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Traditional view: 

Map text into an abstract representation

Alternative view:

Map text into a representation which helps 

performance in a control application

Semantic Interpretation
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Semantic Interpretation for Control Applications
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lost

won

lost

End resultComplex strategy game

action 1

action 2

action 3

Traditional approach:  

Learn action-selection policy from game feedback.

Our contribution:

Use textual advice to guide action-selection policy.



Leveraging Textual Advice: Challenges
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1. Find sentences relevant to given game state.

Game state Strategy document

You start with two settler units. Although 
settlers are capable of performing a 
variety of useful tasks, your first task is to 
move the settlers to a site that is suitable 
for the construction of your first city.     
Use settlers to build the city on grassland 
with a river running through it if possible.   
You can also use settlers to irrigate land 
near your city.   In order to survive and 
grow …

settlercity
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Game state Strategy document

Leveraging Textual Advice: Challenges

1. Find sentences relevant to given game state.

settlercity

You start with two settler units. Although 
settlers are capable of performing a 
variety of useful tasks, your first task is to 
move the settlers to a site that is suitable 
for the construction of your first city.     
Use settlers to build the city on grassland 
with a river running through it if possible.   
You can also use settlers to irrigate land 
near your city. In order to survive and 
grow …



settlercity

settler
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Game state Strategy document

You start with two settler units. Although 
settlers are capable of performing a 
variety of useful tasks, your first task is to 
move the settlers to a site that is suitable 
for the construction of your first city.     
Use settlers to build the city on grassland 
with a river running through it if possible.
You can also use settlers to irrigate land 
near your city. In order to survive and 
grow …

Leveraging Textual Advice: Challenges

1. Find sentences relevant to given game state.



Leveraging Textual Advice: Challenges
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Move the settler to a site suitable 
for building a city, onto grassland 
with a river if possible.

2. Label sentences with predicate stucture.

Move the settler to a site suitable 
for building a city, onto grassland 
with a river if possible.

move_settlers_to()

settlers_build_city()

?

?

move_settlers_to()

Label words as action, state or background



Leveraging Textual Advice: Challenges

8

Build the city on
plains or grassland 
with a river running 
through it if possible.

a1 – move_settlers_to(7,3) 

S

a2 – settlers_build_city()

a3 – settlers_irrigate_land()

3. Guide action selection using relevant text



Learning from Game Feedback
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Goal: Learn from game feedback as only source of supervision.

Key idea: Better parameter settings will lead to more victories.

You start with two settler units. Although 

settlers are capable of performing a 
variety of useful tasks, your first task is 
to move the settlers to a site that is 

suitable for the construction of your first 
city.     Use settlers to build the city on 
plains or grassland with a river running 

through it if possible.  In order to survive 
and grow …

a1

S

a2

a3

won
End result

a1

S

a2

a3 lost

End result

Model 
params:

θ1

Model 
params:

θ2

You start with two settler units. Although 

settlers are capable of performing a 
variety of useful tasks, your first task is 
to move the settlers to a site that is 

suitable for the construction of your first 
city.     Use settlers to build the city on 
plains or grassland with a river running 

through it if possible.  In order to survive 
and grow …

Game manual

Game manual



Model Overview

Monte-Carlo Search Framework

• Learn action selection policy from simulations

• Very successful in complex games like Go and Poker.

Our Algorithm

• Learn text interpretation from simulation feedback

• Bias action selection policy using text
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Monte-Carlo Search
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Actual Game

State 1

Simulation

Irrigate

State 1

Copy

Game lost

Copy
game

???

Select actions via simulations,  game and opponent can be stochastic
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Monte-Carlo Search

Try many candidate actions from current state & see how well they perform.

State 1Current game state

Game scores
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Current game state

Monte-Carlo Search

Try many candidate actions from current state & see how well they perform.

Learn feature weights from simulation outcomes

State 1

Game scores

R
o

llo
u

t 
d

ep
th

0.1 0.4 3.51.2
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- feature function

- model parameters

. . . . . . . . . 

5 1 0 1 1 0 1 = 0.1

15 0 1 0 0 1 0 = 0.4

37 1 0 1 0 0 0 = 1.2



Model Overview

Monte-Carlo Search Framework

• Learn action selection policy from simulations

Our Algorithm

• Bias action selection policy using text

• Learn text interpretation from simulation feedback
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• Identify sentence relevant to game state

• Label sentence with predicate structure

• Estimate value of candidate actions

Modeling Requirements
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Build  cities  near  rivers  or  ocean.

Build  cities  near  rivers  or  ocean. Build  cities  near rivers  or  ocean.

Build  cities  
near rivers  
or  ocean.

Fortify :

Irrigate : -10

. . . . 

Build city :

-5

25



Sentence Relevance

16

Sentence       is selected as relevant

State    , candidate action     , document  

- weight vector

- feature function
Log-linear model:

Identify sentence relevant to game state and action

1

2

3



Word index , sentence , dependency info

- weight vector

- feature function
Log-linear model:

Predicate Structure
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Select word labels based on sentence + dependency info

E.g., “Build  cities  near rivers  or  ocean.”

Predicate label       = { action, state, background }

1

2

3



- weight vector

- feature function
Linear model:

Final Q function approximation
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State    , candidate action

Predict expected value of candidate action

Document     , relevant sentence      , predicate labeling

1

2

3



Multi-layer neural network: Each layer represents a different stage of analysis

Model Representation
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Input:
game state, 
candidate action, 
document text

Select most relevant sentence

Q function approximation

Predict sentence predicate structure

Predicted action value



Parameter Estimation
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Objective: Minimize mean square error between

predicted utility             

and observed utility

25

State

Predicted utility:

Action

Observed utility:

Game rollout



Parameter Estimation
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Method: Gradient descent  – i.e.,  Backpropagation.

Parameter updates:



Features
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State features:

- Amount of gold in treasury

- Government type

- Terrain surrounding current unit

Action features:

- Unit type (settler, worker, archer, etc)

- Unit action type

Text features: 

- Word

- Parent word in dependency tree

- Word matches text label of unit



Experimental Domain
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Sentences: 2083

Avg. sentence words: 16.7 

Vocabulary: 3638

Document:

• Official game manual of Civilization II

Text Statistics:

Game:

• Complex, stochastic turn-based 
strategy game Civilization II.

• Branching factor:  1020



Experimental Setup
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Game opponent:

• Built-in AI of Game.

• Domain knowledge rich AI, built to challenge humans.

Primary evaluation:

• Games won within first 100 game steps.

• Averaged over 200 independent experiments.

• Avg. experiment runtime: 1.5 hours

Secondary evaluation:

• Full games won.

• Averaged over 50 independent experiments.

• Avg. experiment runtime: 4 hours



Results
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0% 20% 40% 60%

Full model

Built-in AI 0%

% games won in 100 turns, averaged over 200 runs.



Does Text Help ?
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0% 20% 40% 60%

Full model

Game only

Built-in AI 0%

% games won in 100 turns, averaged over 200 runs.

Linear Q fn. 
approximation, 

No text



Text   vs.  Representational Capacity
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0% 20% 40% 60%

Full model

Game only

Latent variable

Built-in AI 0%

Non-Linear Q fn. 
approximation, 

No text

% games won in 100 turns, averaged over 200 runs.



Linguistic Complexity  vs. Performance Gain
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0% 20% 40% 60%

Full model

Sentence relevance

Game only

Latent variable

Built-in AI 0%

% games won in 100 turns, averaged over 200 runs.



Results: Sentence Relevance

29

Problem: Sentence relevance depends on game state.

States are game specific, and not known a priori!

Solution: Add known non-relevant sentences to text.

E.g., sentences from the Wall Street Journal corpus.

Results: 71.8%  sentence relevance accuracy…

Surprisingly poor accuracy given game win rate!



Results: Sentence Relevance
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Results: Full Games
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0% 20% 40% 60% 80% 100%

Full model

Latent variable

Percentage games won, averaged over 50 runs

Game only



Grounded Language Acquisition: Instruction Interpretation
Branavan et al. 2009, 2010,   Vogel & Jurafsky 2010

• Imperative descriptions of action sequences
• Assume relevance of text to current world state

Language Analysis in Games
Eisenstein et al. 2009

• Extract high-level semantic representation from text
• Learn game rules from labeled traces  +  extracted formulae

Gorniak & Roy 2005

• Interpret spoken commands to control game character
• Learn from labeled parallel corpus

Related Work
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• Human knowledge encoded in natural language can 
be automatically leveraged to improve control 
applications.

• Environment feedback is a powerful supervision 
signal for language analysis.

• Method is applicable to control applications that 
have an inherent success signal, and can be 
simulated.

Conclusions

Code, data & experimental framework available at:
http://groups.csail.mit.edu/rbg/code/civ
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Monte-Carlo Search: Summary

0.1 3.5 1.2 0.4 1.1 0.8 2.8 0.9 3.1 2.9 0 1.4

Game states 
and actions

Monte-Carlo
Rollouts 
(simulations)

Use observed 
rollout scores to 
select game action

state 1 state 2 state 3
action 1 action 2
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Model Complexity, Time and Performance
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Dependency Information


