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The Conventional Approach: Supervised Learning

1. Annotate training documents.

2. Use CRF to learning the mapping.
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Our Approach

Learn through trial and error
 

1. Map instructions to candidate actions

2. Execute candidate actions in the environment

3. Check how well we do (reward signal)

4. Update model parameters based on reward

Key hypothesis:  Reward signal is sufficient supervision
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Example Application 1:  An Online Puzzle

Instructions
puzzle solution

Reward signal Check if we won the puzzle !

Target environment
online flash puzzle
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Example Application 2:  Windows Help Instructions

Check if we hit a dead-end
(check for overlap between 
sentence words & GUI labels)

Instructions
Microsoft help

document

Target environment
Windows 2000

graphical
user interface

Reward signal
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Learning Using Reward Signal: Challenges

2. Number of candidate action sequences is very large
 

⇒ How can this space be effectively searched?

Use Reinforcement Learning

1. Reward can be delayed

⇒ How can reward be propagated to individual actions
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Reinforcement Learning: A Sketch

Repeat:

Observe current state of text + environment

Select action based on a probabilistic model

Execute action

Receive reward and update parameters 
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Reinforcement Learning: Representation

State  s =   Observed Text  +  Observed Environment

Action  a =   Word Selection  +  Environment Command
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Constructing Mappings
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Constructing Mappings

Mapping process allows us to:

Segment text to chunks that describe individual commands

Learn translation of words to environment commands

Reorder environment commands
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Generating Possible Actions

State  s =   Observed Text  +  Observed Environment

Action  a =   Word Selection  +  Environment Command
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Model Parameterization

Define policy function as a log-linear distribution:

-  real valued feature function on state     and action 

-  parameters of model

Represent each action with a feature vector:
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Features on words and environment command

Edit distance between word and object label

Binary feature on each (word, command) pair

Binary feature on each (word, object type) pair
 

Features on environment objects

Object is visible

Object is in foreground

Object was previously interacted with

Object became visible after last action
 

Features on words

Word type

Distance from last used word

Example Features

Total number of features: 4438
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Learning Algorithm

Goal: Find θ that maximizes the expected reward

Method: Policy gradient algorithm (stochastic gradient ascent on θ)
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Learning Algorithm

Parameter update:

Gradient of log-linear model
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Reward can be based on annotations if available

Incorporating Annotation in Reinforcement Learning

Reinforcement learning allows a mix of annotation and 

environment based reward signals

Reward r(h) = 
+1  if actions match annotations

+0  if actions don't match annotations
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Reward can be based on annotations if available

Incorporating Annotation in Reinforcement Learning

If all documents are annotated:  Equivalent to stochastic 

gradient ascent with a maximum-likelihood objective

Reward r(h) = 
+1  if actions match annotations

+0  if actions don't match annotations
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Total # of documents 128

Train/development/test 70 / 18 / 40

Total # of words 5562

Vocabulary size 610

Avg. words per sentence 9.93

Avg. sentences per document 4.38

Avg. actions per document 10.37

Windows 2000 help documents
from  support.microsoft.com

Complex environment:  13088 observed states

Windows Configuration Application
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Results: Baselines

% actions correctly mapped

Random action

Majority action

                               

0% 10% 20% 30% 40% 50% 60% 70% 80%

13%13%

29%29% Always LEFT_CLICK on heuristically
selected GUI object

Randomly LEFT_CLICK, RIGHT_CLICK, DOUBLE_CLICK  
or TYPE on heuristically selected GUI object
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Results: Supervised

% actions correctly mapped

Random action

Majority action

                               

Full supervision

0% 10% 20% 30% 40% 50% 60% 70% 80%

13%13%

29%29%

76%76%
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Results

% actions correctly mapped

Random action

Majority action

Environment reward

Partial supervision
(30% annotated)

Full supervision

0% 10% 20% 30% 40% 50% 60% 70% 80%

13%13%

29%29%

65%65%

72%72%

76%76%
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Trade off between 
Environment Reward and Manual Annotations
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Trade off between 
Environment Reward and Manual Annotations
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Walk-through documents from the Crossblock flash puzzle

Instructions

Target environment

http://hexaditidom.deviantart.com/art/Crossblock-108669149

Puzzle Application
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Results: Puzzle Game Application
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RL without instructions

RL using instructions

20% 30% 40% 50%

34%34%

45%45%

% puzzles won

Results: Puzzle Game Application

Our method can leverage knowledge encoded in 
natural language
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Related Work

Reinforcement Learning for Dialogue Management:

Grounded Language Acquisition:

Scheffler and Young (2002), Roy et al. (2000), 

Litman et al. (2000), Singh et al. (1999)

Chen and Mooney (2008), Roy and Pentland (2002), 

Siskind (2001), Barnard and Forsyth (2001), Oates (2001)

Fundamentally different problems

Assume parallel corpus of text and semantic 

representations (e.g. database entries)
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Environment feedback is an effective source of 
supervision

Reduces need for manual annotations

Our method can leverage knowledge encoded in 
natural language

Conclusions

Code and data available at:

groups.csail.mit.edu/rgb/code/rl
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Results
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