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Abstract

We address the problem of analyzing multiple related opinions in a text. For instance, in
a restaurant review such opinions may include food, ambience and service. We formulate
this task as a multiple aspect ranking problem, where the goal is to produce a set of nu-
merical scores, one for each aspect. We present an algorithmthat jointly learns ranking
models for individual aspects by modeling the dependenciesbetween assigned ranks. This
algorithm guides the prediction of individual rankers by analyzing meta-relations between
opinions, such as agreement and contrast. We provide an online training algorithm for our
joint model which trains the individual rankers to operate in our framework. We prove that
our agreement-based joint model is more expressive than individual ranking models, yet
our training algorithm preserves the convergence guarantees of perceptron rankers. Our
empirical results further confirm the strength of the model:the algorithm provides signifi-
cant improvement over both individual rankers, a state-of-the-art joint ranking model, and
ad-hoc methods for incorporating agreement.

Thesis Supervisor: Regina Barzilay
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Problem Motivation

Previous work on sentiment categorization makes an implicit assumption that a single score

can express the polarity of an opinion text [22, 30, 33]. However, multiple opinions on

related matters are often intertwined throughout a text. For example, a restaurant review

may express judgment on food quality as well as the service and ambience of the restaurant.

Rather than lumping these aspects into a single score, we would like to capture each aspect

of the writer’s opinion separately, thereby providing a more fine-grained view of opinions

in the review.

To this end, we aim to predict a set of numeric ranks that reflects the user’s satisfaction

for each aspect. In the example above, we would assign a numeric rank from 1-5 for each

of: food quality, service, and ambience.

A straightforward approach to this task would be to rank1 the text independently for

each aspect, using standard ranking techniques such as regression or classification. How-

ever, this approach fails to exploit meaningful dependencies between users’ judgments

across different aspects. Knowledge of these dependenciescan be crucial in predicting

accurate ranks, as a user’s opinions on one aspect can influence his or her opinions on

others.

1In this work,rankingrefers to the task of assigning an integer from 1 tok to each instance. This task is
sometimes referred to as “ordinal regression” [7] and “rating prediction” [21].
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1.2 The Good Grief Framework

The framework presented in this work allows an algorithm designer to capture arbitrary

label dependencies between related tasks through an explicit meta-modelwhich predicts

relationsbetween the labels of a given input, rather than specific label values. Joined with

this meta-model are separate models for each task which predict specific label values. We

develop a joint decoding criterion which takes into accountthe preferences of all com-

ponent models as well as their measures of confidence in thesepreferences, measured in

terms of prediction margins. Equivalently, we measure thenegative confidenceor grief of

non-preferred predictions for each model. The joint prediction which minimizes the overall

grief of all models – the task-specific models as well as the meta-model – is then predicted.

We refer to this inference method as Good Grief Decoding, andthe overall framework as

the Good Grief Framework.

We further develop two online training algorithms for jointly training the individual

label-prediction models: In the first, the meta-model is trained alongside the label-prediction

models in online fashion, using the output of Good Grief Decoding as feedback to update

all models. In the second variation, the meta-model is trained ahead of time using any

desired batch method, such as SVM optimization, and is then given as input to the joint

online training of the label-prediction models.

In this work, we focus exclusively on the case where the underlying label prediction

problem is an instance of therankingproblem (see footnote 1.1). Ranking itself is a gen-

eralization of the binary classification problem, and the extension of our framework to the

multiclass classification problem is straightforward. We also focus in the main on one

particular meta relation between labels:the agreement relation. In the context of opinion

analysis, the agreement relation captures whether the userequally likes all aspects of the

item or whether he or she expresses different degrees of satisfaction. Since this rhetorical

relation can often be determined automatically for a given text [18], it is natural to choose

it to improve rank prediction.

Thus, in the course of our experiments, the Good Grief model will usually consist of a

ranking model for each aspect as well as an agreement model which predicts whether or not
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all rank aspects are equal. The Good Grief decoding algorithm then predicts a set of ranks

– one for each aspect – which maximally satisfy the preferences of the individual rankers

and the agreement model. For example, if the agreement modelpredicts consensus but the

individual rankers select ranks〈5, 5, 4〉, then the decoding algorithm chooses whether to

“trust” the the third ranker, or alter its prediction and output 〈5, 5, 5〉 to be consistent with

the agreement prediction.

1.3 Key Contributions

Our key technical contributions in this work are three-fold: First, our Good Grief method

extends the Perceptron framework to allow the modeling of label-dependencies between

tasks while preserving its key merits. Second, we demonstrate an increase in expressivity

due to our meta-model and provide a mistake bound analysis. Third, we provide extensive

experimental results in the task of sentiment analysis to show the practical merits of our

method.

1.3.1 Extension of the Perceptron Framework

The Perceptron framework was first proposed by Rosenblatt in1958 [25]. In this frame-

work, a simple linear model iteratively classifies examplesas positive or negative. In re-

sponse to each incorrect prediction, the model is given the true label and is updated by

simply adding or subtracting the input from its feature weights. The key advantages of the

Perceptron approach are:

• model simplicity,

• simple and fast training (linear in the number of training examples),

• theoretical guarantees on convergence and generalization[9], and

• simple, exact, and fast decoding.

In addition, the Perceptron method and variants have been shown to be competitive in recent

years with more complex methods on many Pattern Recognitionand Natural Language Pro-

17



cessing tasks. The list includes Handwritten Digit Recognition [13], Named Entity Extrac-

tion [4], Part-of-Speech Tagging [3], Language Modeling [24], Syntactic Chunking [10],

Parsing [5], and Database-Text Alignment [27].

In our work, we build on the practical success of this framework by integrating a meta-

model for label dependencies between related tasks. We perform joint decoding in a way

that respects the margin-based predictions of all component models. In this way, we es-

sentiallyfactor outinter-label dependency predictions, and preserve the key features of the

Perceptron framework: speed, simplicity, and accuracy. This factored approach also allows

the algorithm designer flexibility in designing the meta-model appropriate for the task at

hand.

1.3.2 Theoretical Analysis

We demonstrate that the agreement-based joint model is moreexpressive than individual

ranking models. That is, every training corpus that can be perfectly ranked by individual

ranking models for each aspect can also be perfectly ranked with our joint model. In

addition, we give a simple example of a training set which cannot be perfectly ranked

without agreement-based joint inference, demonstrating the increase in expressive power.

We also provide a general mistake bound analysis for the GoodGrief framework which

applies to any meta-model. We show that even with the potential increase in expressive

power, Good Grief Decoding preserves the finite mistake bound of simple Perceptron train-

ing.

1.3.3 Empirical Results

Our experimental results further confirm the strength of theGood Grief model. We apply

our joint model to a set of restaurant reviews collected froma consumer website. Asso-

ciated with each review is a set of five ranks, each on a scale from 1-5, covering food,

ambience, service, value, and overall experience. Using the agreement meta-model with

Good Grief decoding yields significant improvements over individual ranking models [7],

a state-of-the art joint ranking model [1], and multiclass Support Vector Machines [6].

18



We also perform experiments comparing our model to other decoding methods using

an agreement model. One such method first performs agreementclassification on each

instance and then delegates the instance to a single model (in the case of agreement) or

to individually trained ranking models (in the case of disagreement). We found that our

model outperforms all other strategies for incorporating an agreement model to which we

compared it.

We also compared different methods of training our Good Grief model. The simplest

approach is to individually train each ranking model as wellas the agreement model, and

only apply Good Grief decoding at test time. In fact, even this approach outperforms all

baselines. However, larger gains are seen when jointly training all ranking models with

a pre-trained perceptron agreement model. The best resultswith a perceptron agreement

model are seen when the meta-model itself is trained jointlywith all the ranking models,

by using the feedback from Good Grief decoding. Finally, similar results are found when

pre-training the agreement model using SVM optimization.

In the last set of experiments, we demonstrate the flexibility of the Good Grief frame-

work by applying two meta-models besides the simple agreement model. Both models

perform above all baselines. In addition, one of the models was specifically designed to aid

performance on the most difficult-to-rank aspect (atmosphere), and in fact on this aspect

achieves the best performance of any method.

1.4 Thesis Overview

The remainder of the thesis is organized as follows: In the next chapter we will discuss

related work in the areas of Sentiment Analysis, Ordinal Ranking, Multitask Classification,

Multifield Information Extraction, and Global Inference using ILP. In chapter 3, we pro-

vide a detailed formal description of the Good Grief framework with complete training and

decoding algorithms. In chapter 4, we provide a formal analysis of the expressive power of

our model, as well as proving a finite mistake bound. In chapter 5, we discuss numerous ex-

periments which show the practical value of our method, and finally we present concluding

remarks in chapter 6, along with directions for future research.
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Chapter 2

Related Work

Traditionally, categorization of opinion texts has been cast as a binary classification task [22,

30, 33, 11]. More recent work [21, 14] has expanded this analysis to the ranking frame-

work where the goal is to assess review polarity on a multi-point scale. While the ranking

approach provides a more fine-grained representation of asingleopinion, it still operates

on the assumption of one opinion per text. Our work generalizes this setting to the problem

of analyzing multiple opinions – or multiple aspects of an opinion. Since multiple opinions

in a single text are related, it is insufficient to treat them as separate single-aspect ranking

tasks. This motivates our exploration of a new method for joint multiple aspect ranking. In

this chapter we present background work on ranking and jointranking. We also survey sev-

eral lines of NLP research that also deal with the joint prediction of multiple related tasks.

These include(i) Multitask Text Categorization, where the goal is to classify a document

in several related categorization schemes,(ii) Multifield Information Extraction, where the

goal is to extract multiple fields of a single database entry from raw text, and(iii) joint

entity recognition and relation extraction, where the goal is to recognize entities in text as

well as their relationships to one another.

2.1 Ranking

The ranking, or ordinal regression, problem has been extensively studied in the Machine

Learning and Information Retrieval communities. In this section we focus on two online

21



ranking methods which form the basis of our approach. The first is a model proposed by

Crammer and Singer [7]. The task is to predict a ranky ∈ {1, ..., k} for every input

x ∈ R
n. Their model stores a weight vectorw ∈ R

n and a vector of increasing boundaries

b0 = −∞ ≤ b1 ≤ ... ≤ bk−1 ≤ bk = ∞ which divide the real line intok segments,

one for each possible rank. The model first scores each input with the weight vector:

score(x) = w · x. Finally, the model locatesscore(x) on the real line and returns the

appropriate rank as indicated by the boundaries. Formally,the model returns the rank

r such thatbr−1 ≤ score(x) < br. The model is trained with the Perceptron Ranking

algorithm (or “PRank” algorithm). See Figure 2-1 for pseudo-code. This perceptron-style

training algorithm responds to incorrect predictions on the training set by updating both

the weight vector and the boundary vector: the features of the incorrectly labeled instance

are either added or subtracted to the weight vector, to respectively increase or decrease the

instance’s resulting score. The boundaries between the line-segment corresponding to the

predicted rank and the line-segment of the true rank are shifted by a unit value, enlarging

the segment of the desired rank and shrinking the segment of the incorrectly predicted rank.

The PRank model and algorithm were tested on theEachMovie dataset [19], which

contains five-point ratings of 1,623 movies contributed by 61,265 people. Many movies

are rated by multiple people and many people rate multiple movies. Crammer and Singer

train a separate ranking model for each user, with the other users’ ratings of the movie in

question as features. Thus, a user’s ranking model learns topredict his or her preferences

based on the preferences of others (by learning how “like-minded” he or she is to each

other user). The authors compare this method with two other online learning methods for

ranking: the Multiclass Perceptron [8], and Widrow Hoff Online Regression [32]. They

found that the PRank model achieved lower ranking loss (the average distance between the

true and predicted rank – see chapter 5 for details) than these baselines.

2.1.1 Parameter Sharing

An extension of the PRank framework is provided by Basilico and Hofmann [1] in the con-

text of collaborative filtering. Instead of training a separate model for each user, Basilico
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and Hofmann train a joint ranking model which shares a singlevector of boundaries across

all users. In addition to these shared boundaries, user-specific weight vectors are stored. To

compute the score for inputx and useri, the weight vectors forall users are employed:

scorei(x) = w[i] · x +
∑

j

sim(i, j)(w[j] · x) (2.1)

where0 ≤ sim(i, j) ≤ 1 is the cosine similarity between usersi andj, computed on the

entire training set. Once the score has been computed, the prediction rule follows that of

the PRanking model. The model is trained using the PRank algorithm, with the exception

of the new definition for the scoring function.1 The authors demonstrate how kernels can be

used to represent these shared weight vectors as well as to incorporate additional sources of

information such as demographic information about users and genre information about the

movies. Using this joint representation yields improved performance on theEachMovie

dataset.

While this model shares parameter values between differentranking problems in an

intelligent manner, it fails to explicitly model relationsbetween the rank predictions. In

contrast, our framework (besides incorporating parametersharing in the same manner)

explicitly models dependencies between related ranking decisions.

2.2 Multitask Text Categorization

In the general problem of Multitask Classification, severalrelated classification tasks must

be performed on each input. Renders et. al. [23] explore the problem of classifying docu-

ments in two related category systems. For example, a Xerox hardware customer complaint

log contains some written text as well as a tag describing thetypeof problem as well as the

severityof the problem. Renders et. al. assume that they are given probabilistic classifiers

for both categorization tasks, trained independently of one another. They are also given

some set of documents which contain tags for both categoriesfrom which they can train a

1In the notation of Basilico and Hofmann [1], this definition of scorei(x) corresponds to the kernel
K = (Kid

U + Kco
U )⊕Kat

X .
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joint model. The authors explore two approaches for re-weighting the probabilities of the

classifiers based on learned dependencies between tags in the two label-sets. In the first

approach, the probability distributions for the tasks are each asymmetrically re-estimated

based on the initial output of the two classifiers. In the second approach the probabilities

for the two tasks arejointly re-estimated.

The main assumption underlying both approaches is that all dependencies on features

of the input document are exhausted by the previously trained classifiers, and do not di-

rectly affect the re-weighting of probabilities. The re-weightingonlydepends on the initial

probabilities of the independent classifiers and general correlation statistics between the

two label-sets. A little more formally, letx be an input document, letc1 and c2 be the

class labels for the two classification categories, and letP̂ (·) be the probability estimator

obtained from the independently trained classifiers. In both approaches, the authors end up

with a re-weighting formula of the following form:

P (c1 = i|x) = P̂ (c1 = i|x)
∑

j

γ(i, j)P̂ (c2 = j|x) (2.2)

The important term here isγ(i, j), which is a measure of thegeneric compatibilityof

the joint labeling decisionc1 = i, c2 = j. The values ofγ can simply be the normalized

counts of co-occurences of label-pairs, or can be learned ina slightly more complex fash-

ion. In either case, the re-weighting term for a particular pair of class labels is fixed and

not sensitive to the particular input being judged.

As we will see in the remaining chapters, the main power of ourapproach lies in the

ability to incorporate a label dependency model which issensitive to the features of each

input. In fact, the label dependency model may even use aricher set of features than that

used by the underlying categorization models. In addition,instead of assuming indepen-

dently trained component models, we develop a joint training regimen. The Good Grief

framework, however, is flexible enough to incorporate generic label-dependencies as well.

In Chapter 5, we show experimental results which indicate that full joint learning yields

better results than independently trained component models. We also show that using a

label-dependency model which is sensitive to input features yields better results than incor-
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porating generic label correlations.

2.3 Multifield Information Extraction

The multiple aspect ranking problem is related to some recent work in Multifield Infor-

mation Extraction, where the goal is to automatically extract related fields of information

(analogous to ouraspects) from raw text.

In 2005, Mann and Yarowsky [17] examined the task of automatically extracting the

Birthday, Birthyear, Birthplace, Occupation, and Year-of-Death of a set of famous individ-

uals from biographic web-pages. The authors begin with a biographical training database,

and use it to automatically annotate phrases in web documents. These annotated phrases

are then used to train a supervised CRF extractor [16] for each field (Birthday, Birthyear

etc.). The authors explore various automatic annotation methods, as well as several meth-

ods for fusing extracted information from multiple documents.2 Relevant to our task is

the authors’ method of “cross-field bootstrapping,” in which information about one field is

used to influence decisions about others. Their method worksas follows: first an extractor

is trained for one field (such as Birthday). The sentences in the test documents are then an-

notated with the decisions of this first extractor, and thesedecisions are used as features for

subsequent extractors (for fields such as Birthyear). The algorithm designer must choose

a training order which he or she believes will best allow information from one extraction

decision to flow to others.

This method turns out to be effective for the task of biography extraction, probably

because writers tend to group very basic biographic information into single summary sen-

tences. Thus knowledge that a biographic sentence mentionsa person’s birthday raises

substantially the probability that it will mention his or her birth year(as well as birthplace,

occupation, and date of death).

As in the work of Renders et. al. discussed in the previous section, this approach allows

for genericcorrelations between different extraction tasks to be taken into account. These

2As these methods are not relevant to our task – we have a closedset of target labels so have no need for
phrase annotation, and exactly one document to consider at atime – we refer the reader to their paper for
further details.
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correlations are learned as feature weights in the bootstrapped CRF extractors, and these

weights either encourage (if positive) or discourage (if negative) multiple-field extractions

in a single sentence. In contrast, our approach utilizes a separate label-dependency meta

model which can encourage arbitrary relations between multi-aspect label decisions in a

manner which is sensitive to the entire range of features of the input. Furthermore, our

approach allows for full joint-training of all aspect models as well as the meta model,

instead of training each model sequentially using the output of previous models.

A different perspective on Multifield Information Extraction was provided by Wick,

Culotta, and McCallum in 2006[31]. They examine the task of collecting contact infor-

mation from personal web pages into complete database records for each individual. The

database fields include: FirstName, LastName, JobTitle, City, State, various phone num-

bers, Email, and several other categories. The complete record for an individual might not

include all fields and may also have a single field repeated with multiple values. Wick

et. al. assume they are given text which already has tokens labeled with their true at-

tribute type (e.g. LastName, PhoneNumber, None, etc), and the task is topartition the set

of field-value pairs into database records, each corresponding to a single individual. The

authors propose a method for learning compatibility scoreson setsof fields and then use

agglomerative clustering to produce a complete partition of the field-value pairs. Because

the compatibility function is not restricted to pairwise linking decisions, it can examine

complex domain-specific features of a proposed record (suchas: the number of area codes

found in the record). Wick et. al. found that using a global compatibility function with

these richer features yielded improvements over simple pairwise compatibility scores.

We view this line of work as complementary to our own. In our work, we assume a

fixed set of database fields (aspects) per record (restaurantreview) and attempt to jointly

extract the fieldvaluesfrom raw text. Wick et. al.’s paper investigates the reverseproblem:

the fieldvaluesfound in the text are already known, but thestructureof each record (in

terms of the fields it includes) must be predicted. We view this as an important problem

in its own right, as often information found in web text is of afragmentary nature and its

scope may not be assumed ahead of time.
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2.4 Joint Entity Recognition and Relation Extraction

Roth and Yih [26] tackle the problem of jointly recognizing named entities in text and

extracting binary relations expressed in the text between them. For example, in a sentence

such as“Welch was employed by GE”, we would like to know that Welch is a person, GE

is a corporation, and the relationemployer(Welch,GE)holds between them. The traditional

NLP approach would be to first run a named entity recognizer, and then to run a relation

extractor on the entities recognized. As Roth and Yih point out, this pipelined approach

can lead to problems: If the named entity recognizer predicts that “GE” is alocation,

then the relation extractor can either produce the nonsensical result that the employment

relation holds between apersonand alocation, or respecting logical type-constraints on

the arguments of relations, can predict a relation other than employment.

Roth and Yih instead advocate a joint integer linear programming (ILP) approach to

this problem. They use previously trained independent classifiers to separately produce

probabilities for the named entity decisions and the binaryrelation decisions. They then

seek to maximize the product of probabilities of the two classifiers subject to a prespecified

list of logical constraints on the types of relation arguments (e.g., that theemployment

relation must hold between apersonand anorganization). This can be formulated as an

ILP problem by casting each constraintx as a{0, 1} variable which evaluates to 0 when

the constraint is satisfied, and to 1 if the constraint is violated. The objective of the linear

program is then to minimize the sum of negative log probabilities of the classification

decisions, plus thex variables multiplied by an arbitrarily large constantd. Thus, if we

represent the two named entity labels respectively as the random variablesE1 and E2,

and we represent the relation between them asR, then the Integer Linear Program (ILP)

becomes:

min

[

− log P (E1)− log P (E2)− log P (R) + d

(

∑

i

xi

)]

s.t.

xi ∈ {0, 1}, ∀i
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Sinced is set to infinity (or an arbitrarily high number), the solution to this problem is

guaranteed to meet all logical constraints, and to otherwise produce the solution which

maximizes the product of probabilities of the two classifiers.

Although ILP is in general an NP-hard problem, there are manyknown heuristics that

sometimes produce optimal results quickly. Roth and Yih compared their ILP approach

to a baseline pipelined approach and found that existing ILPsolvers almost always found

the optimal solution quickly. The resulting predictions also proved more accurate than the

baseline approach.

This approach obviously has many similarities to the Good Grief framework. In both

cases, we seek to maximize the confidence of local predictionmodels for related tasks

while preserving global coherence of the joint prediction.The global coherence in our

task, however, is somewhat more subtle than the hard logicalconstraints imposed by Roth

and Yih. We wish to encourageeitherconsensusor non-consensus to thedegreethat the

actual features of the text warrant. In fact, in chapter 5, weexperiment with a method

which imposes a hard constraint of agreement (ALL AGREE), a model which imposes the

decision of the agreement model as a hard constraint (FORCE), as well as a model which

promotes a generic agreement bias (GGBIAS). However, none of these methods performs

as well as our model, which essentially imposes flexible,softconstraints which are sensitive

to features of the input. To explain our method in more detail, in the next chapter we

provide a formal exposition of the Good Grief framework, as well as training and decoding

algorithms.
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Input : (x1, y1), ..., (xT , yT )

Initialize :
(

b1
1, . . . , b

1
k−1

)

← 0
b1
0 ← −∞

b1
k ← +∞

w1 ← 0

Loop : For t = 1, 2, ..., T :

1. Get a new instancext ∈ R
n.

2. Predictŷ = minr∈{1,..,k}{r : w · x− br < 0}

3. Get a new labelyt.
4. If (ŷt = yt) retain model:

wt+1← wt

bt+1
r ← bt

r, ∀r

Else update model:

4.a Forr = 1, ..., k − 1 :

If yt ≤ r : yt
r = −1

else: yt
r = 1

4.b Forr = 1, ..., k − 1 :

If (ŷt − r) yt
r ≤ 0 : τ t

r = yt
r

else: τ t
r = 0

4.c Update:

wt+1← wt + (
∑

r τ t
r)x

t

bt+1
r ← bt

r − τ t
r , ∀r ∈ 1...k

Output : wT+1,bT+1

Figure 2-1: PRank training algorithm.
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Chapter 3

The Algorithm

In this chapter we will formally introduce the Good Grief model for training and decoding

with a joint aspect ranking model. The key feature of our ideais the introduction of a

meta-model which predicts relations between individual aspects, and in doing so guides the

individual rankers towards a globally coherent set of predictions. Although we performed

experiments with several meta-models (see chapter 5), for concreteness we will focus our

attention here on a meta-model which predictsagreementacross aspects. We will explicitly

note when the discussion applies specifically to agreement models to the exclusion of other

meta-models.

The general goal of our algorithm is to find a rank assignment that is consistent with

the predictions of individual rankers and the meta-model. To this end, we develop the

Good Grief decoding procedure that minimizes the dissatisfaction (grief) of individual

components with a joint prediction. See Figure 3-1 for a pictorial overview of the Good

Grief framework and an example showing how the agreement meta-model can help guide

the individual rankers towards a global solution in line with the review.

In this chapter, we will formally define the grief of each component, and a mechanism

for its minimization. We then describe two methods for the joint training of individual

rankers that takes into account the Good Grief decoding procedure. Finally, we talk about

the feature representation used by our model.
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Figure 3-1: Pictorial overview of a Good Grief model, with relevant word-features under-
lined. In this example, the meta-model will predictdisagreementwith high confidence due
to the presence of “uneven” (a content word indicating contrast) and “although” (a dis-
course word indicating contrast). This prediction should help push theambiencemodel
towards a negative prediction.

3.1 Problem Formulation

In an m-aspect ranking problem, we are given a training sequence of instance-label pairs

(x1,y1), ..., (xt,yt), .... Each instancext is a feature vector inRn and the labelyt is a vec-

tor of m ranks inYm, whereY = {1, .., k} is the set of possible ranks. Theith component

of yt is the rank for theith aspect, and will be denoted byy[i]t. The goal is to learn a

mapping from instances to rank sets,H : X → Ym, which minimizes the distance between

predicted ranks and true ranks.

3.2 The Model

Ourm-aspect ranking modelcontainsm+1 components:(〈w[1],b[1]〉, ..., 〈w[m],b[m]〉, a).

The firstm components are individual ranking models, one for each aspect, and the final

component is the agreement model, or more generally any meta-model.
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3.2.1 Ranking Models

For each aspecti ∈ 1...m, w[i] ∈ R
n is a vector of weights on the input features, andb[i] ∈

R
k−1 is a vector of boundaries which divide the real line intok intervals, corresponding to

thek possible ranks. The default prediction of the aspect ranking model simply uses the

ranking rule of the PRank algorithm. This rule predicts the rank r such thatb[i]r−1 ≤

scorei(x) < b[i]r.1 The valuescorei(x) can be defined simply as the dot productw[i] · x,

or it can take into account the weight vectors for other aspects weighted by a measure of

inter-aspect similarity. We adopt the definition given in equation 2.1, replacing the user-

specific weight vectors with our aspect-specific weight vectors.

3.2.2 Meta-Model

In general the meta-model can be any model which makes a binary prediction over the

set of possible rank-vectorsYm. More formally, a binary meta-modela is defined by a

partition of the rank-vectors intopositiveandnegativesets:a+ ∪ a− = Ym, and a function

scorea(·). For an inputx, a positive value forscorea(x) indicates a prediction that the

associated rank-vector is an element of the positive seta+, and a negative score indicates

a prediction that the rank-vector is ina−. The absolute value of the score,|scorea(x)|,

indicates the meta-model’s confidence in its prediction.

In the simple case of an agreement model, the meta-model is a vector of weightsa ∈

R
n. A value ofa · x > 0 predicts that the ranks of allm aspects are equal, and a value of

a · x ≤ 0 indicates disagreement. The absolute value|a · x| indicates the confidence in the

agreement prediction.

Thus, in the terminology of the previous paragraph, the meta-model model defined by

1More precisely (taking into account the possibility of ties): ŷ[i] = minr∈{1,..,k}{r : scorei(x)− b[i]r <

0}
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the agreement modela is:

scorea(x) = |a · x|

a+ = {< y[1], . . . , y[m] > | (y[1] = y[2] = . . . = y[m]) ∧ (y[i] ∈ Y , ∀i)}

a− = {< y[1], . . . , y[m] > | ¬ (y[1] = y[2] = . . . = y[m]) ∧ (y[i] ∈ Y , ∀i)}

3.3 Decoding

The goal of the decoding procedure is to predict a joint rank for the m aspects which

satisfies the individual ranking models as well as the globalprediction of the meta-model.

For a given inputx, the individual model for aspecti predicts a default rank̂y[i] based on its

feature weight and boundary vectors〈w[i],b[i]〉. In addition, the agreement model makes a

prediction regarding rank consensus based ona ·x. However, the default aspect predictions

ŷ[1] . . . ŷ[m] may not accord with the agreement model. For example, ifa · x > 0, but

ŷ[i] 6= ŷ[j] for somei, j ∈ 1...m, then the agreement model predicts complete consensus,

whereas the individual aspect models do not.

We therefore adopt a joint prediction criterion which simultaneously takes into account

all model components – individual aspect models as well as the meta-model. For each

possible predictionr = (r[1], ..., r[m]) this criterion assesses the level ofgrief associated

with theith-aspect ranking model,gi(x, r[i]). Similarly, we compute the grief of the meta-

model with the joint prediction,ga(x, r). Both gi andga are defined formally below, and

intuitively indicate the negative-confidence of the modelswith the specified prediction. The

decoder predicts them ranks which minimize the overall grief:

H(x) = arg min
r∈Ym

[

ga(x, r) +

m
∑

i=1

gi(x, r[i])

]

(3.1)

If the default rank predictions for the aspect models,ŷ = (ŷ[1], ..., ŷ[m]), are in accord

with the agreement model (both indicating consensus or bothindicating contrast), then the

grief of all model components will be zero, and we simply output ŷ. On the other hand,

if ŷ indicates disagreement but the agreement model predicts consensus, then we have the
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option of predictinĝy and bearing the grief of the agreement model. Alternatively, we can

predict some consensusy′ (i.e. withy′[i] = y′[j], ∀i, j) and bear the grief of the component

ranking models. The decoderH chooses the option with lowest overall grief.2

Now we formally define the measures ofgrief used in this criterion.

3.3.1 Aspect Model Grief

We define the grief of theith-aspect ranking model with respect to a rankr to be the smallest

magnitude correction term which places the input’s score into therth segment of the real

line:

gi(x, r) = min |c|

s.t.

b[i]r−1 ≤ scorei(x) + c < b[i]r

3.3.2 Agreement Model Grief

Similarly, we define the grief of the agreement model with respect to a joint rankr =

(r[1], . . . , r[m]) as the smallest correction needed to bring the agreement score into accord

with the agreement relation between the individual ranksr[1], . . . , r[m]:

ga(x, r) = min |c|

s.t.

a · x + c > 0 ∧ ∀i, j ∈ 1...m : r[i] = r[j]

∨

a · x + c ≤ ∧ ∃i, j ∈ 1...m : r[i] 6= r[j]

2This decoding criterion assumes that the griefs of the component models are comparable. In practice, we
take an uncalibrated agreement modela

′ and re-weight it with a tuning parameter:a = αa
′. The value ofα

is estimated using a development set. We assume that the griefs of the ranking models are comparable since
they are jointly trained.
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More generally, for an arbitrary meta-modela, we define the grief to be:

ga(x, r) = min |c|

s.t.

scorea(x) + c > 0 ∧ r ∈ a+

∨

scorea(x) + c ≤ 0 ∧ r ∈ a−

3.4 Training

Pseudo-code for the two variants of Good Grief training are shown in Figure 3-2 and Fig-

ure 3-3. Both of these training algorithms are based on PRanking [7], an online perceptron

algorithm. The training is performed by iteratively ranking each training inputx and updat-

ing the model. If the predicted rank̂y is equal to the true ranky, the weight and boundaries

vectors remain unchanged. On the other hand, ifŷ 6= y, then the weights and boundaries

are updated to improve the prediction forx (step 4.c in Figures 3-2 and 3-3). See Chapter 5

for pseudo-code in the case of a single ranking model. For further explanation and analysis

of the update rule in the case of an individual ranking model,see [7], and see chapter 4 for

a theoretical mistake-bound analysis for the first Good Grief variant.

Our algorithms depart from PRanking by conjoining the updates for them ranking

models. We achieve this by using Good Grief decoding at each step throughout training.

Our decoderH(x) (from equation 3.1) usesall the aspect component models as well as the

agreement model to determine the predicted rank for each aspect.

3.4.1 Variant 1

First we consider Variant 1 of Good Grief Decoding (Figure 3-2) in more detail. In this

version, the meta-modela is assumed to have been trained ahead of time and is given as

input to the Good Grief training algorithm. We then start byinitializing the boundary
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and weight vectors for each aspect ranking model to zero vectors.3 We thenloop through

the training corpus some number of times. For each instancex, we predict the ranks of

all aspects simultaneously (step 2 in Figure 3-2) using the pre-trained agreement model

and the current state of them aspect-specific ranking models. Then, for each aspect we

make a separateupdate based on this joint prediction (step 4 in Figure 3-2). Finally, after

convergence (or more practically after several runs through the training corpus to avoid

over-fitting), the ranking models are outputted and can be used along with the pre-trained

agreement to perform Good Grief decoding on unseen test data.

The disadvantage of this variant is that the agreement modelis trained without consid-

ering the role it will ultimately play in Good Grief decoding. However, this can also free

the model designer to utilize more complex batch methods to train the meta-model, such as

SVM optimization [2] or boosting [12].

3.4.2 Variant 2

This variant of Good Grief training (Figure 3-3) differs from the first in that the meta-

model is trained jointly with the aspect ranking models using perceptron updates. Thus,

the meta-model is initialized to the zero vector along with the ranking models, and the

Good Grief decoding (step 2) uses the current state of the ranking models as well as the

meta-model. After the updates to the ranking models are performed in step 4, an additional

step 5 is taken to update the meta-model. Note that instead ofusing the direct output of

the meta-model (scorea(x)) to provide feedback, this algorithm instead uses the prediction

that results from theentire joint model using Good Grief Decoding. Thus, the meta-model

is trained to specifically operate within the Good Grief framework.

3with the exception of the lowest and highest boundary points, which are set to−∞ and+∞ respectively.
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Average Feature CountStandard Deviation
Training Corpus 80.47 78.59
Development Corpus 81.69 83.09
Test Corpus 85.56 85.02

Table 3.1: Average number of features found per restaurant review.

3.5 Feature Representation

3.5.1 Ranking Models

Following previous work on sentiment classification [22], we represent each review as a

binary vector of lexical features. More specifically, we extract all unigrams and bigrams

from the review, discarding those that appear fewer than three times. This process yields

about 30,000 total features when applied to the restaurant review corpus (described in more

detail in Chapter 5). See Table 3.1 for statistics on how manyfeatures on average are active

per review. As can be seen, the feature vectors are almost allrelatively sparse. Note that

we made no effort to perform feature selection, or otherwisefilter features for particular

aspects. Thus, the presence of (presumably) aspect-specific words such as “expensive” and

“tasty” will appear as a features for all rankers, as will (presumably) neutral words such

as “restaurant” and “check.” We leave it to the training algorithms to assign appropriate

weights.

3.5.2 Agreement Model

The agreement model also operates over lexicalized features. The effectiveness of these

features for recognition of discourse relations has been previously shown by Marcu and

Echihabi [18]. In addition to unigrams and bigrams, we also introduce a feature that mea-

sures the maximum contrastive distance between pairs of words in a review. For example,

the presence of“delicious” and“dirty” indicate high contrast, whereas the pair“expen-

sive” and “slow” indicate low contrast. The contrastive distance for a pair of words is

computed by considering the difference in relative weight assigned to the words in individ-

ually trained PRanking models.

In the next chapter we turn to a theoretical analysis of the framework proposed here.
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We will examine the expressive power of the Good Grief framework with an agreement

meta-model. We will also provide a mistake-bound analysis for the first variant of our

training algorithm.
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Input : (x1,y1), ..., (xT ,yT ), Meta-Modela

Initialize : For aspecti = 1...m:
(

b[i]11, . . . , b[i]
1
k−1

)

← 0
b[i]10 ← −∞
b[i]1k ← +∞
w[i]1 ← 0

Loop : For t = 1, 2, ..., T :

1. Get a new instancext ∈ R
n.

2. Predict ŷt = H(x;wt,bt, a) (Equation 3.1).

3. Get a new labelyt.
4. For aspecti = 1, ..., m:

If (ŷ[i]t = y[i]t) retain model:

w[i]t+1← w[i]t

b[i]t+1
r ← b[i]tr, ∀r

Else update model:

4.a Forr = 1, ..., k − 1 :

If y[i]t ≤ r : y[i]tr = −1

else: y[i]tr = 1

4.b Forr = 1, ..., k − 1 :

If (ŷ[i]t − r) y[i]tr ≤ 0 : τ [i]tr = y[i]tr
else: τ [i]tr = 0

4.c Update:

w[i]t+1← w[i]t + (
∑

r τ [i]tr)x
t

b[i]t+1
r ← b[i]tr − τ [i]tr, ∀r ∈ 1...k

Output : H( · ;wT+1,bT+1, a).

Figure 3-2:Variant 1 of Good Grief Training. This algorithm is based on the PRanking
training algorithm. It differs in the joint computation of all aspect predictionŝyt based on
the Good Grief Criterion (step 2) and the calculation of updates for each aspect based on
the joint prediction (step 4). The meta-modela is assumed to be pre-trained.

40



Input : (x1,y1), ..., (xT ,yT )

Initialize : For aspecti = 1...m:
(

b[i]11, . . . , b[i]
1
k−1

)

← 0
b[i]10 ← −∞
b[i]1k ← +∞
w[i]1 ← 0
a1 ← 0

Loop : For t = 1, 2, ..., T :

1. Get a new instancext ∈ R
n.

2. Predict ŷt = H(x;wt,bt, at) (Equation 3.1).

3. Get a new labelyt.
4. For aspecti = 1, ..., m:

If (ŷ[i]t = y[i]t) retain model:

w[i]t+1← w[i]t

b[i]t+1
r ← b[i]tr, ∀r

Else update model:

4.a Forr = 1, ..., k − 1 :

If y[i]t ≤ r : y[i]tr = −1

else: y[i]tr = 1

4.b Forr = 1, ..., k − 1 :

If (ŷ[i]t − r) y[i]tr ≤ 0 : τ [i]tr = y[i]tr
else: τ [i]tr = 0

4.c Update:

w[i]t+1← w[i]t + (
∑

r τ [i]tr)x
t

b[i]t+1
r ← b[i]tr − τ [i]tr, ∀r ∈ 1...k

5. If (y ∈ a+ ∧ ŷ ∈ a+) ∨ (y ∈ a− ∧ ŷ ∈ a−) retain meta-model:

at+1 ← at

Else update meta-model:

If yt ∈ a+ : at+1 ← at + xt

Else: at+1 ← at − xt

Output : H( · ;wT+1,bT+1, aT+1).

Figure 3-3:Variant 2 of Good Grief Training. In this variant, the meta-model is trained
jointly with the component ranking models, using the outputfrom Good Grief decoding
(Step 2) to provide feedback for perceptron updates (Step 5).
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Chapter 4

Analysis

In this chapter we provide two theoretical analyses of our framework. First we demonstrate

that the agreement-based joint model is more expressive than individual ranking models.

That is, every training corpus that can be perfectly ranked by individual ranking models for

each aspect can also be perfectly ranked with our joint model. In addition, we give a simple

example of a training set which cannot be perfectly ranked without agreement-based joint

inference, demonstrating the increase in expressive power.

We also provide a general mistake bound analysis for the GoodGrief framework which

applies to any meta-model. We show that even with the potential increase in expressive

power, Good Grief Decoding preserves the finite mistake bound of simple Perceptron train-

ing by allowing the meta-model to be “drowned out” when it proves a hindrance during

training.

4.1 Expressivity

In this section, we prove that our model is able to perfectly rank a strict superset of the

training corpora perfectly rankable bym ranking models individually. We first show that

if the independent ranking models can individually rank a training set perfectly, then our

model can do so as well. Next, we show that our model is more expressive by providing

a simple illustrative example of a training set which can only be perfectly ranked with the

inclusion of an agreement model.
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First we introduce some notation. For each training instance (xt,yt), each aspecti ∈

1...m, and each rankr ∈ 1...k, define an auxiliary variabley[i]tr with y[i]tr = −1 if y[i]t ≤ r

andy[i]tr = 1 if y[i]t > r. In words,y[i]tr indicates whether thetrue ranky[i]t is to the right

or left of apotentialrankr.

Now suppose that a training set(x1,y1), ..., (xT ,yT ) is perfectly rankable for each

aspect independently. That is, for each aspecti ∈ 1...m, there exists some ideal model

v[i]∗ = (w[i]∗, b[i]∗) such that the signed distance from the prediction to therth boundary:

w[i]∗ · xt − b[i]∗r has the same sign as the auxiliary variabley[i]tr. In other words, the

minimum margin over all training instances and ranks,γ = minr,t{(w[i]∗ ·xt−b[i]∗r)y[i]tr},

is no less than zero.

Now for the tth training instance, define an agreement auxiliary variableat, where

at = 1 when all aspects agree in rank andat = −1 when at least two aspects disagree

in rank. First consider the case where the agreement modela perfectly classifies all train-

ing instances:(a · xt)at > 0, ∀t. It is clear that Good Grief decoding with the ideal joint

model(〈w[1]∗,b[1]∗〉, ..., 〈w[m]∗,b[m]∗〉, a) will produce the same output as the compo-

nent ranking models run separately (since the grief will always be zero for the default

rank predictions). Now consider the case where the trainingdata is not linearly separable

with regard to agreement classification. Define the margin ofthe worst case error to be

β = maxt{|(a · x
t)| : (a · xt)at < 0}. If β < γ, then again Good Grief decoding will

always produce the default results (since the grief of the agreement model will be at most

β in cases of error, whereas the grief of the ranking models forany deviation from their

default predictions will be at leastγ). On the other hand, ifβ ≥ γ, then the agreement

model errors could potentially disrupt the perfect ranking. However, we need only re-scale

w∗ := w∗(β

γ
+ ε) andb∗ := b∗(β

γ
+ ε) to ensure that the grief of the ranking models will

always exceed the grief of the agreement model in cases wherethe latter is in error. Thus

whenever independent ranking models can perfectly rank a training set, a joint ranking

model with Good Grief decoding can do so as well.

Now we give a simple example of a training set which can only beperfectly ranked

with the addition of an agreement model. Consider a trainingset of four instances with two

rank aspects:

44



〈x1,y1〉 = 〈(1, 0, 1), (2, 1)〉

〈x2,y2〉 = 〈(1, 0, 0), (2, 2)〉

〈x3,y3〉 = 〈(0, 1, 1), (1, 2)〉

〈x4,y4〉 = 〈(0, 1, 0), (1, 1)〉

We can interpret these inputs as feature vectors corresponding to the presence of “good”,

“bad”, and “but not” in the following four sentences:

The food wasgood, but not the ambience.

The food wasgood, and so was the ambience.

The food wasbad, but not the ambience.

The food wasbad, and so was the ambience.

We can further interpret the first rank aspect as the quality of food, and the second as the

quality of the ambience, both on a scale of 1-2.

A simple ranking model which only considers the words “good”and “bad” perfectly

ranks the food aspect. However, it is easy to see that no single model perfectly ranks the

ambience aspect. Consider any model〈w,b = (b)〉. Note thatw · x1 < b andw · x2 ≥ b

together imply thatw3 < 0, whereasw ·x3 ≥ b andw ·x4 < b together imply thatw3 > 0.

Thus independent ranking models cannot perfectly rank thiscorpus.

The addition of an agreement model, however, can easily yield a perfect ranking. With

a = (0, 0,−5) (which predicts contrast with the presence of the words “butnot”) and a

ranking model for the ambience aspect such asw = (1,−1, 0),b = (0), the Good Grief

decoder will produce a perfect rank.

Finally, we note that a similar increase in expressivity canresult from expanding the

input space to include conjunctions of features (through e.g. a polynomial kernel in the

SVM framework). However, we show in chapter 5 that simply using all binary conjunctions

of features (theSVM2 model) actuallydegradesperformance. As is often the case, increased

model power can lead to over-fitting problems unless carefully crafted and controlled.
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4.2 Mistake Bound

Novikoff first proved the convergence of the binary classification perceptron algorithm in

1962 [20]. He showed that if a corpus of radiusR is linearly separable with marginγ,

then the perceptron algorithm will perform at most
(

2R
γ

)2

updates. The significance of

this bound is that the number of updates nowhere depends on the size of the training set

itself. Thus, if the perceptron is allowed to iterate over the training corpus indefinitely, only

a finite number of mistakes and updates will be made. At some point the perceptron will

converge to a solution which perfectly classifies the training set.

Crammer and Singer extend this convergence proof to the caseof perceptron ranking

[7]. They show that if a corpus withk ranks of radiusR is perfectly rankable with marginγ,

then the perceptron ranker will incur a ranking loss of at most (k−1)(R2+1)
γ2 during training.

Ranking loss is defined as the total distance between true ranks and predicted ranks anda

fortiori the perceptron ranker will make no more than this number of mistakes and updates.

We spend the remainder of this section providing a convergence proof for our joint

Good Grief training algorithm. In particular, we show that if a corpus is perfectly rankable

using independent perceptron rankers, then even when usingthe more expressive Good

Grief model during training, convergence is guaranteed. Infact, this proof nowhere as-

sumes anything about the properties or efficacy of the meta-model, other than that it is

fixed and finite. In essence we show that the ranking models will eventually “drown out”

the meta-model when it proves to be a hindrance. Before we proceed to the proof, we must

lay out our notation and definitions.

4.2.1 Definitions and Notation

Given a joint ranking model consisting of a set of ranking models:v = (w[i],b[i], . . . ,w[m],b[m]),

and a meta-modela, we define thecorrection term1 for aspecti with respect to an input

1Similar to definitions of “grief” given in the previous chapter, but without the absolute value taken.
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x ∈ R
n and a joint rankr ∈ {1, . . . , k}m to be:

ci(x, r; v) = arg min
c
|c|

s.t.

b[i]r[i]−1 ≤ w[i] · x + c < b[i]r[i]

We further define thecorrection termfor the meta-model to be:

ca(x, r; a) = arg min
c
|c|

s.t.

a · x + c > 0 ∧ r ∈ a+

∨

a · x + c ≤ 0 ∧ r ∈ a−

We define the output of a Good Grief modelv to be the joint rank which minimizes the

magnitude of these correction terms:

H(x; v, a) = arg min
r

[

|ca(x, r; a)|+

m
∑

i=1

|ci(x, r; v)|

]

(4.1)

Note that this formulation differs slightly from that givenin chapter 3, equation 3.1, but is

equivalent.

We adopt the following notation for the training of a model. The initial model is denoted

by v1 = (w[1]1,b[1]1, . . . ,w[m]1,b[m]1) = 0. The model obtained after all the updates

for the tth input will be denoted byvt+1. The model obtained after the update for theith

aspect of thetth input will be denoted byvt:[i+1]. We denote the prediction made for theith

aspect of thetth input during training by

ŷ[i]t , H(xt; vt:[i], a)
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and define the incurred rank loss as

n[i]t , |ŷ[i]t − yt[i]|.

The total rank loss for the example is then written asnt =
∑

i n[i]t. See Figure 3-2 in

chapter 3 for the training algorithm that we analyze here. Notice in particular the directional

variablesy[i]tr ∈ {+1,−1}, which indicate whether the true rank for instancet and aspecti

is equal to or lower thanr or whether it is higher thanr. Notice also the indicator variables

τ [i]tr ∈ {−1, 0, +1} which evaluate to the directional variabley[i]tr whenr lies between

the predicted rank and the true rank, and otherwise evaluates to 0. It is easy to confirm that

n[i]t =
∑

r |τ [i]tr| and thus thatnt =
∑

i,r |τ [i]tr|.

In this training scenario, we also use an abbreviated notation for the correction terms

used during training:

c[i]t , ci

(

xt, ŷt; vt:[i]
)

, ∀i

ct
a , ca

(

xt, ŷt; a
)

Finally, when dealing with some arbitrary modelv∗ = (w[i]∗,b[i]∗, . . . ,w[m]∗,b[m]∗),

we adopt the notation:

c[i]∗,t , ci

(

xt, H(xt;v∗, a); v∗
)

, ∀i

c∗,ta , ca
(

xt, H(xt;v∗, a); a
)

We no proceed to the theorem and proof.

4.2.2 Mistake Bound Theorem

Mistake Bound. Let (x1,y1), . . . , (xT ,yT ) be a training sequence with eachxt ∈ R
n

and eachyt ∈ {1, . . . , k}m, and leta ∈ R
n be the meta-model. Define the radius of the

sequenceR = maxt ‖x
t‖. Assume a unit norm joint ranking model

v∗ = (w[i]∗,b[i]∗, . . . ,w[m]∗,b[m]∗) which perfectly ranks the training sequence with

48



marginγ = minr,t,i{(w[i]∗ · xt − b[i]∗r)y
t
r} ≥ 0. Then the rank loss incurred during Good

Grief training
∑

t,i |ŷ[i]t − y[i]t| is at most

(k − 1)(R2 + 1) + 2kR‖a‖

γ2
.

Proof. We prove the mistake bound by bounding the rank loss
∑

t n
t from above. To do

so, we first bound the norm of the trained model‖vT+1‖ from aboveandbelow.

Lemma 1. A lower bound on the norm of the trained model is given by

‖vT+1‖ ≥ γ
∑

t

nt −
∑

t,i

n[i]t
∣

∣c[i]∗,t
∣

∣ .

Proof of Lemma.Consider the example(xt,yt) received at roundt during training. The

aspects for this example are jointly ranked by the modelvt and the models obtained be-

fore and after the update for theith aspect arevt:[i] andvt:[i+1] respectively. Now, by the

definition of the update rule and then the definition ofτ [i]tr, we have:

v∗ · vt:[i+1] = v∗ · vt:[i] +
∑

r

τ [i]tr
(

w[i]∗ · xt − b[i]∗r
)

(4.2)

= v∗ · vt:[i] +
∑

r

∣

∣τ [i]tr
∣

∣ y[i]tr
(

w[i]∗ · xt − b[i]∗r
)

(4.3)

Now, by hypothesis, the margin ofv∗ is at leastγ, so

y[i]tr
(

w[i]∗ · xt + c[i]∗,t − b[i]∗r
)

≥ γ (4.4)

⇒ y[i]tr
(

w[i]∗ · xt − b[i]∗r
)

≥ γ −
(

y[i]tr c[i]∗,t
)

(4.5)

Plugging this into equation 4.3, we get

v∗ · vt:[i+1] ≥ v∗ · vt:[i] +
∑

r

∣

∣τ [i]tr
∣

∣

(

γ − y[i]tr c[i]∗,t
)

(4.6)

≥ v∗ · vt:[i] + n[i]t
(

γ −
∣

∣c[i]∗,t
∣

∣

)

(4.7)
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Applying this inequality repeatedly for each aspect, we get

v∗ · vt+1 ≥ v∗ · vt + ntγ −
∑

i

n[i]t
∣

∣c[i]∗,t
∣

∣ (4.8)

Applying this inequality recursively for all training examples, and by the fact thatv1 = 0,

we get

v∗ · vT+1 ≥ γ
∑

t

nt −
∑

t,i

n[i]t
∣

∣c[i]∗,t
∣

∣ (4.9)

Finally, by the Cauchy-Schwartz inequality and the fact that v∗ has unit norm we get

‖vT+1‖ ≥ γ
∑

t

nt −
∑

t,i

n[i]t
∣

∣c[i]∗,t
∣

∣ (4.10)

Lemma 2. An upper bound on the norm of the trained model is given by

‖vT+1‖2 ≤ 2
∑

t,i

n[i]t
∣

∣c[i]t
∣

∣ + R2
∑

t

(

nt
)2

+
∑

t

nt.

Proof. Again consider an example(xt,yt) received at roundt during training. The aspects

for this example are jointly ranked by the modelvt and the model obtained after the updates
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for all the aspects isvt+1. When we take the square norm ofvt+1, we get

∥

∥vt+1
∥

∥

2
=
∥

∥

(

w[1]t+1,b[1]t+1, . . . ,w[m]t+1,b[m]t+1
)
∥

∥

2

=
∥

∥

∥

(

w[1]t +
(

∑

r

τ [1]tr
)

xt, b[1]t1 − τ [1]t1, . . . , b[1]tk−1 − τ [1]tk−1,

w[m]t +
(

∑

r

τ [m]tr
)

xt, b[m]t1 − τ [m]t1, . . . , b[m]tk−1 − τ [m]tk−1

)
∥

∥

∥

2

=
∑

i

∥

∥w[i]t
∥

∥

2
+
∑

i

∥

∥b[i]t
∥

∥

2
+ 2

∑

i,r

τ [i]tr
(

w[i]t · xt − b[i]tr
)

+
(

∑

i,r

τ [i]tr
)2
‖xt‖2 +

∑

i,r

(

τ [i]tr
)2

≤ ‖vt‖2 + 2
∑

i,r

τ [i]tr
(

w[i]t · xt − b[i]tr
)

+ R2
(

nt
)2

+ nt

(4.11)

We now use the definition ofτ [i]tr to upper bound the second term. We will define the

indicator functionof a predicatep to beJpK = 1 if p, andJpK = 0 if ¬p. Using this notation

along with the definition ofτ [i]tr, we can rewrite
∑

i,r τ [i]tr (w[i]t · xt − b[i]tr) as:

∑

i,r

q
y[i]tr

(

w[i]t · xt + c[i]t − b[i]tr
)

≤ 0
y

y[i]tr
(

w[i]t · xt − b[i]tr
)

=
∑

i,r

q
y[i]tr

(

w[i]t · xt − b[i]tr
)

≤ −y[i]trc[i]
t
y

y[i]tr
(

w[i]t · xt − b[i]tr
)

≤
∑

i,r

q
y[i]tr

(

w[i]t · xt − b[i]tr
)

≤
∣

∣c[i]t
∣

∣

y ∣
∣c[i]t

∣

∣

=
∑

i,r

n[i]t
∣

∣c[i]t
∣

∣

Plugging this back into 4.11, we get

∥

∥vt+1
∥

∥

2
≤ ‖vt‖2 + 2

∑

i

n[i]t
∣

∣c[i]t
∣

∣ + R2
(

nt
)2

+ nt.

Finally, by applying this inequality inductively along with the fact thatv1 = 0, we get our
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lemma:

‖vT+1‖2 ≤ 2
∑

t,i

n[i]t
∣

∣c[i]t
∣

∣ + R2
∑

t

(

nt
)2

+
∑

t

nt.

Combining Lemmas 1 and 2, we obtain the following inequality:

γ2
(

∑

t

nt
)2
− 2γ

(

∑

t

nt
)(

∑

t,i

n[i]t
∣

∣c[i]∗,t
∣

∣

)

+
(

∑

t,i

n[i]t
∣

∣c[i]∗,t
∣

∣

)2

≤ 2
∑

t,i

n[i]t
∣

∣c[i]t
∣

∣+ R2
∑

t

(

nt
)2

+
∑

t

nt.

Isolating the first term and dividing both sides byγ2
∑

t n
t we get:

∑

t

nt ≤
2
∑

t,i n[i]t |c[i]t|

γ2
∑

t n
t

+
R2
∑

t (nt)
2
+ 1

γ2
∑

t n
t

+

(
∑

t,i n[i]t |c[i]∗,t|
)2

γ2
∑

t n
t

−

∑

t,i n[i]t |c[i]∗,t|

γ

≤
2
∑

t,i n[i]t |c[i]t|

γ2
∑

t n
t

+
(k − 1)R2 + 1

γ2
+

(
∑

t,i n[i]t |c[i]∗,t|
)2

γ2
∑

t n
t

−

∑

t,i n[i]t |c[i]∗,t|

γ

≤
2R ‖a‖

γ2
+

(k − 1)R2 + 1

γ

2

+

(
∑

t,i n[i]t |c[i]∗,t|
)2

γ2
∑

t nt
−

∑

t,i n[i]t |c[i]∗,t|

γ

=
2R ‖a‖

γ2
+

(k − 1)R2 + 1

γ

2

The second inequality follow from the fact that the rank lossfor a single instance can be

at most one less than the number of ranks:nt < k − 1. The third inequality follows from

the fact that by the definition of Good Grief decoding (equation 4.1) the default prediction

of the component ranking models will only incur a cost through the meta-model. Since the

magnitude of the meta-model cost –ca(x, r; a) – is bounded by|a · x|, we can infer that

maxt,i |c[i]
t| ≤ maxt |a · x

t| ≤ R‖a‖ (the last inequality using Cauchy-Schwartz). Finally,

the last equality follows by hypothesis: Since the modelv∗ perfectly ranks the corpus, the

correction terms associated with the rankers ofv∗ will always be zero. This completes our

proof.

With this theoretical analysis in hand, we can now test the practical merits of our frame-

work. In the next chapter we provide numerous empirical evaluations of our model and its
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decoding and training procedures.
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Chapter 5

Experiments

In this chapter, we present several sets of experiments to test the practical merits of our

approach. We apply our joint model to a set of restaurant reviews collected from a consumer

website. Associated with each review is a set of five ranks, each on a scale from 1-5,

covering food, ambience, service, value, and overall experience. Using the agreement

meta-model with Good Grief decoding yields significant improvements over individual

ranking models [7], a state-of-the art joint ranking model [1], and multiclass Support Vector

Machines [6].

We also perform experiments comparing our model to other decoding methods using

an agreement model. One such method first performs agreementclassification on each

instance and then delegates the instance to a single model (in the case of agreement) or

to individually trained ranking models (in the case of disagreement). We found that our

model outperforms all other strategies for incorporating an agreement model to which we

compared it.

We also compared different methods of training our Good Grief model. The simplest

approach is to individually train each ranking model as wellas the agreement model, and

only apply Good Grief decoding at test time. In fact, even this approach outperforms all

baselines. However, larger gains are seen when jointly training all ranking models with

a pre-trained perceptron agreement model. The best resultswith a perceptron agreement

model are seen when the meta-model itself is trained jointlywith all the ranking models,

by using the feedback from Good Grief decoding. Finally, similar results are found when
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Food Service Value Atmosphere Experience Total
MAJORITY 0.848 1.056 1.030 1.044 1.028 1.001*
PRANK 0.606 0.676 0.700 0.776 0.618 0.675*
SVM 0.546 0.642 0.664 0.766 0.614 0.646*
SVM2 0.624 0.736 0.740 0.850 0.658 0.722*
SIM 0.538 0.614 0.656 0.776 0.606 0.638*
GG (SVM) 0.528 0.590 0.638 0.750 0.564 0.614

Table 5.1: Ranking loss on the test set for Good Grief (GG (SVM)) and various baselines.
Diacritic (*) indicates statistically significant difference from performance of GG (SVM)
using a Fisher sign test (p < 0.01).

pre-training the agreement model using SVM optimization.

In the last set of experiments, we demonstrate the flexibility of the Good Grief frame-

work by applying two meta-models besides the simple agreement model. Both models

perform above all baselines. In addition, one of the models was specifically designed to aid

performance on the most difficult-to-rank aspect (atmosphere), and in fact on this aspect

achieves the best performance of any method.

5.1 Experimental Set-Up

We evaluate our multi-aspect ranking algorithm on a corpus1 of restaurant reviews available

on the websitehttp://www.we8there.com. Reviews from this website have been

previously used in other sentiment analysis tasks [15]. Each review is accompanied by

a set of five ranks, each on a scale of 1-5, covering food, ambience, service, value, and

overall experience. These ranks are provided by consumers who wrote original reviews.

Our corpus does not contain incomplete data points since allthe reviews available on this

website contain both a review text and the values for all the five aspects.

1Data and code are available athttp://people.csail.mit.edu/bsnyder/naacl07
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5.1.1 Corpus Statistics

Our corpus contains 4,488 reviews, averaging 115 words. We randomly select 3,488 re-

views for training, 500 for development and 500 for testing.The corpus contains 528

among55 = 3025 possible rank sets. The most frequent rank set〈5, 5, 5, 5, 5〉 accounts

for 30.5% of the training set. However, no other rank set comprises more than 5% of the

data. To cover 90% of occurrences in the training set, 227 rank sets are required. There-

fore, treating a rank tuple as a single label is not a viable option for this task. We also

find that reviews with full agreement across rank aspects arequite common in our corpus,

accounting for 38% of the training data. Thus an agreement-based approach is natural and

relevant.

A rank of 5 is the most common rank for all aspects and thus a prediction of all 5’s

gives aMAJORITY baseline and a natural indication of task difficulty.

5.1.2 Parameter Tuning

We used the development set to determine optimal numbers of training iterations for all

models. These numbers were always three or four. After more than four rounds all models

experienced some over-fitting. Also, given an initial uncalibrated agreement modela′, we

define our agreement model to bea = αa′ for an appropriate scaling factorα. We tune the

value ofα on the development set.

5.1.3 Evaluation Measures

We evaluate variants of our algorithm and baselines usingranking loss[7, 1]. Ranking

loss measures the average distance between the true rank andthe predicted rank. Formally,

givenN test instances(x1,y1), ..., (xN ,yN) of anm-aspect ranking problem and the cor-

responding predictionŝy1, ..., ŷN , ranking loss is defined as
∑

t,i
|y[i]t−ŷ[i]t|

mN
. Lower values

of this measure correspond to a better performance of the algorithm.
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Figure 5-1: Rank loss for our algorithm and baselines as a function of training round.
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5.2 Results

5.2.1 Comparison with Baselines

Table 5.1 shows the performance of the Good Grief algorithm (GG (SVM)) along with

baselines. We give a brief description of each method and itsresulting performance:

• MAJORITY: The majority baseline mentioned in section 5.1 – all aspects are given a

rank of 5. On average, the prediction of this baseline is off by about one full rank.

• PRANK: The first competitive baseline learns a separate ranker foreach aspect using

the PRank algorithm described in section 2. Using this simple learning approach, the

average distance between true and predicted ranks is reduced to 0.675.

• SVM: For this baseline, we use the multiclass SVM framework [6] [29] to train a

separate classifier for each aspect. The ranks 1-5 are treated as distinct classes and

a set of weights is learned for each. While potentially losing some of the generiz-

ability of the ranking approaches (by learning separate weights for each aspect), this

approach utilizes the well-studied and powerful batch optimization techniques of the

Support Vector Machine. This approach yields improvement over PRank learning

and results in an average rank loss of 0.646.

• SVM2 : This variant on theSVM baseline utilizes a quadratic kernel. As all our fea-

tures are binary features indicating the presence or absence of lexical items, this

baseline has the effect of operating over a feature space including all pair-wise con-

junctions of such lexical items. The effect of this larger feature space is a significant

drop in prediction quality, with a rank loss of 0.722.

• SIM: This baseline uses the PRank algorithm to learn separate rankers for each as-

pect, but shares weights across all rankers using a similarity measure [1]. The

method is described in more detail in Chapter 2. This joint model achieves per-

formance gains over the independentPRANK model and reduces the rank loss on

average to 0.634.
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Food Service Value Atmosphere Experience Total
ALL AGREE 0.558 0.634 0.640 0.746 0.586 0.633
DELEGATE 0.550 0.604 0.654 0.744 0.592 0.629
FORCE 0.524 0.626 0.648 0.768 0.570 0.627
GG (SVM) 0.528 0.590 0.638 0.750 0.564 0.614

Table 5.2: Ranking loss on the test set for Good Grief (GG (SVM)) and other agreement-
based methods.

• GG (SVM): Good Grief training and decoding with an agreement model trained

separately using SVM optimization (Variant 1 of Good Grief training – see Figure

3-2). This model achieves statistically significant gains (by a Fisher sign-test atp <

0.05) over all the baselines. Improvement is seen in all aspects except for value,

where both GG (SVM) andSIM both achieve rank loss of 0.638.

Figure 5-1 shows the performance of our model along with two of the baselines on the

test set as a function of number of training rounds. Althoughall models tend to experience

over-fitting after the third or fourth training iteration, our model maintains a consistent edge

over the baselines.

5.2.2 Comparison with other agreement-based methods

In the next set of experiments, the results of which are shownin Table 5.2, we compare

the performance of the Good Grief algorithm (GG (SVM)) with other methods which are

based on the idea ofagreement. We find some improvement gains over the baselines with

these ad-hoc methods, but none of them match the performanceof our model.

• ALL AGREE: This method is essentially a variant of the Good Grief algorithm. The

model is forced to predict a consensus rank vector (all 5’s, all 4’s etc) for every

instance. In the Good Grief framework this is achieved by setting scorea(x) = ∞

for all inputsx. This produces a non-infinite grief only when all aspect ranks agree.

Thus, the consensus rank vector with lowest grief will be predicted. This simple

method of anchoring the aspect ranks to one another yields performance gains over

all the baselines in Table 5.1 with an average rank loss of 0.633.
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Food Service Value Atmosphere Experience Total
GG BIAS 0.524 0.636 0.636 0.764 0.570 0.626
GG DECODE 0.546 0.612 0.658 0.746 0.588 0.630
GG PERCEPT 0.542 0.610 0.648 0.738 0.574 0.622
GG PERCEPT JOINT 0.490 0.620 0.678 0.726 0.560 0.615
GG (SVM) 0.528 0.590 0.638 0.750 0.564 0.614

Table 5.3: Ranking loss on the test set for variants of Good Grief and various baselines.

• DELEGATE: This method uses a two-step, delegation approach. If the agreement

model2 predicts consensus, then a single ranking model is used to predict a rank for

all aspects (and is trained on cases of consensus in the training data). Otherwise,

individual rankers trained with PRank are used. As withALL AGREE, gains are

observed over the baselines and an average rank loss of 0.629is achieved.

• FORCE: Like DELEGATE, this method always predicts a rank vector consistent with

the agreement model’s prediction (of consensus or non-consensus). However, here

this is achieved within the Good Grief framework by settingscorea(x) to∞ when

the agreement model predicts consensus, and−∞ otherwise. However, the griefs

of component ranking models are still taken into account when choosingwhichcon-

sensus or non-consensus rank vector to predict. Using the Good Grief framework in

this way yields a slight performance gain overDELEGATE with average rank loss of

0.627.

5.2.3 Comparison with Good Grief variants

Here we compare variations of the Good Grief algorithm. The results are shown in Ta-

ble 5.3.

• GG BIAS: In this simplest variation of the Good Grief algorithm, no actual agreement

model is utilized. Instead, a single constant bias score is used to encourage agreement

across aspects. This is implemented in the Good Grief framework by always setting

2trained separately via SVM optimization
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Food Service Value Atmosphere Experience Total
GG DIVERGE 2 0.528 0.634 0.640 0.766 0.572 0.628
GG FOOD ATMOS 0.544 0.626 0.638 0.714 0.602 0.625
GG (SVM) 0.528 0.590 0.638 0.750 0.564 0.614

Table 5.4: Ranking loss on the test set for agreement-based Good Grief (GG (SVM)) and
two Good Grief models with other meta-models.

scorea(x) = b for some bias scoreb. This has the effect of pushing borderline cases

into agreement. The resulting rank loss is surprisingly lowat 0.626.

• GG DECODE: This variant uses PRank training to learn independent ranking models

for each aspect and only applies the Good Grief algorithm at test time. An indepen-

dently trained SVM agreement model is used. Without the benefit of joint training

we see a smaller improvement over the baselines and achieve rank loss of 0.630.

• GG PERCEPT: This model usesVariant 1 (Figure 3-2) of Good Grief training and

decoding. The agreement model is pre-trained using the Perceptron algorithm [25].

By training the ranking models to operate in the context of the Good Grief decoder,

we achieve gains over GGDECODE as well as GGBIAS, with an average rank loss

of 0.622.

• GG PERCEPT JOINT: This model usesVariant 2 (Figure 3-3 of Good Grief training

and decoding. This training variant couples the online training of the agreement

model and the ranking models by using the feedback of Good Grief decoding for all

model updates. By training the agreement model in tandem with the ranking models,

we see improved overall performance, and achieve a rank lossof 0.615. While an

improvement over GGPERCEPT, the performance is basically equivalent to that of

GG (SVM), which uses trainingVariant 1 with a pre-trained SVM agreement model.

5.2.4 Comparison with other meta-models

We performed experiments with two meta-models besides simple agreement. Although

neither shows performance gains over the simple agreement-based model, one of them, GG
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Food Service Value Atmosphere Experience Total
GG (SVM) 0.528 0.590 0.638 0.750 0.564 0.614
DELEGATE ORACLE 0.540 0.596 0.610 0.690 0.568 0.601
GG ORACLE 0.510 0.578 0.674 0.694 0.518 0.595

Table 5.5: Ranking loss on the test set for Good Grief and various oracular models.

FOOD ATMOS, performs best for the hardest aspect:atmosphere. Full results are shown in

Table 5.4.

• GG DIVERGE 2: A Good Grief variant using a different meta-model: Instead of

a simple consensus-based agreement model, here we use a meta-model which pre-

dicts whether there is a divergence of at least two rank unitsbetween aspect ranks.

The meta-model is pre-trained using SVM optimization. Thismodel outperforms all

baselines, with an average rank loss of 0.628.

• GG FOOD ATMOS: A Good Grief variant using a different meta-model. This meta-

model predicts whether the food aspect (which always gives the best performance)

has the same rank as the atmosphere aspect (which always gives the worst perfor-

mance). Although not performing as well as other Good Grief models for most as-

pects, this version achieves the highest performance for the Atmosphere aspect.

5.2.5 Comparison with oracles

In this set of experiments, we tested two models which at testtime are told by an oracle

whether or not each instance has agreement across aspects. The results are shown in Ta-

ble 5.5. Not surprisingly, both oracle based models outperform all other models, including

GG (SVM).

• DELEGATE ORACLE: Instead of using a trained agreement model, this oracular vari-

ant of delegate is told exactly which cases have consensus across aspects and which

do not, and delegates to individual ranking models or a single consensus-case rank-

ing model accordingly. This model outperforms all previously shown models and

achieves average rank loss of 0.601.
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Consensus Non-consensus
PRANK 0.414 0.864
GG (SVM) 0.326 0.823
GG ORACLE 0.281 0.830

Table 5.6: Ranking loss for our model andPRANK computed separately on cases of actual
consensus and actual disagreement.

• GG ORACLE: Instead of using a trained agreement model, this oracular variant of the

Good Grief model is told exactly which cases have consensus and which do not. The

decoding decision is then made which minimizes grief. This is implemented in the

Good Grief framework by settingscorea(x) to∞ in cases of true consensus and−∞

in cases of non-consensus. For most aspects (and overall), this model – which still

uses Griefs of the component ranking models – outperforms the DELEGATE ORACLE

model. Overall, this model outperforms all other models, with an average rank loss

of 0.595.

5.2.6 Analysis of Results

We separately analyze our performance on the 210 test instances where all the target ranks

agree and the remaining 290 instances where there is some contrast. As Table 5.6 shows,

we outperform thePRANK baseline in both cases. However on the consensus instances we

achieve a relative reduction in error of 21.2% compared to only a 4.7% reduction for the

other set. In cases of consensus, the agreement model can guide the ranking models by

reducing the decision space to five rank sets. In cases of disagreement, however, our model

does not provide sufficient constraints as the vast majorityof ranking sets remain viable.

This explains the performance of GGORACLE, the variant of our algorithm with perfect

knowledge of agreement/disagreement facts. As shown in Table 5.5, GGORACLE yields

substantial improvement over our algorithm, but all of thisgain comes from consensus

instances (see Table 5.6).
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5.2.7 Performance of Agreement Model

We also examine the impact of the agreement model accuracy onour algorithm. The agree-

ment model, when considered on its own, achieves classification accuracy of 67% on the

test set, compared to a majority baseline of 58%. However, those instances with high

confidence|a · x| exhibit substantially higher classification accuracy. Figure 5-2 shows

the performance of the agreement model as a function of the confidence value. The 10%

of the data with highest confidence values can be classified bythe agreement model with

90% accuracy, and the third of the data with highest confidence can be classified at 80%

accuracy.

This property explains why the agreement model helps in joint ranking even though its

overall accuracy may seem low. Under the Good Grief criterion, the agreement model’s

prediction will only be enforced when its grief outweighs that of the ranking models. Thus

in cases where the prediction confidence (|a · x|) is relatively low,3 the agreement model

will essentially be ignored.

5.3 Summary

In this chapter we presented several sets of experiments to test the practical merits of our

approach. We found that out model outperforms several baselines, including individual

ranking models [7], a state-of-the art joint ranking model [1], and multiclass Support Vec-

tor Machines [6]. Interestingly, using a quadratic kernel with the multiclass SVM only de-

graded performance. Thus we see that an increase in expressive power must be cautiously

undertaken to avoid the problem of over-fitting.

We also performed experiments comparing our model to other decoding methods using

an agreement model. In these other methods, we imposehard constraints, either always

forcing agreement, or forcing agreement and disagreement according to the dictates of the

agreement model. We found that none of these methods proved as effective as the Good

Grief framework, whichweighsthe relative confidence of the meta-model against the con-

3What counts as “relatively low” will depend on both the valueof the tuning parameterα and the confi-
dence of the component ranking models for a particular inputx.
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Figure 5-2: Accuracy of the agreement model on subsets of test instances with highest
confidence|a · x|.
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fidence of the ranking models when making its prediction. We also compared our method

to a simple bias-based method (GGBIAS), which instead of learning an input-sensitive

agreement model, simply imposes a soft constraint which always encourages agreement in

borderline cases. We found that this method comes up short incomparison to a flexible

Good Grief model.

Next we compared different methods of training our Good Grief model. The simplest

approach was to individually train each ranking model as well as the agreement model, and

only apply Good Grief decoding at test time. In fact, even this approach outperforms all

baselines. However, larger gains are seen when jointly training all ranking models with

a pre-trained perceptron agreement model. The best resultswith a perceptron agreement

model are seen when the meta-model itself is trained jointlywith all the ranking models, by

using the feedback from Good Grief decoding. Similar results are found when pre-training

the agreement model using SVM optimization.

In summary, the features of our model which seem essential toour performance gains

are three-fold:

• joint training using Good Grief decoding as feedback,

• the imposition ofsoft global constraints by weighing the confidence of the meta-

model against the confidence of the ranking models, and

• the imposition offlexibleglobal constraints by using a trained meta-model which is

sensitive to the features of each input.

In the next chapter we conclude our thesis and provide some comments about future

research directions.
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Chapter 6

Conclusion and Future Work

We considered the problem of analyzing multiple related aspects of user reviews. The

algorithm presented jointly learns ranking models for individual aspects by modeling the

dependencies between assigned ranks. The strength of our algorithm lies in its ability to

guide the prediction of individual rankers using rhetorical relations between aspects such

as agreement and contrast. We have demonstrated the expressive power of our framework,

while proving that it preserves the convergence guaranteesof simpler methods.

We conducted extensive experiments to test the practical benefit of our framework. We

found that our method yields significant empirical improvements over individual rankers,

a state-of-the-art joint ranking model, and ad-hoc methodsfor incorporating agreement.

Our experiments show that the key benefit of our framework is the incorporation of global

coherence predictions through soft and flexible constraints.

In the future, we’d like to explore a broader array of meta-models. Ideally, we’d like to

inducethe structure of the meta-model automatically from a data-set, instead of deciding

ahead of time which label relations it should predict. In addition, we’d like to apply our

framework to data where the component tasks are not necessarily comparable. For exam-

ple, sometimes we’d like to perform some mix of extraction, classification, ranking, and

regression all on the same input. Finally, we’d like to develop methods which can account

for cases where thenumberof tasks to be performed is variable and unknown. For example,

in many realistic scenarios we won’t know ahead of time whichaspects of a restaurant that

a reviewer will mention.
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