
Randall C. Smith* 
SRI International 
Medo Park, California 94025 

On the Representation 
and Estimation of 

Peter Cheeseman 
NASA Ames 
Moffett Field, California 94025 

Abstract 

This paper describes a general method for estimating the 
nominal relationship and expected error (covariance) between 
coordinate frames representing the relative locations of ob- 
jects. The frames may be known only indirectly through a 
series of spatial relationships, each with its associated error, 
arisingfrom diverse causes, including positioning errors, 
measurement errors, or tolerances in part dimensions. This 
estimation method can be used to answer such questions as 
whether a camera attached, to a robot is likely to have a 
particular reference object in its field of view. The calculated 
estimates agree well with those/rom an independent Monte 
Carlo simulation. The method makes it possible to decide in 
advance whether an uncertain relationship is known accu- 
rately enough for some task and, i f  not, how much of an 
improvement in locational knowledge a proposed sensor will 
provide. The method presented can be generalized to six 
degrees of freedom and provides a practical means of esti- 
mating the relationships (position and orientation) among 
objects, as well as estimating the uncertainty associated with 
the relationships. 

1. Introduction 

In many applications it is necessary to reason on the 
basis of inaccurate information about spatial relation- 
ships among objects. For example, a mobile robot 
needs to represent and reason about the approximate 
relationships between itself and other objects. In addi- 
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Spatial Uncertainty 

tion, the robot must be able to use sensor information 
to reduce locational uncertainty (in both position and 
orientation) to a degree sufficient for achieving partic- 
ular tasks. This problem is complicated in practice 
because the location of one object relative to another 
may be known only indirectly through a sequence of 
relative frames of reference with uncertainty. In this 
paper, we present a method for explicitly representing 
and manipulating the uncertainty associated with 
these transformations. We also show how sensors can 
be used to reduce this uncertainty. This formalism 
makes it possible to estimate, in advance, the probabil- 
ity of a robot going through a door given the current 
uncertainty of the robot and door location, the proba- 
bility of a camera having an object in its field of view, 
whether a particular sensor will have sufficient accu- 
racy to accomplish a particular task, and so on. 

Brooks (1 985) argues that it is not appropriate for 
mobile robots to use a global reference frame. He feels 
that a set of local reference frames linked via uncer- 
tain transformations is better. We show how the un- 
certainty of a frame relative to another can be esti- 
mated and how the reduction in uncertainty due to 
sensing can be mapped into any frame, regardless of 
where the sensing was performed. Because of this flex- 
ibility, no particular frame is necessary as an absolute 
reference. 

In the following sections, we show how to estimate 
the uncertainty in three degrees of freedom (x, y, 8) 
using a mobile robot as the example. As the robot 
moves from one place to another, its uncertainty about 
its location with respect to its initial location grows. 
We present a method for making quantitative esti- 
mates of the resulting error, provided the moves are 
discrete. If the robot uses sensors (e.g., acoustic range 
or vision sensors) to make relative measurements be- 
tween it and other objects, this new information can be 
used to improve knowledge about the global locations 
of the robot and objects with respect to any coordinate 
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Fig. 1.  A sequence of approx- 
imate transformations. 

frame connecting them in a network of relationships 
(a relational map). Because the estimation and update 
formulas and associated procedures require only sim- 
ple matrix computations, the proposed method is 
computationally simple and fast. The theory assumes 
that the contributing errors are "small," allowing a 
good approximation with a first-order model of errors, 
and that the sensor errors are independent of the loca- 
tional error. Although the example presented is for a 
mobile robot, the formulas for estimating locational 
uncertainty are applicable to many other domains. In 
fact, this work was originally motivated by the need to 
represent and reason about uncertainty in off-line 
programming applications for industrial manipulators. 

2. The Basic Estimation Operations 

An uncertain, or approximate transformation (AT), 
consists of an estimated mean relation of one coordi- 
nate frame relative to another and a covariance matrix 
that expresses the uncertainty of the estimate. ATs 
typically arise from relative motions or from sensing 
operations. The term AT A describes the uncertain 
relative location (A) of an object with respect to some 
defining coordinate frame. 

In Figs. 1-4, ATs are represented symbolically by 
an arrow going from the reference frame to the relative 
location. An ellipse, centered about the nominal esti- 
mate, depicts the uncertainty in the estimated rela- 
tionship. The ellipse is the contour of constant proba- 
bility (in two dimensions) for a multivariate Gaussian 
distribution, and can be used to bound a high-confi- 
dence region in which the actual location should be 
found. Though the procedures described in this paper 
for estimating the mean and covariance of ATs do not 
assume Gaussian distributions of the errors, some 
distribution must be assumed when the explicit calcu- 
lation of probabilities is required. Section 6.3 describes 
the rationale for assuming an underlying Gaussian 
distribution in such cases, and Appendix A describes 
how to extract the ellipse parameters from the esti- 
mated covariance matrix of an AT. 

In this paper, we introduce two basic operations 
that allow the estimation of the relationship between 
any two coordinate frames, given the uncertain relative 
transformations linking them. The first operation, 

called compounding, allows a chain of ATs to be col- 
lapsed (recursively) into a single AT. The final com- 
pounded transformation has greater uncertainty than 
its components. The second operation, called merging, 
combines information from parallel ATs to produce a 
single resultant AT with uncertainty less than any of 
its components. 

A simple robot example of compounding is similar to 
that discussed in Brooks (1985) (see Fig. 1). 

In this example, the robot makes a number of moves 
and ends up near its initial position W. (All coordinate 
frames besides the initial one are omitted in Fig. 1 for 
clarity.) The uncertainty of the robot's final location 
with respect to W is large, as indicated by the large 
error ellipse. The solid error ellipses express the relative 
uncertainty of the robot with respect to its last posi- 
tion, while the dashed ellipses express the uncertainty 
of the robot with respect to W. Note that the uncer- 
tainty of the robot's location with respect to the world 
frame grows with each move. In Section 3, we show 
how to calculate compounded ATs, such as E and G. 
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A different situation arises when there is more than 
one independent AT relating the frame of interest to a 
given reference frame. For example, if the robot in 
Fig. 1 observes its starting point (the frame W) from 
L,, then we have two ATs from W to L4: (1) AT G 
calculated by compounding, and (2) the inverse of AT 
S given by the sensor. These two transformations are 
combined by weighted averaging (using the Kalman 
filter equations described in Section 4) to give a more 
accurate estimate of the location of L4 with respect to 
W. The error (covariance) of AT S comes from the 
intrinsic error of the sensor, while the covariance of 
AT G comes from the compounded covariances of the 
individual robot motions A, B, C, D. 

The method for calculating compound ATs is given 
in Section 3, and the method for merging ATs is given 
in Section 4. 

3. Compound Approximate Transformations 

In this section, we describe the compounding proce- 
dure for calculating the nominal location and asso- 
dated error (expressed as a covariance matrix) of any 
object relative to any other object linked through a 
chain of approximate transformations (e.g., Fig. 1). 
This approach differs from that presented by Brooks 
(1982, 1985), who used a maximin representation of 
the error. The maximin approach assumes the worst 
case when errors are compounded and so can badly 
overestimate the error when the results are propagated 
through several transformations. Also, the interpreta- 
tion of the maximin bounds are unclear. Do the 
bounds mean that it is impossible for an observation 
to fall outside them, or that it is just very unlikely to do 
so (and if so, how unlikely)? The approach described 
by Chatila and Laumond (1985) for the HILARE 
robot is more similar to the one described here; how- 
ever, they used a scalar error estimate of position and 
were not concerned with angular error. 

compounding transformations A (X, , Y, , 0,) and B 
(X2, YI, 02). The explicit transformation is given in 
Eq. (1) and is derived from the formulas for trans- 
forming one frame into another, as shown in Paul 
(198 1). For example. 

We wish to estimate the means and covariances of 
these three functions. The variables are now assumed 
to be random variables. The functions are approxi- 
mated by a first-order Taylor series expansion about 
the means of the variables. The mean values of the 
functions (to first order) are the functions applied to 
the variable means: e.g., % = f(% , pi ,6,, Xi, p2, 
&). In addition to estimating the mean transforma- 
tion, an AT includes the associated covariance matrix 
of this transformation. To estimate the covariance 
matrix for this case, we express the previous Taylor 
series expansion in matrix form, resulting in the fol- 
lowing (deviate) matrix: 

where J is the (3 X 6) Jacobian of the transformation 
evaluated at the mean values of the variables: 

l ag Qg Qg ag Qs J = - - - - - -  
ax, ay1  ael ax2 ay2 ae2 I 

\ ah ah ah ah - - - - - -  
ax, a ~ ,  a ~ ,  ax2 a ~ ,  ah ae2 ah I 
1 0 -(Y3-Yl) cos0, -sine, 
0 1 (X3-X,) sine, cos0, 0 

In Fig. 1, we wish to describe the coordinates of L2 1 I 0  
(X3, Yy , G3) with respect to reference frame W. We are = [H IK] 
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and X3, Y3 are given in Eq. ( 1). Covariance is defined 
as the expectation of the squared deviates. We 
"square" both sides of Eq. (2) by multiplying both 
sides of the equation by their respective transposes. 
Taking the expectation of the result, we get the covar- 
iance matrix C3 : 

The 3 X 3 matrix C3 expresses the covariances of 
the coordinates of L2 with respect to W (i.e., the AT 
E), computed from the given covariance matrices 
C ,  and C, (which express the error on the variables 
of A and B). Because an element of the covariance 
matrix is by definition C,, = E(Ax,Ax,) and the 
standard deviation of variable x is q = VÂ£(Ax2) an 
element of the covariance matrix can be expressed as: 

p.. = 
E(Ax,Ax,) 

JE(A x:)E(Ax;) ' 

where pi, is the correlation coefficient. On the diagonal 
of the covariance matrix, i = j; thus pi, is 1, and C,, is 
just the variance. Note that if there is no angular error 
associated with variables el and e2, then we can re- 
duce the dimensions of H and K and the correspond- 
ing covariance matrices. This is achieved by removing 
rows or columns associated with 6, and 6,. When no 
angular errors are involved, the compounding equa- 
tions are linear in the random variables. The results in 
this case are the theoretically correct values for the 
transformed first and second moments and are not ap- 
proximations. 

Equations (1) and (4) are needed to estimate the 
compound AT for more than two component ATs. 
The method consists of computing the compound of 
two adjacent ATs and replacing the pair by this result. 
The AT between any pair of connected frames can be 
computed by a number of such reductions. That is, 
the result of a series of relative transformations can be 
computed by compounding the first two transforma- 
tions to form a new composite transformation, then 
compounding this new transformation with the third 
transformation to form a new composite, and so on. In 

Fig. 1, for example, A and B are compounded to give 
AT E, then E and C are compounded to give F, and 
finally F and D are compounded to give G. By a sim- 
ple chain-rule argument, it can be shown that equiva- 
lent first-order estimates of G are obtained by using 
the recursive approach above, or by defining the final 
relationship in terms of all the variables at once, and 
finding the first-order estimate of the mean and covar- 
iance. Clearly, the recursive approach is simpler. 

A given directed graph of uncertain relationships 
may not be in a form needed by the above formulas. 
For example, in Fig. 2A, B is pointing in the opposite 
direction to the form assumed above. To create the 
correct form, it is necessary to first reverse B, as in 
Fig. 2B. This reversal is easily accomplished using the 
following formulas (the inverse transformation): 

Y f =  Xsin 6 -  YcosO, ( 5 )  

As before, the first-order estimate of the mean values 
of the dashed coordinates is simply the given functions 
of the mean variables. The covariance matrix for the 
reversed transformation is estimated from the given 
covariance matrix of B, (e.g., the matrix C): 

where R is the Jacobian of the above transformation 
equations; that is, R is given by: 
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Fig. 2. Examples of com- 
pounding situations. 

case can be handled by treating the dependent pair of 
ATs as a unit, with a given compound covariance 
matrix containing nonzero submatrices. 

Systematic, or nonzero mean errors are not mod- 
eled. It is assumed that systematic errors will be re- 
moved by suitable calibration. 

FIGURE 2(a> FIGURE 2(b) 

4. Merging of Approximate Transformations 

and R is evaluated at X, Y, and 0. Again, if there is no 
angular error, we can omit the row and column of R 
associated with 6, and the resulting covariance calcula- 
tion will be exact. 

With this inverse operation and the pairwise com- 
pounding operation given above, it is possible to esti- 
mate the compound AT between any two frames of 
reference that are linked by a chain of ATs, as in Fig. 1. 

The assumptions behind this compounding operation 
are: 

The first order approximation expressed by Eq. (2) 
is sufficiently accurate. 

The errors of ATs to be compounded are indepen- 
dent. 

The errors of ATs to be compounded have zero mean. 

The first-order approximation is reasonable provided 
that the standard deviations of the variables ( e g ,  ax,) 
are small, because we are neglecting terms of (02)~ and 
higher orders in the Taylor series expansions. More 
accurately, the function should be "smooth" about the 
estimated point over an interval roughly the magni- 
tude of a standard deviation of the variable. This ap- 
proximation can underestimate or overestimate the 
error covariance, and the accuracy of the estimate 
depends on the significance of the second-order (and 
higher) terms. 

The assumption that successive ATs have indepen- 
dent error implies the use of a compound covariance 
matrix with offdiagonal submatrices which are zero, 
as in Eq. (4). If these errors are known to be depen- 
dent, a compound AT with nonzero covariance sub- 
matrices can be given directly; that is, the dependent 

The second basic operation is the merging of two or 
more parallel ATs to obtain a more accurate estimate 
of the relationship. For example, in Fig. 1 we can esti- 
mate G, which expresses the uncertain relationship of 
L4 with respect to the frame W, and we are given AT 
S describing W with respect to L4. The problem we 
are considering is how to estimate the relation of L4 
with respect to W given both parallel transformations. 
The procedure we use for merging is based on the use 
of the Kalman filter equations (for static-state estima- 
tion). 

The first step is to find all the ATs linking the frames 
of interest. For each independent chain of transforma- 
tions between these frames, estimate the compound 
AT. For the example in Fig. 1, G must be computed 
using the methods described in Section 3 to estimate 
the AT of L4 with respect to W. The next step is to 
ensure that all the parallel ATs to be merged are 
pointing in the desired direction, and to reverse those 
that are not. In Fig. 1, S should be reversed. The re- 
versal of an AT is given by Eqs. (5) and (6). 

Once all the parallel ATs to be merged have been 
estimated (including any necessary reversals), the 
merging procedure combines them in pairs, using the 
result of the last merge as an input to the next merge. 
The merging begins with any pair and proceeds by 
merging each additional AT with the preceding result 
until all ATs have been merged. Consequently, it is 
only necessary to describe the pairwise merge proce- 
dure. In the following, let C, and C7 be the covariance 
matrices of the ATs to be merged, and Ci be the co- 
variancematrix of the resulting merged pair. Similarly, 
XI and X2 are the estimated mean values (expressed as 
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a vector) of the transformations to be merged, and 
is the resulting estimated mean. The first step in the 
merging operation is to compute the Kalman gain 
factor defined by: 

K = C1 * [C, + C2]-I. 

This factor is used to compute the required merged 
covariance matrix 

and the merged mean 

These formulas are sufficient for merging any num- 
ber of parallel ATs. The apparent asymmetry of Eqs. 
(8), (9), and (10) is not real, because the same result is 
obtained regardless of which transformation is labeled 
Ci or C2, and so on. The order in which the mergings 
are performed is irrelevant. In one dimension, these 
formulas reduce to the following simple forms (where 
Vs are variances): 

The covariance matrices reduce to simple variances 
combined as shown, and the merged mean is just a 
weighted average of the contributing means. The scalar 
formula for the weighted average was also used by 
Chatila and Laumond (1985). If the compounding 
operation described in Section 3 is also reduced to one 
dimension, we find that variances in series transfor- 
mations simply add to give the compound variance. If 
this result and Eq. (1 1) are combined, we find a simi- 
larity to electric circuit theory where variances are 
analogous to resistances. That is, in a network of resis- 
tors, series resistances are combined by addition, and 
parallel resistances combine according to Eq. (1  1) to 
give a combined resistance (variance) between any two 
points. In Section 5, we will exploit the similarity be- 
tween the ways uncertainties and resistances are com- 
bined. 

Kalman filter theory, or state estimation, is described 
in many texts on estimation theory; the derivation of 
the basic formulas is lengthy and is not presented here 
(see Nahi 1976). The basic assumptions of the theory 
in this context are: 

The errors in ATs to be merged are independent. 
Extensions can be made to handle merging of 
nonindependent ATs, when the dependence is 
given. 

The formula for merging two parallel ATs is appro- 
priately defined as a weighted, linear combination 
of the two estimates. If both ATs to be merged 
have Gaussian distributions, it is known that the 
estimator that combines them and that minimizes 
the mean square estimation error has a linear 
form (Nahi 1976). Furthermore, we only estimate 
the first two moments of each AT'S distribution 
(for practical reasons). When the mean and var- 
iance of an unknown probability distribution are 
the only information available, a simple maxi- 
mum entropy derivation gives the Gaussian dis- 
tribution as the distribution that assumes the least 
information. Finally, the linear form is com- 
monly used in estimators and has been found in 
practice to provide good results in a number of 
applications, including navigation (Gelb 1984). 

The errors are unbiased; that is, the mean value of 
the errors is zero. This assumption excludes sys- 
tematic errors, which are usually eliminated by 
suitable calibration. 

The ATs to be merged are expressed in the same 
coordinate system (e.g., Cartesian). If this is not 
true, suitable mappings must first be performed. 
We have described a simplified form of the full 
Kalman update equations applied to merging, 
which are suitable assuming the mapping (if nec- 
essary) is linear. If the mapping is nonlinear the 
extended Kalman filter equation for updating the 
estimate should be used (see Gelb 1984, for exam- 
ple). 

When these assumptions are satisfied, the merging 
formula computes an unbiased estimate for the up- 
dated mean of the relationship and the covariance of 
the error. The estimate is optimal for Gaussian vari- 
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Fig. 3. A network of approxi- 
mate transformations. 

ab le  and linear mappings between coordinate systems 
and optimal-linear for non-Gaussian variables and 
linear mappings. If the mappings are nonlinear, merg- 
ing (by the extended Kalman filter update equations) 
is a suboptimal, nonlinear estimator that has been 
found to work quite well in practice in many prob- 
lems, including navigation. Note that the equations do 
not require Gaussian variables, but because we retain 
only estimates of the first two moments, the resulting 
distribution must be assumed to be Gaussian in order 
to compute a probability. Fortunately, in many cases 
the result of combining a number of different densities 
quickly tends toward an approximately Gaussian dis- 
tribution (by the central limit theorem). 

5. Combined Estimation Procedure 

The previous sections define two basic operations for 
combining ATs: compounding (denoted by @), which 
estimates the combined AT for two serially linked 
ATs; and merging (denoted by 0 ) ,  which combines 
two parallel ATs. Both @ and 0 are associative opera- 
tions, but only 0 is commutative. These two opera- 
tions can be used to estimate the AT between any two 
locations in a network of ATs. The procedure is as 
follows: 

1. Mark the two locations (nodes) whose AT is to 
be estimated. 

2. Find any chain of three nodes in the current 
network of ATs that form a sequence of ATs 
(as in Fig. 2). Its middle node should not be a 
marked node and it should not be connected to 
any other node. Apply the compounding oper- 
ation to the two ATs that occur in any such 
chain. A compounding operation reduces the 
network by replacing the two ATs by a single 
equivalent AT. 

3. Find any pair of nodes that are linked by two 
parallel ATs and apply the merging operation 
to them. Such merging operations reduce the 
network by replacing each pair of parallel ATs 
by a single merged AT. 

4. Repeat Steps 2 and 3 until the network is re- 
duced to a single AT connecting the marked 
nodes (if possible). 

A difficulty with this procedure is that Steps 2 and 3 
may not reduce the network to a single AT. For exam- 
ple, consider the network in Fig. 3. The analogous 
ways in which resistances and variances are combined, 
previously mentioned in Section 4.1, can be used to 
illustrate the problem. If the ATs of the network were 
replaced by resistors, then this network becomes a 
Wheatstone bridge circuit. It is well known that some 
electric circuits, such as the Wheatstone bridge, cannot 
be reduced to a single equivalent resistance between 
nodes w and u by simple combinations of series and 
parallel resistance calculations. Likewise, the merging 
and compounding operations cannot be used to re- 
duce the network of Fig. 3 to an equivalent uncertain 
relation between that pair of nodes. 

The procedure defined in this section can be used to 
estimate the AT from t to v by the formula: (AR @ B) 0 
C 0 (D @ E), where AR denotes the reversal of A 
(section 3.1). However, there is no combination of 
compounding and merging operations that reduces the 
network to a single AT from w to u. 

In such cases, an approximate estimate can be found 
by deleting loop-forming ATs. In this example, delet- 
ing C (or B and D) will produce a reducible network. 
The best deletion to choose is the one that minimizes 
the desired components of the final covariance matrix. 
Clearly, this deletion procedure is nonoptimal in that 
it does not use all the available information. 

The analogy to electric circuit theory suggests a 
method for using all the information, in cases such as 
Fig. 3, to derive a better estimate. The method is to 
replace a triangle (Delta) of ATs (such as A, B, C) by 
an equivalent "Y" of ATs, as shown in Fig. 4 (known 
as a Delta-Y transformation in circuit theory). 
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Fig. 4. Transformation of 
Wheatstone bridge example. 

The problem is to calculate the ATs for the equiva- 
lent "Y" (X, Y, Z), given the Delta composed of ATs 
(A, B, C). First, compute the best estimate for each 
relation describing a side of the Delta (ignoring D and 
E). The new estimates are denoted by (A', B', C') in 
Fig. 4. They are A' = A â‚ (B @ CR), B' = B â‚ 
(A @ C), and C' = C â‚ (AR @ B). Arbitrarily assign 
the mean value of X to be the identity transformation. 
With this mean value for X, the mean values for Y 
and Z are the same as for B' and A' respectively. Next, 
calculate the covariance matrices for the ATs of the 
equivalent "Y" using the following formulas: 

where K is defined in Eq. (3). 
If the system is linear in the random variables (i.e., 

there is no significant angular error), then the mean 
locations found in calculating A', B', C' are consistent 
-that is, any one of the mean relations can be com- 
puted from the other two. For example, the mean of 
A' @ C' is equal to the mean of B'. This will not be 
exactly true if there are significant nonlinearities in the 
compounding and reversal operations. However, it is 
possible to develop an iterative method for finding a 
consistent set of means. This only becomes necessary 
if the angular errors are very large (e.g., with a standard 
deviation greater than 5 degrees). 

Once the network has been transformed, as in Fig. 
4, the formula X @ ((Y @ ER) â‚ (Z @ D)) will give 
the desired AT between w and u. Unfortunately, the 
Delta-Y transformation method outlined above cannot 
be used to reduce any network to a single AT. A gen- 
eral method for estimating the AT between any pair of 
nodes given an arbitrary network of ATs and other 
constraints is being investigated. This method, based 
on recursive state estimation, defines all ATs with 
respect to a common reference frame. However, the 
AT between any pair of frames can be extracted from 
this representation. 

6. A Mobile Robot Example 

A mobile robot needs to use its sensors to build and 
update a world map to navigate in both known and 
unknown environments. At any stage, this map can be 
viewed as a network of uncertain relations that can be 
used to decide important navigational questions. Ini- 
tially, the robot may take its starting position as the 
"world" frame. As it moves from its initial position, 
the uncertainty of its location with respect to the world 
grows with each successive move, as shown in Fig. 1. 
Each relative move and its error determined from the 
robot model are represented by an uncertain transfor- 
mation. After a number of such moves, the robot's 
location with respect to the world frame becomes so 
uncertain that the robot is unlikely to succeed in ac- 
tions (e.g., going through a doorway) based purely on 
its current information. The procedures described 
above allow the robot to estimate the uncertainty of its 
location relative to any other coordinate frame and 
decide whether the relationship is known accurately 
enough to perform a particular task. Note that because 
this estimate can be made ahead of time, the robot 
can decide that proposed motions will create too much 
uncertainty before they are performed, or that sensing 
will be necessary to reduce the uncertainty. 

A mobile robot is usually equipped with sensors that 
allow it to determine the location of objects to an 
accuracy determined by the sensor resolution. Such 
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sensed relationships are also represented as ATs in the 
AT network, along with those due to motion. The 
sensed information allows the robot to reduce the un- 
certainty of its location with respect to other objects or 
the world. Because the reduction of uncertainty 
through sensing can be calculated ahead of time, it is 
possible to decide if proposed sensing steps will reduce 
uncertainties enough for the accomplishment of a task 
before performing the sensing. If a proposed sensing 
step is not sufficiently accurate, alternative sensing 
strategies can be evaluated. This means that the AT 
estimation procedure can be used for off-line pro- 
gramming of a robot, as well as for real-time applica- 
tions, such as mobile robot navigation. 

It is important that the robot sense as accurately as 
possible the location of many reference objects while it 
is still in its initial position ("world"). Once the robot 
moves, these objects allow the robot to estimate its 
position with respect to the world with the greatest 
possible accuracy. Even if the robot is unable to sense 
the original reference objects, accurate world locations 
can still be found if the original reference objects are 
related to other observable objects through accurately 
sensed relationships. That is, a richly connected net- 
work of ATs allows the robot to locate itself with re- 
spect to any object (in the network) with an accuracy 
largely determined by the accuracy of the sensors. 
Note that the method advocated here is for the robot 
to maintain a network of the original ATs resulting 
from individual motions or sensing operations and to 
estimate composite ATs as required. 

Given that the robot has decided to perform a sensor 
step, the procedure it should adopt in adding a sensor- 
derived AT to the current network is as follows: 

1 .  Determine whether sensing is possible. After 
estimating the AT between the object and the 
sensor by the procedure described above, de- 
cide whether the sensor is capable of making 
the desired observations. For example, decide 
whether a wall is likely to be close enough to 
be detected with an acoustic range sensor, or 
whether the object to be sensed is in the field of 
view of a camera (see Appendix A). 

Make the actual observation and decide i f  it is 
reasonable. Given the uncertain prior location 
of the object to be sensed (estimated from the 
current ATs) and the error associated with the 
sensor, decide whether the probability of the 
actual observation is below a predetermined 
threshold. Such errors would occur, for exam- 
ple, if the camera viewed the wrong object. 
Combine multiple sensings. Merge independent 
measurements by the sensor into a single AT 
using the merging Eqs. (8), (9), and (10). If the 
sensing information is in a different coordinate 
system (e.g., polar rather than Cartesian), then 
the merging operation is performed in the 
sensor system and the final AT is mapped back 
into the Cartesian form (the specific formulas 
for performing this mapping in the case of 
polar to Cartesian are given in Appendix B). 

To test the assumptions in the theory, we ran an inde- 
pendent Monte Carlo simulation, where the robot's 
position is calculated many times using Gaussian dis- 
tributions for the errors in the given relations. Figure 5 
shows the resulting robot positions as points with the 
estimated 90% confidence contour superimposed on 
them. This contour is formed by assuming that the 
resulting probability distribution is Gaussian. The 
relative error in any component of the estimated 
means and covariances (compared to the simulated 
values) is typically less than 1Â°/o unless the angular 
errors are large (e.g., with a standard deviation of 
greater than 6 degrees). 

The assumption that the resulting probability distri- 
bution is Gaussian may not be correct, however. For 
example, the crescent-shaped distribution of points in 
Fig. 5 does not match the superimposed error ellipse. 
Note that the mean and covariance estimates may still 
be accurate-it is the Gaussian assumption that is 
breaking down. The divergence occurs because of 
nonlinearities in the Jacobian (i.e., its dependence on 
the trigonometric functions of 6 )  when the given an- 
gular errors are large. Even in this case, the final prob- 
ability distribution formed from two crescent distribu- 
tions is very close to Gaussian, as seen in Fig. 5. If the 

The International Journal of Robotics Research 



ig. 5. A Monte Carlo simu- 
tion. 

probability distributions of the variables are not Gaus- 
sian, the central limit theorem assures us that the final 
compound distribution will be approximately Gaus- 
sian provided that there are a "large" number of ATs. 

7. Discussion 

The previous sections describe a procedure for making 
accurate quantitative estimates of the mean and covar- 
iance of the location (position and orientation) of any 
frame relative to any other frame given a network of 
ATs. If the distribution associated with these estimates 
is assumed to be Gaussian, then probabilities can be 
estimated. Examples of the application of this theory 
are presented and the estimates are compared with 
Monte Carlo simulations for a three-degree-of-freedom 

mobile robot. The only significant divergence between 
the estimates and the simulation occurs when the 
angular error is large compared with a subsequent dis- 
placement error. Under these circumstances, the re- 
sultant probability distribution is significantly non- 
Gaussian (i.e., noticeably nonelliptical in Cartesian 
space). In all other cases, the mean and variance esti- 
mates agreed extremely well with the simulated values. 
Even when the angular errors are large, the effect of 
the nonlinearities on the resulting distribution is re- 
duced when several ATs are combined, as seen in Fig. 5. 

The formulas given for three degrees of freedom 
(X, Y, 0) can be easily extended to include the Z coor- 
dinate in the obvious way. Unfortunately, the exten- 
sion to the full six-degrees-of-freedom case (X, Y, Z, 0, 
(b, ty) is not so simple. The main problem is that the 
additional angular terms can introduce singularities 
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("poles") into the Jacobian. The estimated covariance 
shows extreme sensitivity to the error of particular 
input angles in the vicinity of a pole. These singular-, 
ities destroy the value of the estimates provided by the 
estimation procedure unless corrective measures are 
taken. One approach we are investigating is to pre- 
rotate the world frame so that none of the ATs have 
nominal angles in the vicinity of a pole. 

There are many uses for the estimation procedures 
described in this paper. The major use motivating this 
work is the ability to estimate ahead of time when 
sensing steps are necessary and to determine whether a 
particular sensor is capable of making a particular 
measurement or of supplying the required accuracy. 
The procedure also supplies a quantitative method for 
judging when a sensor has "glitched" (i.e., its mea- 
sured value is too unlikely, given the prior expecta- 
tions). Another possibility being investigated is 
whether the results of running this procedure can be 
used to revise the error models used for particular 
mobile robots or sensors, giving a form of autocalibra- 
tion. 

The limitation of the estimation procedure described 
in this paper is that only two moments (the mean and 
covariance) are estimated, hence the knowledge of the 
underlying probability distribution is limited. By as- 
suming the (multivariate) distribution is Gaussian, we 
can still make probabilistic estimates that agree with 
simulations very well, except when the angular errors 
are large. A way around this difficulty that we are 
investigating is to estimate a third moment (a "skew- 
ness" measure). 

Appendix A. Derivation of Ellipse Parameters 

The determination of whether the probability of ob- 
serving the object is greater than a given threshold 
assumes that the probability distribution of our knowl- 
edge of the object's location is a multivariate (x, y, 6) 
Gaussian distribution. The general form is given by: 

where n is the number of dimensions, C is the covar- 
iance matrix, X is the nominal mean vector, and x is a 

vector denoting a particular point. The contours of 
equal probability of this distribution form ellipsoids in 
n dimensional space that are centered at the mean 
location X, and whose axes are only aligned with the 
Cartesian frame if the covariance matrix C is diagonal. 
The formulas for extracting the principal axes of a 
two-dimensional ellipsoid are given below. In the case 
where we are only interested in the positional error 
ellipse, C is the reduced (2 X 2) covariance matrix 
formed from the (3 X 3) matrix by extracting only the 
X, Y terms. In this case, the resulting marginal proba- 
bility distribution is: 

where p is the correlation coefficient for x and y. For 
example, we might want to check the probability of a 
camera seeing a particular object given our current 
locational uncertainty. We decide this question by de- 
termining whether the ellipse corresponding to a given 
confidence limit is completely contained within the 
field of view. 

For decision making purposes (e.g. the field-of-view- 
case), it is necessary to determine the explicit equipro- 
bable contours (ellipses or ellipsoids) of the multivat 
iate Gaussian distribution specified by given mean X 
vector and covariance Cx matrix. These ellipses can be 
used to determine the probability that a given vector 
will lie within, say, the 90% confidence ellipse. The 
ellipsoid formula is: 

where k is a constant chosen for a particular confi- 
dence threshold, and x is a point on the ellipsoid 
boundary. The relationship between k and the proba- 
bility of a point lying within the ellipsoid specified by 
k is: 
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where N is the number of dimensions and er f is the 
error function. 

In the particular case where the two-dimensional 
(x, y) error ellipse is required given the 3-D (x, y, 0) 
covariance matrix, the procedure is as follows. Firstly, 
produce the two-dimensional marginal covariance 
matrix from the 3-D covariance matrix by striking out 
the row and column of the unwanted variable. That is: 

The corresponding family of two-dimensional ellipses 
is given by Eq. (Al), and in this case reduces to 

where A, B, C are found from the two-dimensional 
covariance.matrix and Eq. (Al). The angle 0 that the 
major axis of this ellipse makes with the positive x- 
axis is given by: 

1 
0 = - 2 arctan (&) 0 [ 7 , ;] . 

If we define 

then we find the following lengths: 

half major axis = E7 
half minor axis = L z T .  

AS given above, the probability of a point being located 
inside an ellipse defined by a particular value of k is 
given by: 

- k' 
P(x, y â ellipse) = 1 - e T ,  

k2 = - 2 log( 1 - Pr), 

with the following confidence ellipses for different k: 

Appendix B. Coordinate Frame Mappings 

This appendix gives the explicit formulas for mapping 
the mean and covariance matrix from polar (r, 4, 0) 
representation to an equivalent Cartesian form, where 
0 is the rotation of the coordinate frame in both the 
polar and Cartesian case. This mapping is necessary, 
for example, if a camera expresses the location of an 
object in polar coordinates and the camera error is 
also given in polar coordinates, but the result of sens- 
ing (or the merged results of many sensings) is re- 
quired in a Cartesian representation. The nominal 
(mean) transformation is given by 

R, the Jacobian of the transformation, is given by: 

Using a first-order approximation similar to that in 
Section 3, we get the following Cartesian covariance 
matrix: 

A more accurate approach is to use the extended 
Kalman filter (Gelb 1984), which includes the (nonlin- 
ear) coordinate mapping in the Kalman gain matrix K. 
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