandon D, and the search is
over.

Out of the 40 possible positions in the tree, 27 were actually examined,

and it is claimed that the ratio of possible positions to searched

positions would be even larger for a larger tree.

6

APPENDIX

It turns out that at best, the PP Algorithm can cut the exponent

in the growth rate in half, thus allowing almost twice the search

depth. More precisely, we have the following theorem.

Theorem (Levin) : Let n be the number of plies in a tree, and let b

be the number of branches at every branch point. Then the number of

terminal points on the tree is --

T = bn

However, if the best possible advantage is taken of the TP Algorithm,
then the number of terminal points that need be examined is --

n-v1 	n-1
T =b 2 +b 2 -1 	for add n

T =2b2 - 1 	 for even n

Proof:

For a convincing personal proof using the new heuristic hand

waving technique, see the author of this theorem.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

