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Abstract

For centuries, scholars have explored the deep
links among human languages. In this pa-
per, we present a class of probabilistic mod-
els that use these links as a form of naturally
occurring supervision. These models allow
us to substantially improve performance for
core text processing tasks, such as morpho-
logical segmentation, part-of-speech tagging,
and syntactic parsing. Besides these tradi-
tional NLP tasks, we also present a multilin-
gual model for the computational decipher-
ment of lost languages.

1. Overview

Electronic text is currently being produced at a vast
and unprecedented scale across the languages of the
world. Natural Language Processing (NLP) holds out
the promise of automatically analyzing this growing
body of text. However, over the last several decades,
NLP research efforts have focused on the English lan-
guage, often neglecting the thousands of other lan-
guages of the world (Bender, 2009).

Most of these languages are currently beyond the reach
of NLP technology due to several factors. One of these
is simply the lack of the kinds of hand-annotated lin-
guistic resources that have helped propel the perfor-
mance of English language systems. For complex tasks
of linguistic analysis, hand-annotated corpora can be
prohibitively time-consuming and expensive to pro-
duce. For example, the most widely used annotated
corpus in the English language, the Penn Treebank
(Marcus et al., 1994), took years for a team of profes-
sional linguists to produce. It is unrealistic to expect
such resources to ever exist for the majority of the
world’s languages.
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Another difficulty for multilingual NLP is that lan-
guages exhibit wide variation in their underlying lin-
guistic structure. A model that has been developed for
one language may not account for the kinds of struc-
ture found in others. In fact, there exists an entire
academic discipline devoted to studying and describing
systematic cross-lingual variations in language struc-
ture, known as linguistic typology (Comrie, 1989).

At first glance, it may seem that linguistic diver-
sity would make developing intelligent text-processing
tools for the world’s languages a very daunting task.
However, we argue that in fact it is possible to harness
systematic linguistic diversity and use it to our advan-
tage, utilizing a framework which we call multilingual
learning. The goal of this enterprise is two-fold:

• To induce more accurate models of individual lan-
guage structure without any human annotation.

• To induce accurate models of the relationships be-
tween languages.

The multilingual learning framework is based on the
hypothesis that cross-lingual variations in linguistic
structure correspond to variations in ambiguity. As an
example, consider the syntactically ambiguous English
sentence: “I ate pasta with cheese.” The prepositional
phrase “with cheese” can be interpreted as attaching
the noun “pasta” (meaning the pasta had cheese), or
could be interpreted as attaching to the verb “ate”
(meaning perhaps that the pasta was eaten by means
of a cheese-based utensil). As humans, we know that
the first of these is the only plausible interpretation,
but there is nothing in the sentence itself to indicate
the correct parse. In contrast, the parallel sentence in
Japanese uses an explicit genitive marker to mark the
fact that the word for “pasta” is being modified.

This example is an instance of a more general phe-
nomenon: what one language leaves implicit, and thus
ambiguous for computers or humans, another will ex-
press directly through overt linguistic forms. In the
framework of multilingual learning, we treat these vari-
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ations in ambiguity as a form of naturally occurring
supervision: by jointly modeling multiple languages,
the idiosyncratic ambiguities of each can be wiped out
by information explicit in the others.

The multilingual formulation presents great promise,
but also poses novel technical challenges. One such
challenge is the discovery of shared cross-lingual struc-
ture while allowing significant language-specific id-
iosyncrasies. To allow an effective balance, our models
explain parallel sentences as a combination of multi-
lingual and language specific latent variables in a hi-
erarchical Bayesian framework. Even so, the scope of
the shared explanatory mechanism is often unknown:
some sets of languages exhibit a much larger degree
of shared structure than other. For example, parallel
phrases in related language pairs like Hebrew and Ara-
bic tend to mirror each other in morphological struc-
ture much more than unrelated language pairs (such as
English and Hebrew). To account for this variability in
shared structure, we employ non-parametric statistical
methods which allow for a flexible number of shared
variables, as dictated by the languages and data at
hand.

Finally, we set scalability in the number of languages
as one of our design goals. Massively multilingual
data-sets exist (e.g. the Bible, which has been trans-
lated into over 1,000 languages) and an ideal multilin-
gual learning technique would scale gracefully in the
number of languages. For the task of part-of-speech
tagging, we developed a model and learning algorithm
that scale linearly in the number of languages in terms
of both time and space complexity.

We have applied unsupervised multilingual learning to
the fundamental NLP tasks of morphological segmen-
tation (Snyder & Barzilay, 2008a;b), part-of-speech
tagging (Snyder et al., 2008; 2009b; Naseem et al.,
2009), and parsing (Snyder et al., 2009a). We have
focused on the use of parallel corpora (texts that have
been written in one language and translated into other
languages). We treat each parallel corpus as a com-
putational Rosetta Stone which can help expose the
latent structure of each language present. We assume
the existence of such a corpus at training time with
no human annotations. We do however, assume that
reasonably accurate sentence- and word-level align-
ments have been induced using standard NLP tools
(Och & Ney, 2003). At test time, we apply our mod-
els to monolingual data in each language. For all
three tasks, multilingual learners consistently outper-
form their monolingual counterparts by a large mar-
gin. Remarkably, in the case of part-of-speech tagging,
we found that model accuracy continues to increase as

I love fish J’ adore les poisson

ani ohev dagim Mujhe machchli pasand hai

I

s2 s3s1

Figure 1. Part-of-speech graphical model structure for ex-
ample sentence. In this instance, we have three superlin-
gual tags: one for the cluster of words corresponding to
English “I”, one for the cluster of words corresponding to
English “love”, and one for the cluster of words correspond-
ing to English “fish.”

more languages are added to the mix. We believe these
results point towards a future of ubiquitous and accu-
rate text processing tools for hundreds of the world’s
languages which lack annotated resources.

In the sections that follow we sketch the multilingual
models that we have developed for three classical NLP
tasks: Part-of-speech tagging (Section 2), morphologi-
cal segmentation (Section 3), and parsing (Section 4).
In section 5 we describe a model for the decipherment
of lost languages.

2. Part-of-speech Tagging

The goal of part-of-speech tagging is to automatically
determine the part-of-speech (noun, verb, adjective,
etc) of each word in the context of a given sentence.
For example, the word “can” in English may func-
tion as an auxiliary verb, a noun, or a regular verb.
However, many other languages express these differ-
ent senses with three distinct lexemes. Thus, at the
lexical level, a word with part-of-speech ambiguity in
one language may correspond to an unambiguous word
in the other language. Languages also differ in their
patterns of structural part-of-speech ambiguity. For
example, the presence of a definite article (e.g. the) in
English greatly reduces the ambiguity of the succeed-
ing tag. In languages without definite articles, how-
ever, this explicit structural information is absent.

We first describe the structure of our model. We posit
a separate Hidden Markov Model (HMM) (Merialdo,
1994) for each language, with an additional layer of la-
tent cross-lingual variables. See Figure 1 for a graph-
ical model depiction. A single cross-lingual variable,
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Superlingual value “2” 

Noun Verb Determiner

English

French

Hindi

0.9 0.1 0.0

0.8 0.1 0.1

1.0 0.0 0.0

Noun Verb Determiner

English

French

Hindi

0.5 0.4 0.1

0.4 0.6 0.0

0.5 0.5 0.0

Superlingual value “5” 

Figure 2. Two stylized examples of superlingual tag values.
Each provides a distribution over parts-of-speech for each
language.

in our terminology a superlingual tag, is present for
each cluster of aligned words across languages. These
superlingual tags exert influence on the part-of-speech
decisions of each word in the associated cluster.

In a standard HMM, we can write the joint probability
of a sequence of words w and part-of-speech tags y as
product of transition and emission probabilities:

P (w,y) =
∏

i

P (yi|yi−1)P (wi|yi)

Under our latent variable model, the probability of
bilingual parallel sentences (w1,w2), bilingual part-
of-speech sequences (y1,y2), and superlingual tags s
is given by:∏

i

P (si)∏
j

P
(
y1

j |y1
j−1, sf(j,1)

)
P (w1

j |y1
j )

∏
k

P
(
y2

k|y2
k−1, sf(k,2)

)
P (w2

k|y2
k),

where f(m, n) gives the index of the superlingual tag
associated with word m in language n. Notice that
the part-of-speech tagging decisions of each language
are independent when conditioning on the superlingual
tags s. It is this conditional independence which gives
our model some of its crucial properties. Superlin-
gual variables promote cross-lingual regularities (more
on this below), yet word order, part-of-speech selec-
tion, and even part-of-speech inventory are permitted
to vary arbitrarily across languages. In addition, this
architecture allows our model to scale linearly in the
number of languages: when a language is added to
the mix we simply add new directed edges from the
existing set of superlingual tags for each sentence.

Intuitively, the value of a superlingual tag represents
a particular multilingual context that influences each
language’s part-of-speech selection. Formally, each su-
perlingual value provides a set of multinomial proba-
bility distributions — one for each language’s part-of-
speech inventory. See Figure 2 for two stylized exam-
ples. The first shows a superlingual value which pre-
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Figure 3. Average part-of-speech prediction accuracy as
the number of languages varies (averaged over all subsets
of languages for each size).

dominantly favors nouns across languages, while dis-
playing a slight secondary preference for other parts-
of-speech. The second example shows a more complex
pattern of part-of-speech preferences, with nouns and
verbs almost equally preferred across languages.

Give a superlingual tag s and a previous part-of-speech
yi−1, we define the generative probability of part-of-
speech tag yi as:

P (yi|yi−1, s) =
P (yi|yi−1) · P (yi|s)

Z
,

where the first factor is the language-specific transition
distribution, the second factor is the part-of-speech
distribution provided by the superlingual tag s, and
Z is a normalization constant obtained by summing
over all possible part-of-speech tags. This parameteri-
zation allows a trade-off between language-specific and
cross-lingual cues while avoiding the sparsity of a non-
factored distribution.

In order to learn repeated cross-lingual patterns, the
number of superlingual values must be constrained in
some way. Intuitively, we would like to set the number
of values to the number of multilingual part-of-speech
patterns. However, the number of such patterns is not
known a priori and may, in fact, depend on the num-
ber and properties of the languages under question.
Rather than fixing the number of superlingual val-
ues to some arbitrary number, we leave it unbounded.
To encourage sparse cross-lingual regularities we use
a Dirichlet process prior (Ferguson, 1973). Under this
non-parametric prior, the distribution over superlin-
gual values must be highly skewed, such that a small
finite subset receives a lion’s share of the probability
mass. The precise number of realized superlingual val-
ues will be dictated by the data. In practice we find
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that the number of induced values ranges from 11 (for
pair of languages) to 17 (for eight languages).

We evaluate our model on a parallel corpus of eight
languages: Bulgarian, Czech, English, Estonian, Hun-
garian, Romanian, Serbian, and Slovene (Erjavec,
2004). We perform inference using Markov Chain
Monte Carlo sampling and always test on held out
monolingual data for each language. We ran our in-
ference algorithm over all 255 subsets of the eight lan-
guages in our corpus, so we could examine the aver-
age change in performance as the number of languages
increases. In the monolingual scenario, our model re-
duces to the Bayesian HMM of Goldwater & Griffiths
(2007). When a complete part-of-speech dictionary1

is available and our model is trained using eight lan-
guages, average tag prediction accuracy increases from
91.1% for monolingual models to 95%. In more realis-
tic cases, where the tag dictionary is restricted to only
frequently occurring words, we see even larger gaps be-
tween monolingual and multilingual performance. In
one such scenario, where dictionary entries are only
available for words occurring more than five times in
the corpus, average multilingual performance increases
to 82.8% from the monolingual baseline of 74.8%. As
seen in Figure 3, accuracy gains steadily as languages
are added to the mix.

3. Morphological Segmentation

In the task of morphological analysis, the goal is to
segment words into morphemes, the smallest units of
meaning (e.g. “misunderstanding” segments into three
morphemes: “mis understand ing”). While the mor-
phology of English is fairly simple, many languages
exhibit a richer and more productive set of morpho-
logical patterns. In the unsupervised setting, morpho-
logical segmentation consists of finding recurrent prefix
and suffix patterns which allow a more compact rep-
resentation of the many possible derived word forms.
Our multilingual model for this task automatically in-
duces a segmentation and morpheme alignment from
a multilingual (unannotated) corpus of short parallel
phrases. For example, given parallel phrases meaning
in my land in English, Arabic, Hebrew, and Aramaic,
we wish to segment and align morphemes as shown in
Figure 4.

This example illustrates the potential benefits of un-
supervised multilingual morphological analysis. The
three Semitic languages use cognates (words derived
from a common ancestor) to represent the word land.

1i.e. entries indicating the set of potential parts-of-
speech for each word

fy    arḍ - y

b - arṣ - y

b - arʿ - y

in  my  landEnglish:

Arabic:

Hebrew:

Aramaic:

Figure 4. Morphological segmentation and alignment.

They also use an identical suffix (-y) to represent the
first person possessive pronoun (my). These similar-
ities in form should guide the model by constraining
the space of joint segmentations and alignments. The
corresponding English phrase lacks this resemblance
to its Semitic counterparts. However, in this as in
many cases, no segmentation is required for English as
all the morphemes are expressed as individual words.
For this reason, English should provide a strong source
of disambiguation for highly inflected languages, such
as Arabic and Hebrew. More generally speaking, our
model exploits the fact that each language distributes
morphemes across words in a unique pattern. Note
that morphemes expressed in one language often have
no counterpart at all in some other languages, so mor-
phemes must be allowed to remain unaligned.

The technical difficulty when compared to the part-of-
speech model of Section 2 is that the units of alignment
now depend on the results of the model’s segmentation
predictions. Whereas before we could treat word-level
alignments as fixed and observed (as the result of pre-
processing with standard NLP word-alignment tools),
we must now fold alignment uncertainty into the mor-
phology model itself.

We start with a sketch of the probabilistic process
posited by our model for the generation of short bilin-
gual phrases (see Figure 5 for an accompanying exam-
ple). First, the numbers of unaligned language-specific
morphemes (m and n), and the number of aligned mor-
pheme pairs (k) are drawn from a Poisson distribution.
These are the number of morphemes that will ulti-
mately compose the bilingual parallel phrase. Next,
the morphemes are drawn from the appropriate distri-
butions: m and n morphemes are respectively drawn
from language-specific morpheme distributions E and
F , and k bilingual morpheme pairs are drawn from A.
The resulting morphemes for each language are finally
ordered and fused into words.

As in the previous section, the scope of cross-lingual
connections (now in the form of aligned morpheme
pairs) is not known a priori. Indeed, even the num-
ber of morphemes in each language is not known in
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ינענכה  תאו)''%&%$#او "...and the Canaanites"

w-at    h-knʿn-y

w-al-knʿn-y-yn

and-ACC    the-canaan-of

and-the-canaan-of-PLURAL

at knʿn

knʿn yn

w

w

y

yal

h
at knʿn

knʿnyn w
w

y

y

al

h

E

F

A
m = 1
n = 1
k = 4

(a) (b) (c) (d)

Figure 5. Morphological generation process for a parallel bilingual phrase, with Hebrew shown on top and Arabic on
bottom. (a) First the numbers of isolated morphemes (m and n) and aligned morphemes pairs (k) are drawn from a
Poisson distribution. (b) Isolated morphemes are then drawn from E and F (language-specific distributions) and aligned
morpheme pairs are drawn from A. (c) The resulting morphemes are ordered. (d) Finally, some of the contiguous
morphemes are fused into words.

the unsupervised setting. We therefore employ non-
parametric Dirichlet process priors on the three mor-
pheme distributions E, F (language-specific), and A
(bilingual). In this manner, the data itself can dictate
the number of induced cross-lingual morpheme tuples
as well as the number of isolated, language-specific
morphemes which remain unaligned.

In addition, this model formulation allows us to con-
sider various prior base distributions over aligned mor-
pheme tuples (distribution A). In the case of unrelated
languages, the base distributions can simply model
morpheme length, encoding the fact that shorter mor-
phemes tend to be more frequent than longer mor-
phemes. However, if the languages are related and the
phonetic relationship between the writing systems is
known, we can employ a probabilistic string-edit dis-
tance over string tuples. In this way, a segmentation
and alignment which align phonetically similar strings
will be encouraged.

We test our model on a multilingual corpus of short
parallel phrases drawn from the Hebrew Bible and
Arabic, Aramaic, and English translations. The
Semitic language family, of which Hebrew, Arabic,
and Aramaic are members, is known for a highly pro-
ductive morphology. Our results indicate that cross-
lingual patterns can indeed be exploited successfully
for the task of unsupervised morphological segmenta-
tion. When modeled in tandem, gains are observed
for all language pairs, reducing error by as much as
24%. Furthermore, our experiments show that both
related and unrelated language pairs benefit from mul-
tilingual learning. However, when the phonetic cor-
respondences between related languages are explicitly
modeled using the string-edit base distribution, related
languages provide the most benefit.

4. Syntactic Parsing

Now we turn to the task of syntactic parsing. The
goal of this task is to induce the underlying gram-
matical structure of each sentence in the form of a
parse tree. In the monolingual setting, learning accu-
rate parsing models without human-annotated texts
has proven quite difficult (Charniak & Carroll, 1992;
Klein & Manning, 2002). Here we consider the unsu-
pervised multilingual scenario, where parsing models
are induced simultaneously for pairs of languages using
parallel texts. Again, our key premise is that ambigu-
ous syntactic structures in languages may correspond
to less uncertain structures in another language, due
to systematic differences in word order and manner
of expression. Thus, even in the absence of human-
annotated trees, we hope to induce an accurate parsing
model. Consider the following pair of parsed sentences
in English and Hindi/Urdu:

John  climbed  Everest John  Everest  on  climbed

English Hindi

If we know the correspondence between the words of
the sentences (but nothing else about the languages in
question), we can immediately pick up some important
parsing cues. For example, we can rule as unlikely the
possibility of parsing “John climbed” as a constituent
subtree in English by the fact that the corresponding
words in Hindi appear far apart. Likewise, we can
avoid parsing “John Everest” in Hindi as a constituent,
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(i) (ii) (iii)

Figure 6. A pair of trees (i) and two possible alignment trees. In (ii), no empty spaces are inserted, but the order of one
of the original tree’s siblings has been reversed. In (iii), only two pairs of nodes have been aligned (indicated by arrows)
and many empty spaces inserted.

through a similar comparison to the English sentence.

However, even in this simplest of sentence pairs, we no-
tice syntactic divergence. While the English sentence
uses the simple transitive verb “climbed” to express
the fact that John completed his climb of Everest,
the verb in the Hindi/Urdu sentence takes the post-
positional argument “Everest on.” The syntactic di-
vergence in real-life examples becomes only more se-
vere. The key challenge then is representational. We
need to parse both sentences with possibly quite di-
vergent trees, while recognizing shared syntactic struc-
ture. In effect, we seek to produce two loosely bound
trees: node-to-node alignments need only be used
where repeated bilingual patterns can be discerned in
the data.

We achieve this loose binding of trees by adapting un-
ordered tree alignment (Jiang et al., 1995) to a prob-
abilistic setting. Under this formalism, any two trees
can be aligned using an alignment tree. The alignment
tree embeds the original two trees within it: each node
is labeled by a pair (x, y), (λ, y), or (x, λ) where x is
a node from the first tree, y is a node from the second
tree, and λ is an empty space. The individual structure
of each tree must be preserved under the embedding
with the exception of sibling order (to allow variations
in phrase and word order).

The flexibility of this formalism can be demonstrated
by two extreme cases: (1) an alignment between
two trees may actually align none of their individual
nodes, instead inserting an empty space λ for each
of the original two trees’ nodes. (2) if the original
trees are isomorphic to one another, the alignment
may match their nodes exactly, without inserting any
empty spaces. See Figure 6 for an example. An addi-
tional benefit of this formalism is computational: The
marginalized probability over all possible alignments
for any two trees can be efficiently computed with a

dynamic program in bi-linear time in the size of the
two trees.

We formulated a generative Bayesian model which
seeks to explain sentence- and word-aligned paral-
lel sentences through a combination of bilingual and
monolingual syntactic parameters. Our model views
each bilingual pair of sentences as having been prob-
abilistically generated as follows: First an alignment
tree is drawn uniformly from the set of all such trees.
This alignment tree specifies the structure of each of
the two individual trees, as well as the pairs of nodes
which are aligned and those which are not aligned (i.e.
paired with a λ). For each pair of aligned nodes, a
corresponding pair of sentence constituents are jointly
drawn from a bilingual distribution. For unaligned
nodes (i.e. nodes paired with a λ in the alignment
tree), a single sentence constituent is drawn, in this
case from a language-specific distributions. Finally
word-level alignments are drawn based on the struc-
ture of the alignment tree.

To perform inference under this model, we use a
Metropolis-Hastings within-Gibbs sampler. We sam-
ple pairs of trees and then compute marginalized prob-
abilities over all possible alignments using dynamic
programming.

We tested the effectiveness of our bilingual grammar
induction model on three corpora of parallel text:
English-Korean, English-Urdu and English-Chinese.
The model is trained using bilingual data with auto-
matically induced word-level alignments, but is tested
on purely monolingual data for each language. In all
cases, our model outperforms a state-of-the-art base-
line: the Constituent Context Model (CCM) (Klein
& Manning, 2002), sometimes by substantial margins.
On average, over all the testing scenarios that we stud-
ied, our model achieves an absolute increase in F-
measure of 8.8 points, and a 19% reduction in error
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G0

GstemGprefix

stem

Gsuffix

stem

word

ustem

hstem hsuffix

uprefix

hprefix

usuffix

Figure 7. Plate diagram of the decipherment model. The
base distribution G0 defines probabilities over string-pairs
based solely on character-level correspondences. The
morpheme-pair distributions Gstem, Gprefix, Gsuffix di-
rectly assign probabilities to highly frequent morpheme
pairs. Each stem pair provides a separate distribution over
prefix and suffix pairs.

relative to a theoretical upper bound.

5. Lost Language Decipherment

The models discussed in the previous three sections
all assumed the existence of multilingual parallel text.
For traditional NLP tasks this is a reasonable assump-
tion, as parallel texts are readily available for many of
the world’s languages. In contrast, our present work
focuses on the decipherment of lost languages, where
parallel texts are not available.

Several lost languages have been manually deciphered
by humans in the last two centuries. In each case,
the decipherment has been considered a major intel-
lectual breakthrough, often the culmination of decades
of scholarly efforts. So far, computers have played lit-
tle role in this enterprise, even for recently deciphered
languages. Skeptics argue that computers do not have
the “logic and intuition” required to unravel the mys-
teries of ancient scripts.2 We aim to demonstrate that
at least some of this logic and intuition can be suc-
cessfully captured by computational models.

Our definition of the computational decipherment task
closely follows the setup typically faced by human de-
cipherers (Robinson, 2002). Our input consists of texts
in a lost language and a corpus of non-parallel data in
a known related language. The decipherment itself in-
volves two related sub-tasks: (i) finding the mapping
between alphabets of the known and lost languages,

2“Successful archaeological decipherment has turned out
to require a synthesis of logic and intuition . . . that comput-
ers do not (and presumably cannot) possess.” A. Robin-
son, “Lost Languages: The Enigma of the World’s Unde-
ciphered Scripts” (2002)

and (ii) translating words in the lost language into
corresponding cognates of the known language.

While there is no single formula that human decipher-
ers have employed, manual efforts have focused on sev-
eral guiding principles. A common starting point is
to compare letter and word frequencies between the
lost and known languages. In the presence of cog-
nates the correct mapping between the languages will
reveal similarities in frequency, both at the character
and lexical level. In addition, morphological analy-
sis plays a crucial role here, as highly frequent prefix
and suffix correspondences can be particularly reveal-
ing. In fact, these three strands of analysis (charac-
ter frequency, morphology, and lexical frequency) are
intertwined throughout the human decipherment pro-
cess. Partial knowledge of each drives discovery in the
others.

We capture these intuitions in a generative Bayesian
model. This model assumes that each word in the lost
language is composed of morphemes which were gener-
ated with latent counterparts in the known language.
We model bilingual morpheme pairs as arising through
a series of Dirichlet processes. This allows us to as-
sign probabilities based both on character-level corre-
spondences (using a character-edit base distribution)
as well as higher-level morpheme correspondences. In
addition, our model carries out an implicit morpholog-
ical analysis of the lost language, utilizing the known
morphological structure of the related language. This
model structure allows us to capture the interplay be-
tween the character- and morpheme-level correspon-
dences that humans have used in the manual decipher-
ment process. See figure 7 for a graphical overview of
the model.

We have applied our decipherment model to a corpus
of Ugaritic, an ancient Semitic language discovered in
1928 and manually deciphered four years later, using
knowledge of Hebrew, a related language. As input to
our model, we use the corpus of Ugaritic texts (con-
sisting of 7,386 unique word forms) along with a He-
brew lexicon extracted from the Hebrew Bible. Our
model yield an almost perfect decipherment of the
Ugaritic alphabetic symbols. In addition, over half
of the Ugaritic word forms with Hebrew cognates are
correctly deciphered into their Hebrew counterparts.

6. Conclusions and Future Work

In Sections 2, 3, and 4, we described our application of
multilingual learning to three traditional NLP tasks.
In all cases, we assumed unannotated parallel text
at training time and applied the resulting models to
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monolingual test data. We believe this to be a realistic
scenario for a large number of the world’s languages,
as parallel texts are widely available. Finally, in Sec-
tion 5, we considered the special case of lost language
decipherment, where parallel text is not present, but
information about a closely related language is avail-
able.

For future work, we pose the following two questions:
(i) Can multilingual learning be used to triangulate
the information content of sentences in multiple lan-
guages? (ii) Can knowledge of linguistic typology (and
universal features of language) be used to induce more
accurate unsupervised models, even without the use of
parallel text?
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independent: why NLP needs linguistic typology.
In Proceedings of the EACL 2009 Workshop on the
Interaction between Linguistics and Computational
Linguistics, pp. 26–32, Morristown, NJ, USA, 2009.
Association for Computational Linguistics.

Charniak, Eugene and Carroll, Glen. Two experi-
ments on learning probabilistic dependency gram-
mars from corpora. In Proceedings of the AAAI
Workshop on Statistically-Based NLP Techniques,
pp. 1–13, 1992.

Comrie, Bernard. Language universals and linguistic
typology: Syntax and morphology. Oxford: Black-
well, 1989.

Erjavec, T. MULTEXT-East version 3: Multilingual
morphosyntactic specifications, lexicons and cor-
pora. In Fourth International Conference on Lan-
guage Resources and Evaluation, LREC, volume 4,
pp. 1535–1538, 2004.

Ferguson, T.S. A Bayesian analysis of some nonpara-
metric problems. The annals of statistics, 1:209–230,
1973.

Goldwater, Sharon and Griffiths, Thomas L. A fully
Bayesian approach to unsupervised part-of-speech
tagging. In Proceedings of the ACL, pp. 744–751,
2007.

Jiang, T., Wang, L., and Zhang, K. Alignment of trees
– an alternative to tree edit. Theoretical Computer
Science, 143(1):137–148, 1995.

Klein, Dan and Manning, Christopher D. A genera-
tive constituent-context model for improved gram-
mar induction. In Proceedings of the ACL, pp. 128–
135, 2002.

Marcus, M.P., Santorini, B., and Marcinkiewicz, M.A.
Building a large annotated corpus of English: The
Penn Treebank. Computational linguistics, 19(2):
313–330, 1994.

Merialdo, Bernard. Tagging english text with a prob-
abilistic model. Computational Linguistics, 20(2):
155–171, 1994.

Naseem, Tahira, Snyder, Benjamin, Eisenstein, Ja-
cob, and Barzilay, Regina. Multilingual part-of-
speech tagging: two unsupervised approaches. Jour-
nal of Artificial Intelligence Research, 36(1):341–
385, 2009. ISSN 1076-9757.

Och, Franz Josef and Ney, Hermann. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51, 2003.

Robinson, Andrew. Lost Languages: The Enigma of
the World’s Undeciphered Scripts. McGraw-Hill,
2002.

Snyder, Benjamin and Barzilay, Regina. Unsupervised
multilingual learning for morphological segmenta-
tion. In Proceedings of the ACL/HLT, pp. 737–745,
2008a.

Snyder, Benjamin and Barzilay, Regina. Cross-lingual
propagation for morphological analysis. In Proceed-
ings of the AAAI, pp. 848–854, 2008b.

Snyder, Benjamin, Naseem, Tahira, Eisenstein, Ja-
cob, and Barzilay, Regina. Unsupervised multilin-
gual learning for POS tagging. In Proceedings of
EMNLP, pp. 1041–1050, 2008.

Snyder, Benjamin, Naseem, Tahira, and Barzilay,
Regina. Unsupervised multilingual grammar induc-
tion. In Proceedings of the ACL, pp. 73–81, 2009a.

Snyder, Benjamin, Naseem, Tahira, Eisenstein, Jacob,
and Barzilay, Regina. Adding more languages im-
proves unsupervised multilingual part-of-speech tag-
ging: a bayesian non-parametric approach. In Pro-
ceedings of the NAACL, pp. 83–91, 2009b.


