
Effective Simulation and Debugging for a High-Level Hardware
Language using Software Compilers

Clément Pit-Claudel
MIT CSAIL

Cambridge, Massachusetts, USA
cpitcla@csail.mit.edu

Thomas Bourgeat
MIT CSAIL

Cambridge, Massachusetts, USA
bthom@csail.mit.edu

Stella Lau
MIT CSAIL

Cambridge, Massachusetts, USA
stellal@csail.mit.edu

Arvind
MIT CSAIL

Cambridge, Massachusetts, USA
arvind@csail.mit.edu

Adam Chlipala
MIT CSAIL

Cambridge, Massachusetts, USA
adamc@csail.mit.edu

ABSTRACT
Rule-based hardware-design languages (RHDLs) promise to en-

hance developer productivity by offering convenient abstractions.

Advanced compiler technology keeps the cost of these abstractions

low, generating circuits with excellent area and timing properties.

Unfortunately, comparatively little effort has been spent on build-

ing simulators and debuggers for these languages, so users often

simulate and debug their designs at the RTL level. This is problem-

atic because generated circuits typically suffer from poor readability,

as compiler optimizations can break high-level abstractions. Worse,

optimizations that operate under the assumption that concurrency

is essentially free yield faster circuits but often actively hurt sim-

ulation performance on platforms with limited concurrency, like

desktop computers or servers.

This paper demonstrates the benefits of completely separating

the simulation and synthesis pipelines. We propose a new approach,

yielding the first compiler designed for effective simulation and

debugging of a language in the Bluespec family. We generate cycle-

accurate C++ models that are readable, compatible with a wide

range of traditional software-debugging tools, and fast (often two

to three times faster than circuit-level simulation). We achieve

these results by optimizing for sequential performance and using

static analysis to minimize redundant work. The result is a vastly

improved hardware-design experience, which we demonstrate on

embedded processor designs and DSP building blocks using perfor-

mance benchmarks and debugging case studies.

CCS CONCEPTS
·Hardware→ Simulation and emulation;Hardware descrip-
tion languages and compilation; · Software and its engineer-
ing → Compilers.

KEYWORDS
Hardware simulation, hardware debugging, compilation

ASPLOS ’21, April 19ś23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446720

ACM Reference Format:
Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chli-

pala. 2021. Effective Simulation and Debugging for a High-Level Hardware

Language using Software Compilers. In Proceedings of the 26th ACM Inter-

national Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3445814.3446720

1 INTRODUCTION
Most hardware designs are expressed in a spectrum of languages

ranging from low-level RTL (Verilog [27] or VHDL [20]) to sequen-

tial software languages with annotations for high-level hardware

synthesis (Vivado HLS [31], Handel-C [14], Clash [23], etc.). Differ-

ent points on this scale entail different trade-offs.

Verilog offers limited programming abstractions and compos-

ability, which makes it tedious to write and debug, but it offers

developers fine-grained control over the resulting circuits. HLS

systems Ð that is, hardware design systems that start from soft-

ware languages to generate Verilog Ð offer rich abstractions and

excellent debugging and simulation facilities but poor control over

generated circuits. This is not surprising because the sequential

computation model of software languages is deeply at odds with

hardware computation models, which try to run all parts of a circuit

in parallel all the time.

Rule-based languages, such as Bluespec [21], Kôika [3], and

Kami [6], offer an interesting middle ground, with predictable per-

formance and yet high-level, usable, and composable semantics.

Rule-based designs describe the manipulation of (hardware) state

elements using state-transforming atomic rules, which (appear to)

execute sequentially. An RTL compiler then introduces concurrency

by translating rules into individual circuits that run in parallel yet

preserve the illusion of sequentiality (one-rule-at-a-time semantics).

Significant research effort has been dedicated to synthesizing

high-quality hardware from Bluespec designs. Comparatively lit-

tle effort has been expended on cycle-accurate simulation, debug-

ging, and testing of rule-based designs: these tasks are typically

performed at the generated-Verilog level. As a result, despite its con-

venient abstractions, Bluespec is not particularly pleasant to debug.

Debugging is mainly performed using printf and wave analysis.

In addition, simulating Bluespec-generated Verilog is not par-

ticularly fast. The key issue is that compilers that target RTL opti-

mize for fast hardware Ð not fast simulation! Efficient execution

789

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446720
https://doi.org/10.1145/3445814.3446720
https://creativecommons.org/licenses/by/4.0/

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

in hardware requires maximum parallelism, so code generators

(and hardware engineers) will often introduce additional circuitry

(and increase area) to increase concurrency (and reduce critical

paths). This directly hurts simulation performance when running

on a limited-concurrency platform such as a desktop computer or

a server.

This paper tackles both of these issues by fully decoupling simu-

lation and synthesis while keeping simulation cycle-accurate (we

say that a model is cycle-accurate if the values that it computes for

all of the state elements and I/Os of a design match those produced

by the real circuit at every cycle, regardless of how these values

are computed). We design a new compilation backend for Kôika

(a Bluespec-inspired language that provides fine-grained control

over scheduling) that targets C++ instead of Verilog. This back-

end supports all features of Kôika and is separate from Kôika’s

RTL backend. By implementing optimizations specifically geared

towards sequential execution and leveraging existing C++ compiler

technology, we can produce much-faster software models: speedups

of 2× to 3× are typical in our experience. This performance does not

come at the cost of intelligibility: by mapping Kôika abstractions to

zero-cost idiomatic C++ patterns, we can obtain readable models

that closely reflect the structure of the original design.

Concretely, our Kôika simulator, called Cuttlesim, works by com-

piling each design into a custom C++ program. The baseline ver-

sion of such a program reads like a fairly direct transliteration.

However, we also apply optimizations like exiting early when an

atomic rule aborts, so that later code can be skipped (in RTL, in

contrast, the whole rule is computed in all cases). Some of these

optimizations depend on static analyses that are much easier to

perform on Kôika than on RTL.1 We then discover opportunities to

specialize the data structures and algorithms used for tracking con-

flicts between rules. These models are compatible with the whole

range of traditional software-debugging tools, enabling a whole

new hardware-debugging and verification experience. The infor-

mation these tools return is easy to map back to the original Kôika

hardware design (which can be matched nearly line-by-line with

the generated C++ code), without making changes to standard tools

like gdb and gprof.

So, overall, we suggest a new workflow for hardware develop-

ment: write in rule-based hardware-description languages, compile

automatically to C++ programs, debug and profile with standard

software tools, repeat, and only later synthesize to RTL. This paper

presents our Cuttlesim prototype and some representative uses of

it in developing embedded-class RISC-V processors and simple DSP

components. The paper makes the following contributions:

(1) We show how using completely separate toolchains for soft-

ware simulation and hardware synthesis leads to faster sim-

ulation and improved debugging experience.

(2) We describe techniques to build fast software models of rule-

based designs, using lightweight transactions.

(3) We show that rule-based designs are amenable to heavy op-

timization through static analysis that exploits the simplicity

of the input language.

1These optimizations are possible because maintaining cycle-level accuracy only
requires computing the same state-element updates in each cycle in Cuttlesim models
and in RTL: there is no need to preserve the amount of computation that is performed
in each cycle.

(4) We give concrete evidence of the value of this approach

using simulation performance benchmarks and debugging

and design-exploration case studies.

We note that we are focused on designing concrete circuits, not

evaluating microarchitectural ideas independently of implemen-

tation. As such, we focus on cycle-accurate simulation, not on

processor simulation in the style of Gem5 [2] or ZSim [24].

Cuttlesim is part of the Kôika HDL distribution; it is freely avail-

able under the GNU GPL at https://github.com/mit-plv/koika/.

2 RULE-BASED DESIGNS AND THEIR
SIMULATION OVERHEADS

This section explains why simulating rule-based designs after com-

pilation to Verilog is inefficient and why rule-based designs are in

fact amenable to fast simulation. We start with a brief reminder

about rule-based designs and their compilation to Verilog. Details

about Kôika and its hardware synthesis are available in [3].

2.1 Rule-Based Designs
Languages in the Bluespec family encourage designers to decom-

pose hardware designs into small units of work called rules. In a

pipelined CPU design, each rule would typically encode one stage

(fetch, decode, execute, writeback, etc.).

Rules are written in a simple language with traditional constructs

like conditionals, variable bindings, and combinational functions,

plus three special primitives: read,write, and abort. These primitives

define how rules change the system state and communicate within

a cycle. Each read and write is annotated with a port (0 or 1): a

read at port 0 observes the value of a register at the beginning of

the cycle; a read at port 1 observes the latest write at port 0 if any

or the beginning-of-cycle value otherwise; a write at port 1 is not

observable until the next cycle. An abort cancels a rule’s execution.

The semantics of the language specify that rules (should appear

to) execute atomically, one-at-a-time: that is, the results computed

by a design should be the same as if exactly one rule executed per

cycle, with no concurrency and no intracycle communication. Im-

plementing these semantics requires ruling out linearity violations,

typically through static analysis or dynamic tracking of read-write

sets (for example, a write at port 0 precludes a read at port 0 in

the same cycle: if both rules ran in the same cycle, the second one

would observe the original value, not the result of the write). In

Kôika (the language that Cuttlesim implements), each program has

rules as well as an explicit scheduler, which specifies the order in

which rules should (appear to) run.

As an example, assume that we aremodeling a two-statemachine,

whose internal state is represented with a register x. An additional

register st keeps track of whether the machine is in state 𝐴 or 𝐵.

The dynamics of the state machine can be described using two rules,

rlA and rlB, each predicated to run only if the machine is in the

right state, as follows:

rule rlA =

if (st.rd0 != ‘A) abort;

st.wr0 (‘B);

let new_x := fA(x.rd0 (), get(input)) in

x.wr0 (new_x); put(output, new_x)

790

https://github.com/mit-plv/koika/

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Here, fA is some combinational function doing potentially com-

plex work, and input and output are external ports used to com-

municate with the outside world. Rule rlB is similar, and since the

two rules are mutually exclusive it does not matter which order we

schedule them in. In each cycle, one of the two rules will execute,

read input, update the machine’s internal state, and write it to

output.

To understand why the hardware that Kôika generates for this

design does not lend itself to fast simulation, we first need to un-

derstand how Kôika compiles designs to Verilog.

2.2 Generating Circuits for Rule-Based Designs
Kôika generates hardware by creating one circuit per rule, in iso-

lation, then wiring these rule circuits together as specified by the

scheduler. Individual rule circuits track reads and writes to each

register, at each port. Scheduling logic ensures that the reads and

writes performed by two rules are compatible and merges their

results: if the execution of a rule leads to a conflict or an explicit

abort, its results are discarded.

The circuit generated by Kôika for the trivial example above is

a combinational circuit that computes the new values of st (𝐴 or

𝐵) and x (the machine’s internal state). The resulting Verilog looks

roughly like this:

module stm(input wire CLK,

input wire [31:0] in,

output wire [31:0] out);

reg st = 1’b0;

reg [31:0] x = 32’b0;

wire [31:0] fB_out, fA_out;

fA mod_fA(.x(x), .in(in), .out(fA_out));

fB mod_fB(.x(x), .in(in), .out(fB_out));

assign out = st == ‘A ? fA_out : fB_out;

always @(posedge CLK) begin

st <= st == ‘A ? ‘B : ‘A;

x <= out;

end

endmodule

The same circuit is represented in the figure below:

st

x

A B

In

==`A

`B

`A

Out

In this simple example, the circuits generated for st and x are

bothMuxes of the values computed by each rule, predicated by the

state that the machine is in at the beginning of the cycle. In a more

complex setting, a nontrivial Boolean circuit would decide whether

the results of each rule should be committed or discarded.

Note how the circuits corresponding to all rules run in every

cycle, though only one of them łcommitsž (that is, just one of them

updates the state).

2.3 Overheads in Simulating Kôika
The compilation strategy employed by Kôika [3] is to ensure maxi-

mal concurrency between rules by running all rules concurrently

in every cycle and reconciling their results a posteriori. Unfortu-

nately, this makes it inefficient to simulate in software that runs on

a limited-concurrency platform.

Optimizing for circuits and optimizing for simulation on a CPU

are different goals, and it makes sense that Kôika would optimize

for good circuit performance. In hardware, the cost (critical path)

of the generated circuit will be |Mux(st == A, fA_out, fB_out) | =

|Mux| +max (|st == A| , |fA_out| , |fB_out|), where |X| is the cost

of circuit X.

Unfortunately, simulating this circuit as written leads to un-

necessary computation. A typical Verilog simulator will generate

code to compute both fA_out and fB_out in every cycle, then mux

their results. The sequential running time, thus, would become

|Mux| + |st == . . . | + |fA| + |fB|. We note in passing that at

such a small granularity, there is almost nothing to be gained from

introducing thread-level concurrency because of the high cost of

synchronization and data movement. Decomposing the simulation

of a large design to run on multiple cores can make sense, but the

amount of concurrency in a circuit is usually much larger than the

number of cores in a typical computing platform.

This is a trivial example, and accordingly one might hope to opti-

mize it and run only the relevant branch of theMux (Verilator does

not, but other simulators might, and it would be reasonable for it to

grow that capability). But on a more complex example, additional

rules can easily complicate the picture and make the optimizations

intractable. For example, maybe in state 𝐴 the machine reads from

an input FIFO, and the rule fails if this FIFO is empty. Or maybe

the whole state machine is embedded in a larger design, and both

rules can only execute if no preceding rules generated conflicts: for

example, the system might support an external reset command

whose execution prevents rlA and rlB from running in that cycle

(this would ensure that reset does not need to be sequenced with

rlA and rlB and thus does not lengthen the machine’s critical path).

A compiler aware of Kôika’s semantics, starting from the orig-

inal design, would save a lot simply by faithfully mapping Kôika

behavior to a sequential execution model. It would generate code

that stops executing a rule as soon as it fails. In our example, its cost

(running time) would be |st == A| + |fA| + |st == B| if the machine

is in state 𝐴, and |st == A| + |st == B| + |fB| if the machine is in

state 𝐵: in no cycle do we need to pay for the cost of executing both

rules.

The important concept here is that Kôika’s semantics allow rules

to exit early, either from conflicts with previous rules or from ex-

plicit aborts. In software, the ideal implementation of these early

exits is to jump straight to the next rule, skipping whatever remains

of the current rule. Our key contribution is showing how to design

791

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

a compiler that takes advantage of Kôika’s łearly-exitž semantics

and generates C++ models that are perfectly suited to a CPU’s

mostly sequential execution paradigm. We do this by designing

a lightweight transaction system, using static analysis to further

reduce transaction costs. Static analysis is particularly easy in this

context, because Kôika’s semantics are simple and explicit.

There is a surprising benefit to this perspective shift. By de-

signing the simulator carefully, we can produce readable models,

amenable to all sorts of software-focused methodologies (step-

through debugging, code-coverage analysis, etc.). For example, here

is how the C++ model rlA might look, annotated with Gcov execu-

tion counts, after 500 cycles:

-:500 DEF_RULE(rlA) {

-:500 if (READ0(st) != state::A)

-:250 return false;

-:250 WRITE0(st, state::B);

-:250 bits<32> y = fA(READ0(x), get(input))

-:250 WRITE0(x, y); put(output, y);

-:250 COMMIT();

-:250 }

It turns out that simply collecting code-coverage statistics on

the generated C++ code offers an incredible wealth of architectural

information, without having to add a single hardware counter.

We give evidence of the performance of our simulator, and de-

tailed examples of the new design methodologies that our tooling

enables, in section 4. But first, we present the technical insights

that make these results possible.

3 COMPILING KÔIKA FOR SIMULATION
The performance of Cuttlesim’s models is achieved through two

distinct technical contributions: a lightweight implementation of

transactions that is shared by all designs, and design-specific opti-

mizations that are derived using static analysis.

Details on the structure of the models that Cuttlesim generates,

how they lend themselves to further optimization by C++ compilers,

and what techniques we employed to make them both readable and

seamlessly debuggable are given in Appendix A.

3.1 Matching Kôika’s Transactional Semantics
The original Kôika paper describes Kôika’s semantics using rule

logs, each of which keeps track of the reads and writes performed

by a single rule; and a cycle log, which keeps track of the reads and

writes performed by all the rules that are scheduled in a cycle. Each

cycle starts with an empty cycle log. Rules are executed one-by-one,

and every time a rule attempts to perform a read or write, a check is

made against both the cycle log and rule log up to that point in the

cycle to ensure that the action is permitted; if not, the whole rule

aborts. When a rule executes successfully, its rule log is appended

to the cycle log. Otherwise, the rule log is discarded. At the end of

the cycle, the values of the design’s state elements (registers) are

updated based on the reads and writes accumulated in the cycle

log.

The C++ models that Cuttlesim produces closely follow this idea.

Each design is compiled into a C++ class. Rules become functions

that construct rule logs. The design’s scheduler becomes a function

that calls each rule in turn. The key difficulty in compiling Kôika is

to devise efficient representations for these logs, and to implement

the transactional semantics of the rules, which require maintaining

shadow states. We start with a naive model, which we then refine

incrementally into an efficient implementation. This lets us explain

each optimization individually.

In a naive model, Cuttlesim keeps three pieces of data: the values

of the design’s registers at the beginning of the cycle (its publicly

observable state), a cycle log, and a rule log. The logs are arrays

containing a structure for each register, which indicates whether

the register was read or written at port 0 or 1, plus two data fields

(data0 and data1) that keep values written at port 0 or 1 in that

register. Reads and writes are implemented as C functions that

check whether the operation is permitted by Kôika’s semantics

and either update the rule log or cause the rule function to abort.

Specifically, a read at port 0 checks for writes at any port in the

cycle log and returns the beginning-of-cycle value of the register; a

read at port 1 checks for writes at port 1 in the cycle log and returns

the most recent write0 value from either log, falling back to the

beginning-of-cycle state; a write at port 0 checks for reads at port 1

and writes at port 0 or 1 in both logs; and a write at port 1 checks

for other writes at port 1 in both logs.

When a cycle begins (resp., entering a rule), Kôika clears the

read-write sets of the cycle log (resp., the rule log) and invalidates

its data fields. When a rule succeeds, its log is committed into the

cycle log: read-write sets are or-ed together, and the cycle log’s data

fields are updated to reflect writes found in the rule log. When a

rule fails, nothing needs to be done: the rule log will be reset upon

entering the next rule, so the rule simply returns early.When a cycle

completes, the model’s register values are updated by committing

the cycle log: if a write occurred at port 1 the data1 value is copied

from the log to the state; otherwise if a write occurred at port

0 the data0 value is used instead; and otherwise the state is left

unchanged.

3.2 Optimizing Transactions
This simple implementation of transactions is slow: models spend

inordinate amounts of time checking and copying read-write sets,

copying data between logs, and committing results. We improve

the design through a sequence of refinements, starting with those

that are design-independent.

Separate read-write sets and data. Our naive logs store read-write

sets and data fields together. This makes logical sense, but it makes

clearing read-write sets costly: we need to zero out parts of a struc-

ture interleaved with data. A much better approach is to store

read-write bitsets separately from write data: this way, resetting all

read-write sets is just a matter of zeroing out a structure, which is

cache-friendly and efficient. Concretely, this means changing the

type of logs to hold two structures: one for read-write sets and one

for values written.

Accumulate logs instead of merging them. Keeping the cycle log 𝐿

and the rule log ℓ separate makes many operations more costly than

they need to be: writes need to perform checks on both logs; reads

at port 1 need to look for data in both logs and in the beginning-of-

cycle state; and committing a rule log requires or-ing read-write

sets together (this is very fast) but also checking for writes at either

792

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

port in the rule log and optionally copying that data to the cycle log

(this is very slow). To speed up these two operations, we change to

keeping a cycle log 𝐿 and an accumulated rule log 𝐿 ++ ℓ , ensuring

that the full accumulated log (not just its read-write sets) is reset

upon entering each rule. This makes checks for write operations

much simpler (they only need to check the accumulated rule log)

and speeds up rule commits significantly (committing a rule is now

a plain copy from the accumulated log).

Reset on failure, not on entry. When a rule fails, we just exit from

the corresponding function. This works because the next rule will

reset the accumulated rule log by copying the cycle log into it. This

reset is redundant when a rule completes successfully: committing

the accumulated rule log already ensures that the cycle log and the

accumulated rule log match. We thus enforce a new invariant: the

accumulated log should match the cycle log at the end of each rule.

Tomaintain this invariant we need to reset the rule log upon failures

(by copying the cycle log into it) and to reset the read-write set of

the cycle log at the beginning of each cycle. This makes failures

more costly, but it allows us to eliminate the resets performed upon

entering each rule.

Merge data0 and data1. Keeping data0 and data1 separately

is almost never necessary, except in uncommon code like the fol-

lowing:

rule rl = r.wr0 (1); r.wr1 (2); r.rd0 (); r.rd1 ()

Assuming that register r held value 0 at the beginning of the

cycle and was neither written nor read previously, this rule would

execute successfully, with the rd0 reading 0 and the rd1 reading

1. Kôika’s semantics dictate that the call to read0 should return

r’s initial value, 0, and that the call to read1 should return the

latest value written at port 0 (ignoring the write1 that happened

in the same rule), i.e. 1. The value 2 would only be observable

after the end of the cycle. If the rule log kept a single data value,

the write1 would overwrite the 1 with 2, and the read1 would

incorrectly observe it. This type of code is rare in real designs, as

it is widely considered an anti-pattern in Bluespec. Instead, it can

be rewritten, either by moving the write1 down, or by moving

the read1 up, or by storing the value written at port 0 into a local

variable and referencing that instead of calling read1. Since this

pattern is easy to detect and eliminate, Cuttlesim rejects designs in

which it appears, producing an error message and asking users to

apply a simple refactoring (the refactoring could be automated, but

this pattern is so rare that it does not warrant the effort). Merging

the data fields nearly halves the space occupied by the internal

state of Cuttlesim models, and it saves time at the end of the cycle:

instead of selectively committing either data0 or data1 at the end

of each cycle, we can check for either write and commit the same

data.

Eliminate beginning-of-cycle state. Merging data0 and data1

allows us to further debloat the model by entirely eliminating the

beginning-of-cycle state kept in addition to the logs. By changing

the model to initialize the data parts of both logs to the registers’

initial values (instead of leaving them indeterminate), we establish

a new invariant: the data stored in both logs at the end of each

cycle matches the values stored in the beginning-of-cycle state.

The implementation of reads needs to change to read the logs

as appropriate. Eliminating the separately kept state saves nearly

a third of the remaining model memory, eliminates end-of-cycle

commits entirely, saves time in reads, and even allows mid-cycle

snapshots.

Taken together, these optimizations yield lightweight and rela-

tively efficient transactions that faithfully implement Kôika’s se-

mantics. Profiling, however, reveals that models still spend a lot of

time copying data: each commit or reset requires copying entire

logs, including the data and read-write states of all registers. We

now show how the cost of commits, resets, and read-write checks

can be reduced dramatically using design-specific optimizations.

3.3 Leveraging Design-Specific Knowledge
All the optimizations described below leverage information gath-

ered using a straightforward abstract-interpretation pass. This pass

annotates each read, write, and abort within a rule with a conserva-

tive approximation of the (unaccumulated) rule log at that point in

the program, plus one Boolean per register indicating whether any

of the operations on this register might cause failures (due to con-

flicts) within that rule. Additionally, it generates an approximation

of the whole-cycle log by combining the individual rule logs, plus

Booleans indicating whether each register might cause failures2.

Minimize read-write sets. Kôika’s semantics give each register

two read ports and twowrite ports. To determine whether reads and

writes to these elements are valid, Cuttlesim tracks four Booleans

per state element, indicating which operations have occurred. In

most cases, some of this tracking information is redundant.

First, though Kôika’s semantics track reads at port 0, this tracking

is only useful as part of a concurrent compilation scheme where

rules are all executed in parallel and conflict resolution is delayed.

When compiling to a sequential model, as in Cuttlesim, the conflict

is flagged as soon as the read is attempted: the read0 part of read-

write sets is unused and can be removed.

More generally, we can use the information gathered in our static

analysis to classify registers: łplain registersž are read and written

only at port 0; wires are written at port 0 and read at port 1; and

łEHRsž (łephemeral history registersž) make more complex use of

read and write ports. Then, Cuttlesim can exploit this classification

to save memory and simplify conflict checking.

Eliminate read-write sets for łsafež registers. A register is safe if

the reads and writes performed on it can never fail (the register

cannot be a source of inter-rule conflicts). This is the case if all reads

and writes on it are ordered in such a way that the corresponding

checks always succeed. For a simple register, this would mean never

reading after writing; for a wire, this would mean never performing

a write (at port 0) after a read (at port 1); for other EHRs, this

would mean satisfying the whole set of conditions specified by

Kôika’s semantics. The static-analysis pass performed by Cuttlesim

computes a conservative approximation of whether each register is

safe; for safe registers, it completely discards read-write sets and

performs reads and writes directly, without checking the usual read

and write preconditions. This change speeds up reads and writes

2The update formula for the flag indicating whether operations on a register can cause
failures is essentially a tribool version of Figure 5 from the original Kôika paper [3].

793

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

as well as commits, failures, and the read-write-set reinitialization

performed at the beginning of each cycle.

Restrict commits and rollbacks to each rule’s footprint. The static

approximation of each rule log provides an upper bound on its

footprint (the set of registers that it reads or writes). Cuttlesim

generates custom commit and reset functions that copy and roll

back the read-write sets of only those registers that may be read (at

port 1) or written, as well as the data parts of only those registers

that may be written. However, if a rule touches most of the registers

in a design, Cuttlesim reverts to copying whole logs (it is typically

faster to perform a single memcpy between two logs than to perform

a large number of individual field copies).

Speed up early failures. Kôika rules commonly have guards, ex-

plicit checks that cause a rule to abort if a condition does not hold.

Typically, these checks happen very early, before attempting to

write registers; hence, if the rule aborts, there are no modifications

to roll back. In that case, Cuttlesim produces code that exits the

rule without rollback.

4 EVALUATION
Cuttlesim models are fast and enable new styles of hardware de-

bugging and design exploration. In this section, we support these

claims using performance benchmarks (subsection 4.1) and case

studies (subsection 4.2). Instructions to run the artifact included

with this paper are given in Appendix B.

4.1 Simulation Performance
To evaluate Cuttlesim’s performance, we compare primarily against

Verilator, an open-source state-of-the-art Verilog simulator3.

Experimental design. Our evaluation revolves around the simula-

tion of different variants of an embedded processor core supporting

the RV32I&E flavors of the RISC-V ISA (minus system instructions,

interrupts, and exceptions) running a simple integer-arithmetic

benchmark. To demonstrate that Cuttlesim also behaves well on

designs without much control logic, we also evaluate the perfor-

mance of Cuttlesim on two purely combinational circuits: a small

finite impulse response filter and the butterfly parts of a large FFT

design.

Of course, the point of this evaluation is to measure simulation

performance, not to showcase the architectural qualities of specific

embedded designs. Our benchmarks are described in Table 1.

As Kôika has not yet been used to design very large systems, our

benchmarks are all small-to-medium-sized (tens to thousands of

lines of Kôika or Bluespec code, or hundreds to tens of thousands of

lines of Verilog code). Consequently, we do not make claims about

Cuttlesim’s performance on very large designs.

Experimental setup. All benchmarks were run on an Intel Core i7-

4810MQCPU@2.80GHz, using the compiler settings recommended

by Verilator for maximum performance.

Results. We use our benchmarks to answer three questions:

3The authors of Verilator write that łVerilator has typically similar or better performance
versus the closed-source Verilog simulators (Carbon Design Systems Carbonator, Modelsim,
Cadence Incisive/NC-Verilog, Synopsys VCS, VTOC, and Pragmatic CVer/CVC).ž

Table 1: Our benchmarks. Metaprogramming examples use
code generation. Combinational examples each include a
single rule and no scheduling or conflicts. Specialization
and heavy optimizations can lead to very small Verilog line
counts.

SLOC

M C Kôika Cuttlesim Verilog Cycles

collatz ✗ ✓ 38 42 13 1G

Trivial state machine

fir ✓ ✓ 126 102 18 1G

Finite impulse response filter

fft ✓ ✓ 266 802 341 30M

Part of a Fast Fourier Transform

rv32i ✗ ✗ 1436 3462 787 25.1M

Small RISCV core (branch predictor: pc + 4)

rv32e ✗ ✗ 1436 2648 413 25.1M

Embedded variant of rv32i (predictor: pc + 4)

rv32i-bp ✗ ✗ 1706 9855 3087 23.7M

rv32i with a better branch predictor (btb + bht)

rv32i-mc ✗ ✗ 2047 20575 2855 46.8M

Dual-core variant of rv32i (predictor: pc + 4)

Q1: Can Cuttlesim models run faster than a state-of-the-art Ver-

ilog simulator? Yes. We answer this question by comparing the

execution time of various Kôika designs when simulated directly

with Cuttlesim or indirectly by compiling them to Verilog using

the preexisting Kôika compiler and running them with Verilator.

Figure 1 shows our results: on control-heavy designs like CPU cores,

Cuttlesim is multiple times faster than Verilator. On combinational

circuits, Cuttlesim’s advantage is narrower, as expected. Other sim-

ulators that we benchmarked against (CVC and Icarus) were orders

of magnitude slower than Verilator.

106 107 108 109

Cycles per second, log scale (95% CI)

collatz
fir
fft

rv32e-primes
rv32i-primes

rv32i-bp-primes
rv32i-mc-primes

cuttlesim
verilator-koika

0 20 40 60 80 100
Run time (seconds, 95% CI)

collatz
fir
fft

rv32e-primes
rv32i-primes

rv32i-bp-primes
rv32i-mc-primes

cuttlesim
verilator-koika

Figure 1: Performance of Verilator and Cuttlesim models

794

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Q2: Is Cuttlesim’s advantage only due to Kôika’s compiler gener-

ating inefficient Verilog circuits? No. We answer this question by

benchmarking Cuttlesim models against Verilator simulating Ver-

ilog code generated by the commercial Bluespec compiler from

equivalent designs. We know that the Verilog generated by Kôika

works well with synthesis tools, as the circuits it produces tend

to have critical paths and areas comparable to Bluespec-generated

ones. However, Kôika targets a much smaller subset of Verilog than

Bluespec does. This is for soundness reasons. Kôika’s compiler is

formally verified against a minimal specification of circuits: the

smaller the subset of Verilog used, the more assured we can be

that tools will interpret it consistently. Figure 2 shows our results:

the Verilog code that Kôika generates simulates roughly within a

factor two of that generated by Bluespec for an equivalent design

(notably, this number varies depending on the exact version of Veri-

lator used; we notice that the code produced by Bluespec runs faster

with Verilator 4, while the code produced by Kôika runs faster with

Verilator 3.9). In all cases, it is very likely that a different compiler

to Verilog could produce significantly better Verilator performance,

but optimizing for simulation performance is unnecessary if we

have a separate simulator, and indeed in that case we would prefer

to focus on the quality of the synthesized hardware (as a concrete

example, we could generate much simpler circuits by not introduc-

ing concurrency when compiling Kôika’s schedulers, but the result

would be much slower after synthesis).

0.0 2.5 5.0 7.5 10.0 12.5
Run time (seconds, 95% CI)

fir

fft

rv32i-primes

cuttlesim
verilator-koika

verilator-bluespec

Figure 2: Performance ofmodels on equivalent Bluespec and
Kôika designs

Q3: How sensitive is Cuttlesim’s performance to external factors, es-

pecially compiler choices and tool versions? Somewhat sensitive. We

answer this question by compiling Cuttlesim and Verilator models

using GCC and Clang and benchmarking the results. Figure 3 shows

our results: we find that execution times vary but that Cuttlesim’s

speed advantages over Verilator are relatively stable.

0 2 4 6 8 10
Run time (seconds, 95% CI)

cuttlesim

verilator-koika

g++-9 g++-10 clang++-10

Figure 3: Performance of Verilator and Cuttlesim models

4.2 Debugging, Verification, and Digital Design
Exploration Case Studies

Hardware designers spend a significant amount of time simulating

designs in order to validate correctness, understand performance

properties, and explore design trade-offs. As such, effective design-

exploration and debugging tools, which enable designers to under-

stand how a design works or why it does not work as expected, are

invaluable in the development process.

In this section, we show how Cuttlesim improves the state of

the art in debugging and architectural exploration of rule-based

designs. We walk through a series of experiential case studies il-

lustrating various aspects of the hardware design and debugging

process: functional-correctness debugging of a cache-coherence

protocol, functional validation of a design using randomized testing,

performance debugging of an embedded processor core, and design

exploration adding a branch predictor to an existing processor.

All of these case studies focus on cases where cycle-accuracy is

paramount: we are working on concrete designs and using Kôika

to generate actual circuits. High-level simulators like Gem5 and

Zsim would not be applicable.

Case study 1: Debugging a cache-coherence protocol. To illustrate

the debugging process with Cuttlesim, we look at a simple case

where a programmer is debugging a deadlock in a 2-core machine

with L1 łchildž caches and a łparentž protocol engine implementing

the MSI cache-coherence protocol. To determine what state the

system is stuck in, the programmer runs the Cuttlesim model of

the system in gdb until reaching the deadlock state. Next, they use

gdb’s interactive interface to print information corresponding to

relevant state. In particular, they recall that there are status registers

such as miss status handling registers (MSHRs), tracking protocol

state.

MSHRs are structures containing various pieces of informa-

tion, including a tag that is either Ready, SendFillReq (indicat-

ing a cache miss and needed to send a request to the parent), or

WaitFillResp (indicating waiting for a response from the parent).

The tag type was implemented in Kôika as an enum, and the MSHRs

as a struct. The enum names have semantic meaning that are pre-

served in the generated C++model, and fields of the structure can be

accessed naturally by name without doing bit slicing. Furthermore,

the programmer does not have to write custom pretty-printers.

Now, the programmer observes that Core 0’s cache is deadlocked

in the WaitFillResp state and the parent protocol engine is in

the ConfirmDowngrades state (due to an upgrade request from

Invalid to Modified for an address held by Core1). To determine

why the rule corresponding to ConfirmDowngrades was not exe-

cuting (and hence why there was no state transition away from

ConfirmDowngrades), they set a breakpoint on the call to FAIL(),

which indicates an early exit from a rule. We consider two possibil-

ities.

Suppose gdb indicated the failure was caused by a conflict be-

tween rules. The programmer puts a watchpoint (hardware break-

point) on the relevant read-write set and executes in reverse (this

is made possible by reverse debugging tools like rr [11] or GDB’s

native recording facilities). The compiler stops where the previous

write happened, indicating an accidental write1 instead of write0,

conflicting with the rule’s read1.

795

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

Contrast this experience with debugging at the Verilog level.

Determining why a rule fails means going through each part of the

fail signal to tease out what made it true. Then finding the source of

the previous write means wading through a forest of other signals,

which is tedious and error-prone.

Alternatively, suppose the failure was caused by an explicit

abort. There are multiple possibilities here: perhaps the downgrad-

ing has not finished, or main memory has not responded with the

cache line. To determine the cause, the programmer steps through

the rule in gdb (they are able to do this due to Cuttlesim’s fine-

grained simulation of transactions, allowing sequential exploration

of what code paths were taken). They realize the rule failed due

to intermediate state unexpectedly indicating that downgrading

has not finished, despite observing that the other core has indeed

downgraded its state. Printing out the intermediate state, they real-

ize that it was erroneously computed, successfully pinpointing the

problem.

Traditional methods of debugging similar bugs might involve

adding $display statements (so-called printf() debugging) or

wave-form debugging (e.g. using GTKWave) with Verilog. However,

traditional printf() debugging often suffers from having to go

through multiple (time-consuming) recompilation cycles, as it is

not immediately clear what state is relevant, and the debugger

does not want to be overwhelmed with irrelevant state. With wave-

form debugging, we sacrifice the high-level abstractions and close

correspondence with original source code, requiring an additional

mental step to map the logging output to the original source.

With Cuttlesim, there was no need to recompile the design in

order to add logging statements: interactive debugging enables

programmers to print just the relevant bits of state, as they become

needed Ð including stopping halfway through the execution of a

cycle to print the intermediate stated produced by the execution of

a few rules.

Furthermore, the ability to step through (sometimes in reverse)

the generated model and observe state at fine granularity was

useful to test local assumptions about the code interactively. Unlike

Verilog-level debugging, stepping through interactively makes it

very clear which parts of the design execute in a given cycle.

Finally, we note that this process mostly resembled high-level

software debugging of state machines.

Case study 2: Functional verification with scheduler randomization.

A good rule-based design should use its scheduler for performance

but not for functional correctness: designs should work regardless

of the order that rules are executed in. We would like to verify

this property experimentally, using randomized testing to validate

the design under many different schedulers. Without Cuttlesim

and without significant modifications to Kôika’s compiler, a limited

approximation of this could be achieved by creating many copies

of the design with different schedules and compiling each of them

independently. Instead, Cuttlesim’s C++ models make it trivial to

run this experiment in full generality: in C++, it suffices to write

a cycle() function that calls rules in random order, unlike the

default cycle() implementation which follows the order specified

by the user-supplied scheduler. We used this methodology to gain

confidence in the RISC-V cores that we evaluated for performance.

Case study 3: Performance debugging. A standard methodology

for designing processors in rule-based languages is to focus initially

only on functional correctness in the one-rule-at-a-time semantics

(ignoring interrule concurrency and cycle boundaries) and then fine-

tune the concurrency by deciding which subset of rules happens in

each cycle.

This section describes another flavor of hardware łdebuggingž:

architectural performance tuning. Concretely, this involves choos-

ing bypassing paths (using interrule communication through read-

write ports) and a scheduler that, together, maximize performance.

Suppose a programmer observes (on a 4-stage pipelined pro-

cessor with an idealized single-cycle memory) that retiring 100

NOP instructions took 203 cycles. This suggests suboptimal per-

formance, for one would assume that the pipeline would take one

cycle per instruction on a program containing no branches and

thus no misses.

To investigate, the programmer starts a gdb session to step

through the execution, following a NOP instruction through the

pipeline rule-by-rule. They observe that a NOP instruction is never

decoded in the same cycle that an older NOP is executed. Taking

advantage of Cuttlesim’s ability to step through individual rules,

they observe that the decoding stage checks the scoreboard for

outstanding writes to the source registers of the instruction being

decoded (to prevent read-after-write hazards where an instruction

would observe a stalled value not yet updated by an older instruc-

tion). In this case, the scoreboard marked the previous NOP as a

dependency on the NOP being decoded, and so the new NOP could

not be decoded.

One could think that NOP instructions do not write and so do not

generate dependencies. However in RISC-V, a NOP is encoded as

ADDI x0 x0 0, where x0 is a special non-writeable register always

containing 0. Likely, the processor designer neglected to implement

a special case for tracking the dependencies on register x0, creating

an unintended dependency between the NOP instructions.

Identifying such a bug using traditional tools is particularly

difficult because one needs to go backward. First, the debugger must

ensure that the compiler did not erase any intermediate signals.

Next, the programmer must locate and display the stuttering signals

(using some Verilog display debugging), and finally they print all

the signals used in the computation of the stuttering control signal

to identify the cause. With Cuttlesim, the programmer simply steps

forward through the code and observes the point where the rule

fails. Since the generated model corresponds closely to the original

source code, this is straightforward and there is no additionalmental

step to relate the model to the original source.

Case study 4: Branch-prediction exploration. In this section, we de-

scribe the process of improving the branch-prediction mechanism

of a baseline processor that only had a simple łPC + 4ž predic-

tor. The goal of this section is not to equip the processor with a

state-of-the-art branch prediction but rather to illustrate the pro-

cess of architectural refinement in rule-based designs when using

Cuttlesim.

Concretely, we need to add a Branch Target Buffer in charge

of recording the target addresses of branch and jumps and a

Branch History Table in charge of tracking and predicting whether

branches are taken or not, and we must update the mechanism that

796

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

handles mispredictions. We name the two designs baseline and

bp.

Traditionally, to measure the improvement achieved by such an

architectural change, we would add hardware performance coun-

ters, iteratively gathering increasing amounts of data (instructions

executed per cycle, number of mispredicted instructions, number

of cycles spent waiting for a subsequent instructions, etc.).

In Cuttlesim, we can gather all those statistics at once, without

adding a single piece of counting hardware. We use a code-coverage

tool called Gcov, which measures the number of times that each line

of a C++ model was executed. Since the model matches the source

design closely, these counts naturally provide detailed architectural

information.

The following listings show representative snippets of Gcov

output, in the baseline design and in the improved design:

// Execute stage (baseline)

14890635: bits<32> nextPc = ctrlResult.nextPC;

14890635: if (nextPc != decoded.ppc) {

2071903: WRITE0_FAST(pc, nextPc);

// Execute stage (improved branch predictor)

14890635: bits<32> nextPc = ctrlResult.nextPC;

14890635: if (nextPc != decoded.ppc) {

165753: WRITE0(pc, nextPc);

// Scoreboard logic (baseline)

21424532: if (score1 != 0 || score2 != 0) {

9211172: FAIL();

// Scoreboard logic (improved branch predictor)

21579776: if (score1 != 0 || score2 != 0) {

9211302: FAIL();

We learn that the number of mispredictions went down from

2,071,903 to 165,753. From the same Gcov run, we also learn that

for this specific program the decoding of instructions is very often

stalled by the scoreboard, because of read-after-write hazards. This

is explained by missing bypassing paths, forcing the processor to

insert bubbles between back-to-back data-dependent arithmetic

instructions. From this evaluation and more in-depth inquiry, the

working architect may want to think of ways to reduce that poten-

tial bottleneck.

Designing profiling harnesses using hardware counters can take

significant work. Cuttlesim, in combination with Gcov, enables us to

collect these performance numbers with low effort and high speed,

making quantitative evaluation of rule-based designs significantly

easier.

5 CORRECTNESS AND INTEROPERABILITY
Introducing a separate compilation toolchain for simulation has

many advantages, but it also introduces risks: some features avail-

able in RTL simulators may not be available in Cuttlesim, and there

may be bugs in the models generated by Cuttlesim.

5.1 Cycle Accuracy
Kôika’s semantics guarantee that rules appear to execute atomically,

and user-provided schedules impose an apparent execution order:

hence, all Kôika programs are fully deterministic (this is unlike

Bluespec, where the schedule is chosen by the compiler). As a

result, Kôika programs have clear and unambiguous performance

characteristics in terms of which rules will fire in a given cycle

or how many cycles a design will take to reach a given result on

a given input. (This is quite different from high-level synthesis,

where part of the compilation process involves deciding what runs

in which cycle. In Kôika, the programmer can know exactly how

many cycles something will take before invoking the compiler to

Verilog, and the compiler to circuits is formally verified to preserve

these timing properties.)

Cuttlesim implements rules and schedules faithfully: one cycle

of a C++ model exactly corresponds to one cycle of the original

design, as specified by Kôika’s semantics. As a result, any semantic

or timing divergence between the C++ models and the generated

Verilog code would be due to bugs in Cuttlesim or in user-supplied

implementations of external functions.

5.2 Interoperability
Traces. Cuttlesim models include facilities to generate VCD files,

a simple and popular format for recording traces of hardware de-

signs. These traces do not include the values of intermediate inter-

nal signals generated by Kôika’s compiler (indeed, Cuttlesim does

not compute these values, since it uses a separate toolchain), but

they include all values written to publicly visible state elements;

these values match those generated by Verilator and other HDL

simulators.

Snapshots. Cuttlesim can snapshot its state to disk and reload

these snapshots to resume execution from a previously reached

state. As a result, it is possible to mix optimization levels or even

simulators: after running a few million cycles with Cuttlesim at -O3

optimization and saving the design’s state to disk, one can reload it

into a Cuttlesim model compiled with all debugging options turned

on for interactive step-through debugging; or one can load that

into a Verilator model compiled from the RTL version of the same

design to debug integration with other Verilog components.

External functions. Hardware designs commonly make use of

external IP such as memories, peripherals, etc. In Kôika, these are

accessed through external functions. When compiling to RTL, these

are mapped to wires on the design’s interface or internal Verilog

modules, and for RTL simulation one uses Verilog models provided

by the IP’s designer. When compiling to C++ using Cuttlesim, two

options exist: users can write their own C++ model of the compo-

nent, or they can compile the vendor-supplied Verilog model to C++

using Verilator and link the resulting libraries into their Cuttlesim

models.

5.3 Correctness
We use a mix of formal verification and testing to reduce the chance

of bugs introduced by Cuttlesim:

• We formally verify some of the static analyses that Cuttlesim

performs. For example, one of our optimizations needs to

check if a subexpression is pure (free of side effects such as

variable assignments or register reads and writes). For this,

Cuttlesim calls a function written and verified using the Coq

proof assistant [26].

797

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

• We use differential testing on a range of examples, ensur-

ing that the traces produced by Kôika’s reference interpreter

(written in Coq), by Verilator, and by Cuttlesim models agree.

To make comparisons between Verilator and Cuttlesim eas-

ier, we made sure that Cuttlesim’s VCD traces match those

generated by Verilator exactly, down to signal names.

• We use standard unit tests and integration tests, including

running self-checking C programs on our RISC-V cores to

catch regressions.

6 RELATED WORK
Different hardware-design communities use very different lan-

guages and tools and have different requirements in terms of the

quality of generated circuits (when circuits are generated) and im-

portance of timing fidelity of simulation. We discuss several of these

communities and their approaches in this section.

Digital design and Verilog. Digital design usually begins with

writing RTL, and Verilog is a de-facto standard for doing so. Ver-

ilog was originally designed with explicit concern for software

simulations [27] of circuit designs, but by the 1990s it became the

standard interface for hardware synthesis as well because it pro-

vided a layer of abstraction over gate libraries. Verilog is actually

structured around two sublanguages ś a purely structural language

to describe circuits and a behavioral language with higher-level

features that are not intended to be synthesized to hardware but

instead used to write testbenches and behavioral models of the

hardware.

Because of its pervasive use, a rich variety of tools that work

in conjunction with Verilog are available. For example, as designs

became larger, people started generating structural Verilog using

facilities coming from metalevel languages [1, 7, 25]. Still, most of

these languages provide only limited support for functional and

performance debugging of complex designs.

When it comes to Verilog simulation, the programmer has several

options depending on which subset of Verilog one is interested in

simulating. When one is interested in simulating synthesizable

designs expressed in the structural subset of Verilog with a single

(or few) clocks, the best choice is often to do cycle-based simulation.

In this case, the standard approach is to translate Verilog to C to get

C functions that compute the cycle state updates, yielding excellent

performance [15, 28]. In contrast, to simulate more of the Verilog

language (including behavioral constructs), simulators traditionally

use an event-based (or activity-based) approach, e.g. in Icarus [30].

In both cases, the debugging experience is not ideal, leaning

heavily on either printf debugging (display statements in Verilog)

or direct observation of wave forms. When Verilog is compiled to

C, the C generated is not intended to be read, and so C debugging

tools are not of much use.

FPGA simulation. Another way to achieve very fast Verilog sim-

ulation is to map the design on an FPGA. There are two main

inconveniences in doing so: (1) the synthesis, placement, and rout-

ing flow is very slow (it is not uncommon when targeting a modern

FPGA to wait several hours for the design to be ready to be run);

and (2) some hardware structures do not map well over FPGAs, and

changing them reduces the fidelity of the simulation. Sophisticated

techniques have been devised to preserve the cycle-accuracy of

the original RTL even when FPGA implementations use different

hardware structures [22, 29]. Significant work has also gone into

improving the architectural debugging experience when using FP-

GAs. For example, [19] runs two copies of the design offset in time

by, for example, 1 million cycles. When an assertion violation is ob-

served in the front-running design, the simulation stops, allowing

the designer to observe the state of the design trailing behind, from

before the assertion was violated and hopefully before things went

wrong. The user then saves the state, makes sure that the state of

the design is sound, and then slowly steps (either on FPGA or even

better in a software model) through the design to investigate at

which moment it took an unexpected path that ended up violating

an assertion later. In this case, the FPGA gives a way to get quickly

to a state close to the bug, when standard software simulation could

take days to reach that state.

When the architecture simulated is a design distributed on a

network, which would not fit on a single FPGA, the FireSim frame-

work [18] may be used for accurate simulation of both the network

and the endpoint, using multiple instances in the AWS cloud.

Higher-level abstractions for digital designs. Rule-based lan-

guages [3, 6, 16, 21] provide an intermediate middleground. They

embody a clean concurrency model that is intrinsically useful

for debugging, formal verification, and digital-design exploration.

Such designs can also be translated predictably and efficiently to

RTL. However, these languages’ tools piggyback on RTL simulators

for simulation. So far they have not exploited the extra structure

coming from the rule abstraction for software simulation - that is

what this paper is about.

HLS. High-level synthesis [4, 8ś10, 12, 13, 17, 23] is the field of

research focused on translating a subset of a software language like

C, C++, or Haskell to circuits. The seduction of this approach comes

from the fact that for a number of applications, especially in signal

processing, the code is already available in some software language,

and thus simulating such systems in software is straightforward.

Themain difficulty is usually in generating circuits of predictably

high quality. For fixed-dataflow accelerators, the approach has

been quite successful, even seeing commercial success in recent

years [31]. However, there has been little evidence of the success of

the approach in designing complex control-heavy machines, like

out-of-order processors. Theoretically, functional simulation of the

C source should give similar results to the simulation of the RTL,

but there is no a-priori notion of cycle-accuracy in such simulation.

[5] points out that to match the cycle-by-cycle behavior of the syn-

thesized circuits, the choices made by the synthesis engine need to

be reconstructed exactly as-is in the software simulator, taking into

consideration optimizations performed by the synthesis engine. In

one dimension, this observation is the same for us: our simulator

needs to implement the schedule specified by the program. But

because this schedule is explicitly specified by the program, instead

of constructed and optimized by the compiler, our simulator does

not need to reverse-engineer the choices made by the Kôika to

Verilog compiler to provide cycle-accurate simulation.

798

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

High-level architectural exploration. Computer architects explore

many complex microarchitectural alternatives before building a mi-

croprocessor. It is quite difficult to produce an RTL-level design for

each alternative. A proper evaluation also requires running huge

benchmark programs on each design, so simulation speed is para-

mount. Hence, most architects evaluate ideas with models [2, 24, 32]

that do not represent actual machines’ cycle counts accurately.

Evaluating architectural ideas at a higher level of abstraction

is at least three orders of magnitude faster than simulating the

corresponding design at the cycle-accurate level. It is also relatively

easy to change software simulators, but the constant danger of this

approach is that the simulated design can easily omit critical details

of the hardware design. One source of simulation speed in this

approach is direct execution: if we simulate an x86 machine on an

x86 platform, most of the simulator’s instructions can be executed

directly on the underlying hardware.

7 CONCLUSION
Rule-based languages offer high-level semantics, powerful abstrac-

tion facilities, and composability, together with fine-grained control

over generated circuits. They enable rapid prototyping and devel-

opment of hardware designs without sacrificing circuit quality, of-

fering an enticing middle ground between raw RTL and high-level

synthesis from software languages.

Until now, most research on rule-based languages had focused

on semantics and compiler technology for circuit generation. Little

attention had been paid to simulation, debugging, or testing. These

tasks were simply performed at the Verilog level, using generic RTL

tooling.

We have shown that a much better experience is possible by

fully decoupling hardware synthesis from simulation and debug-

ging. We built a specialized compilation toolchain from the Kôika

language to C++ that leverages high-level semantic properties to ob-

tain significant speedups over state-of-the-art RTL-level simulators.

Because our compiler preserves the structure of the designs, the

cycle-accurate models that it generates can be used for debugging,

exploration, validation, and testing, enabling hardware designers to

leverage the whole ecosystem of software debugging. Through case

studies, we have illustrated a new style of hardware development,

dramatically improving over the state of the art in hardware-design

debugging.

Although we have focused on rule-based designs, our insights

have broad applicability, and we hope to see more applications of

software tools to improve the hardware-development workflow in

the future. The recent explosion of open-source hardware designs,

toolchains, and processes, along with widespread availability of

cheap FPGAs, has allowed a whole new set of hardware hobbyists to

join the hardware-development community.We hope that improved

tooling, especially of the kind that software developers are used to

working with, will further lower the barriers to entry and make

hardware design even more approachable.

ACKNOWLEDGMENTS
We thank our shepherd Adrian Sampson and the anonymous re-

viewers of our submission for their insightful feedback and their

help in improving this paper.

Sandia National Laboratories is a multimission laboratory man-

aged and operated by National Technology & Engineering Solutions

of Sandia, LLC, a wholly owned subsidiary of Honeywell Interna-

tional Inc., for the U.S. Department of Energy’s National Nuclear

Security Administration (NNSA) under contract DE-NA0003525.

This work was funded in part by NNSA’s Advanced Simulation and

Computing (ASC) Program, in addition to the Defense Advanced Re-

search Projects Agency (DARPA) under Grant No. HR001118C0018

and the National Science Foundation under Grant No. CCF-1521584.

This paper describes objective technical results and analysis. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the the U.S. Department of Energy, DARPA, or

the United States Government.

A COMPILER DETAILS
To assemble a model, Cuttlesim proceeds in 4 steps:

• A Kôika source file is parsed into an untyped AST.

• Its well-formedness is checked using a simple type-checker.4

• A partially verified static-analysis pass annotates the type-

checked AST with information about reads, writes, and

aborts.

• A code-generation pass informed by the results of this anal-

ysis generates C++ code.5

A.1 Structure of Cuttlesim Models
The C++ models that Cuttlesim generates closely follow the struc-

ture of the corresponding Kôika hardware designs. Each design is

translated into a single header file containing C++ type definitions

(matching the type definitions used in Kôika) and a model (a class

encapsulating the state of the model as well as methods to interact

with it). The generated code can then be driven by a user-written

testbench that supplies implementations for external functions, in-

stantiates the model, and runs it. An additional header-only library

is included by all models; it includes shared datatype definitions,

implementations of Kôika’s primitives, and convenience functions

to instantiate and drive models.

Each model class exposes a simple interface: cycle() steps the

simulation forwards by one cycle, updating the model’s internal

state accordingly; snapshot() returns a copy of the design’s ob-

servable state (the values stored in registers); reset() reinitializes

the simulation to a given state. Individual snapshots can be pretty-

printed to standard out or written to disk in a standard hardware

trace format (VCD) for analysis or comparison against Verilog mod-

els. Additional methods allow users to run or produce traces over

multiple cycles.

Datatypes. Each Kôika datatype is translated to a matching C++

type: bits to a custom templated bitvector type (so that bits 5

in Kôika becomes bits<5> in C++), enumerations and structures

to their C++ equivalents, and arrays to C++11’s std::array. For

4The original Kôika system only existed as a domain-specific language embedded
inside of the Coq proof assistant, using dependent types to capture well-formedness,
but we have extended it by adding an untyped layer and a typechecker as well as a
standalone input language.
5A Makefile and a testbench stub are generated alongside the model to give easier
access to debuggers, profilers, trace visualizers, and other tools.

799

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

structures and enums, the compiler also generates an implementa-

tion for equality comparison, pretty-printing, packing values into

bitvectors, and unpacking values out of bitvectors. For arrays and

bitvectors, these functions are derived using template metaprogram-

ming.

Models. Kôika designs are composed of rules calling internal

and external functions, tied together by a scheduler. Accordingly,

Kôikamodels are C++ templates parameterized by a type of external

functions, with one method per rule and per internal function, plus

one method (cycle to implement the scheduler). Rule methods

take no arguments and implement a transactional API: either they

succeed, return true, and update the model’s internal state; or they

fail, return false, and leave the model untouched6. An internal

function takes the same arguments as its Kôika counterpart plus a

pointer to write its results to, and it returns a Boolean indicating

whether it succeeded (failures propagate all theway up to the calling

rule and cause it to abort). External function calls are translated

to method calls on an instance of a user-supplied extfuns class

passed to the model as a template parameter.

Rules and function bodies. To match the style and structure of

the original programs as closely as possible, Cuttlesim translates

rules and functions in a single pass, going directly from Kôika ASTs

to C++ without generating intermediate representations. When

possible, Kôika constructs are translated to corresponding C++

forms (conditionals to if statements, let bindings to C++ variable

declarations, variable assignments to C++ assignments, sequences

to consecutive statements, etc.). The main sources of divergence

are transactional constructs (register reads and writes as well as

aborts, whose semantics require special support), evaluation order

(C++ does not specify function-argument evaluation order, while

Kôika does), and expression/statement discrepancies. Kôika does

not distinguish between statements and expressions: all expressions

can contains reads, writes, variable assignments, and early returns

(aborts). C++ does distinguish, so Cuttlesim hoists out stateful

subexpressions and introduces temporary variables as needed to

match Kôika’s semantics.

A.2 Generating Compiler-Friendly Code
Introduce in-place mutation. Kôika values are immutable: the

primitive that changes a field of a structure returns a fresh structure

with that field changed, which the caller may assign back to the

same variable. The same is true for arrays, and it neatly matches to

the execution model of circuits, where replacing a set of wires by

another is essentially free. This style is suboptimal in C++, however:

there is no point in creating a copy of a structure or an array

and immediately discarding the original just to modify one of its

fields. Cuttlesim recognizes this pattern and translates it to a direct

assignment.

Special-case common patterns. A common way to create a fresh

zero-initialized structure or array in Kôika is to create a zeroed-out

vector of the right width and unpack it to obtain a value of the

appropriate type. Cuttlesim symbolically evaluates the argument

of each call to unpack and, if it is 0, produces code that initializes

6The Booleans returned by rules are a debugging aid: the model does not use them.

the structure directly and skips the unpacking. Other similar pat-

terns provide easy gains without diminishing the readability of the

generated code.

Generate optimizable code. Cuttlesim mostly restrict itself to

high-level optimizations on the generated code: we expect users

to interact with the generated C++ models, so we leave most of

the low-level optimizations to later compilation passes, in the C++

compiler. As a result, the performance of Cuttlesim’s models is

heavily dependent on how well the compiler optimizes them.

To facilitate study of the assembly that compilers produce, Cut-

tlesim has a minimal mode in which it produces just the core of

the model, stripped of all pretty-printing and reporting, reduced to

a single function performing 𝑛 iterations of the model. We spent

considerable time optimizing the code generated by Cuttlesim to

improve this output. Often, this means allowing the compiler to

learn more information about the code. For example, it should not

matter whether read-write sets are reset at the beginning or at the

end of each cycle, at least as long as logs are not modified between

calls to cycle(). When resetting at the beginning of the cycle, how-

ever, the compiler does not need complex analysis to propagate the

information that read-write sets start out all-zero, nor does it need

to restrict the corresponding optimizations to the cases in which

nothing is called between consecutive calls to cycle(). This allows

for much better optimization, especially if rules are small enough

to be inlined. Another example: bitvectors of sizes 1 through 8 are

all represented as 8-bit uint8_t values. In the library routine that

converts a bit<1> to a Boolean, the compiler does not know that

the routine’s input must have all top 7 bits set to 0. Explicitly stating

it (if (v > 1) __builtin_unreachable()) allows the compiler

to generate better code. Sometimes even adding more code can help

the compiler generate less: in the preceding example, changing

bool(v) into bool(v & 1) enables the same optimizations. Simi-

larly, when a rule touches many registers, it is often faster to copy

the whole log than to reset only touched registers using individual

copies, because the former compiles to heavily optimized copying

routines. Other times removing seemingly trivial code can make

a significant difference: for example, zero-initializing each field of

a structure individually as part of its constructor does not yield

the same results as using the automatically generated constructor,

which zero-initializes the whole structure Ð including (in C++11)

any structure padding. The latter can often lead to much more com-

pact and faster code, and in general improper structure padding

and alignment issues can cause significant performance trouble (we

measured one instance in which explicitly preventing Clang from

packing two fields together yielded a 10-fold speedup on a very

simple model).

A.3 Generating Usable Code
A defining goal of Cuttlesim is to produce readable and debuggable

models. For this purpose, Cuttlesim employs a few tricks:

Ad-hoc polymorphism and template metaprogramming. Most

Kôika primitives are polymorphic: +works on bitvectors of any size,

pack works on any datatype, get and put work on arrays of any

size, etc. On the C++ side, the compiler uses operator and function

800

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

overloading to get readable output and template metaprogramming

to minimize the amount of generated code.

Macros and notations. We make minimal use of macros, as they

can hurt step-by-step debugging. When we do use them, we make

sure that they do not hide significant amounts of code. We make

heavy use of C++11’s numeric literal operator templates to define

readable constants, so that in C++ models generated by Cuttlesim,

4'0110_b and 4'6_d are 4-bit bitvectors with equal value, while

4'11010_b and 4'26_d are compile-time out-of-range errors.

This enables users to debug at a much finer-grained level than

complete cycles, while preserving their intuitions about Kôika’s

semantics.

Scoping and expressions. C++ scoping rules are slightly dif-

ferent from Kôika’s. We use them when possible, and we

attempt to minimize the number of nested scopes that are

created. Concretely, if a Kôika program says if ... then

let a := ... in let b := ... in let a := ..., we generate

code similar to if (...) { auto a = ...; auto b = ...;

{ auto tmp = a; auto a = ...; } }. When expressions contain

stateful subparts, we hoist these parts out into temporary variables.

Because C++ debuggers are typically line-oriented, this also makes

it easier to step through individual stateful subexpressions. (For a

similar reason, we do not use statement expressions, a common

C++ extension allowing statements such as variable declarations

inside expressions.)

Tooling. Cuttlesim auto-generates a Makefile with targets for

many tools that can be useful to explore our models. Concretely,

we have targets for building optimized and debugging builds; run-

ning the model and tracing its execution to generate VCD files;

visualizing VCD traces in GTKWave; running a debug build under

GDB, LLVM; collecting and stepping through rr traces; profiling

a model’s execution; collecting and visualizing coverage statistics;

and a number of targets that invoke the regular Kôika compiler to

produce circuits, simulate them with Verilator, and compare the

resulting VCD traces to those produced by Cuttlesim (discrepancies

between VCD traces indicate bugs in user-supplied implementa-

tions of external functions: for self-contained models that do not

use external functions, the traces will always match).

B ARTIFACT

B.1 Abstract
Kôika is a high-level hardware design language. This paper is about

Cuttlesim, a simulator for Kôika designs. Typical hardware simu-

lators like Verilator start from circuits, but Cuttlesim is different:

it works by compiling Kôika hardware designs to C++ directly,

through a new pipeline that does not use Kôika’s circuit compiler.

Our artifact is an easy-to-run distribution of Kôika and Cuttlesim

and of the hardware designs used in the evaluation section of our

paper. It is packaged as a virtual machine, built using a simple setup

script that pulls from the main koika repo.

Our artifact provides evidence to answer the three questions in

the Evaluation section, including reproducing all graphs:

• Q1: Can Cuttlesim models run faster than a state-of-the-art

Verilog simulator?

• Q2: Is Cuttlesim’s advantage only due to Kôika’s compiler

generating inefficient Verilog circuits?

• Q3: How sensitive is Cuttlesim’s performance to external

factors, especially compiler choices and tool versions?

B.2 Artifact Checklist (Meta Information)
• Algorithm: Static analysis & compilation of Kôika programs

• Program: Custom-written Kôika & Bluespec designs

• Compilation: Coq >= 8.10, OCaml >= 4.07, GCC 9 & 10,

Clang 10, Verilator 4

• Run-time environment: GNU/Linux
• Hardware: Typical x86-64 box
• Metrics: Run time

• Output: Performance plots

• Experiments: Run the benchmarking scripts

• Howmuch disk space required (approximately)?: 6GB
(local build + dependencies) or 12GB (VM)

• How much time is needed to prepare workflow (ap-
proximately)?: 1h (local build) or 2min (VM)

• How much time is needed to complete experiments
(approximately)?: 2h

• Publicly available?: https://github.com/mit-plv/koika/

tree/asplos2021

• Code licenses (if publicly available)?: GNU GPL v3

• Archived (provide DOI)?: 10.5281/zenodo.4342100

B.3 Description
Our artifact can be reviewed in two ways: by running everything

locally on your own (GNU/Linux, x86-64) machine or using a pre-

built VM. These instructions focus on the VM approach, but you

can use the same 60-line setup script to set up a local environment.

These instructions are also available in a plain-text file to make

it easier to copy and paste commands: https://github.com/mit-plv/

koika/blob/asplos2021/etc/ae/readme.rst.

Before proceeding, we recommend skimming through Kôika’s

README, which should help you get a better sense of how every-

thing fits together. If you are curious about rule-based hardware

languages, you may also want to skim through the original Kôika

paper [3].

To get started, download the artifact VM on Zenodo at https://doi.

org/10.5281/zenodo.4342100 and import the OVA virtual machine

into VirtualBox. Start the VM and log in with username ubuntu (no

password). On some versions of VirtualBox, booting can lead to a

blank screen; in that case, resize the VirtualBox window to force a

redraw.

All data and scripts are in ~/cuttlesim in the VM. All code is

public and hosted on GitHub at https://github.com/mit-plv/koika

in the asplos2021 branch.

B.4 Warming Up
While this section is optional, it will help you get a sense for what

Cuttlesim does. We will look at a trivial design computing terms

of the Collatz sequence, compile it, and run it with Cuttlesim and

Verilator.

Navigate to ~/cuttlesim/koika/examples and open

collatz.v in Emacs. This is a Coq file, as Kôika is a Coq EDSL

801

https://github.com/mit-plv/koika/tree/asplos2021
https://github.com/mit-plv/koika/tree/asplos2021
https://doi.org/10.5281/zenodo.4342100
https://github.com/mit-plv/koika/blob/asplos2021/etc/ae/setup.sh
https://github.com/mit-plv/koika/blob/asplos2021/etc/ae/readme.rst
https://github.com/mit-plv/koika/blob/asplos2021/etc/ae/readme.rst
https://github.com/mit-plv/koika/tree/asplos2021
https://dl.acm.org/doi/10.1145/3385412.3385965
https://dl.acm.org/doi/10.1145/3385412.3385965
https://doi.org/10.5281/zenodo.4342100
https://doi.org/10.5281/zenodo.4342100
https://github.com/mit-plv/koika

ASPLOS ’21, April 19ś23, 2021, Virtual, USA Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala

(annoyingly, Coq files have the same extension as Verilog files),

and the VM includes a preconfigured Emacs installation. It includes

a definition of the design’s state (reg_t with one register r0 of

type bits_t 16, initialized to the value 18) and two rules divide

and multiply; comments inside the file give more details about

the example.

Now run make _objects/collatz.v/. This will compile the

example to Verilog (using the original Kôika compiler) and C++

(using our new compiler). Browse to _objects/collatz.v/ and

open collatz.v. This is a (very short!) Verilog file, implement-

ing bypassing from divide to multiply as expected. Compiler

optimizations make the file tiny, which is great for circuit perfor-

mance but not so good for mapping each signal back to the original

Kôika design for debugging. Instead, open collatz.hpp and skip

to DEF_RULE(divide) {. This is the cycle-accurate C++ model

generated by Cuttlesim. There is one class method per rule, plus

one class method void cycle() which implements the scheduler.

Notice how the syntax and structure of the C++ code mirrors the

original Kôika syntax.

Run the following commands in _objects/collatz.v/:

make NCYCLES=150 collatz.run

make NCYCLES=150 collatz.verilator.run

The first one will run the C++ model built by Cuttlesim;

the second will run the circuit built by Kôika using Verilator,

an open-source hardware simulator. Cuttlesim prints r0 =

16’b0000000000000100 (0x4, 4): the value 4 is the result

of the Collatz system reaching one, then multiplying by 3 and

adding 1. With 151 cycles, the output would be 2 (4 divided by 2,

then multiply would not run since 2 is even). Now try both with

NCYCLES=1000000000. Despite the heavy optimizations that made

the Verilog circuit tiny, Cuttlesim is still about 4 times faster than

Verilator.

You can run make gdb to explore the design interactively

(command b module_collatz<extfuns>::cycle() will place a

breakpoint at the beginning of each cycle), or you can run make

NCYCLES=150 collatz.hpp.gcov and open the resulting coverage

file to see that divide executed in every cycle whereas multiply

failed in every other cycle (the annotation 75: 108: FAIL_FAST();

shows that the FAIL path was taken 75 times) -- no hardware coun-

ters needed!

Finally, let us simulate a larger design. Navigate to examples/rv/

and run make core to compile a RISCV core. Then run make

verilator-tests to run example programs and unit tests with

Verilator and make cuttlesim-tests to run the same tests with

Cuttlesim, which should be about twice as fast.

If youwant to seemore of Kôika, we recommend reading through

the literate example in pipeline_tutorial.v. To see a complete

list of simulation targets supported by Cuttlesim, along with docu-

mentation, run make help in any Cuttlesim-generated output direc-

tory (such as _objects/collatz.v/ or rv/_objects/rv32i.v/).

B.5 Experiment Workflow
Each experiment consists of compiling a Kôika design to C++,

running it using Cuttlesim or Verilator, and comparing the re-

sults. All experiments are conveniently packaged as a single script

etc/bench.sh.

All dependencies in the VM are precompiled. If you want to

rerun the builds (it takes ~30 minutes), run the following commands.

There are four designs to compile (the RV32i and RV32e variants

of our processor, plus the enhanced branch predictor variant and

the multicore variant):

cd ~/cuttlesim/koika/examples/rv;

make DUT=rv32i; make DUT=rv32e

cd ~/cuttlesim/koika_bthom-bp/examples/rv;

make DUT=rv32i;

ln -fs $(realpath _objects/rv32i.v/) \

~/cuttlesim/koika/examples/rv/_objects/rv32i-bp.v

cd ~/cuttlesim/koika_sim-multicore/;

cd examples/dynamic_isolation/;

make DUT=rv32i_no_sm;

ln -fs $(realpath _objects/rv32i_no_sm.v/) \

~/cuttlesim/koika/examples/rv/_objects/rv32i-mc.v

Then, navigate to ~/cuttlesim/koika/etc/ and run

./bench.sh in a terminal, redirecting its output to a file (this

script just runs the make cuttlesim and make verilator targets

for each of the examples that this paper discusses):

./bench.sh 2>&1 | tee bench-results

Once this completes, run ./summarize.py bench-results to

generate plots.

The default script runs only one iteration of each measurement,

to make sure that it completes reasonably quickly (it should take

10 to 20 minutes). Change REPEAT=1 at the beginning of the file

to REPEAT=5 or REPEAT=10 to improve precision (we ran it with

REPEAT=10 for the plots in this paper). In the output, a line starting

with << indicates that a new test has started running, and a line

starting with >> records the output of a single repeat of a given

test.

B.6 Evaluation and Expected Results
Running etc/summarize.py will generate four plots from

the results gathered in the previous step and write them to

~/cuttlesim/koika/etc/bench/:

• cuttlesim-verilator-cps.pdf (Fig. 1)

• cuttlesim-verilator-wall.pdf (Fig. 1)

• koika-bluespec-verilator-wall.pdf (Fig. 2)

• cuttlesim-verilator-wall-gcc-clang.pdf (Fig. 3)

B.7 Exploring and Extending
The examples/ directory of Kôika’s repository contains

many more examples, which can be compiled using make

_objects/example_name/. Running make help in the result-

ing directory will offer a collection of conveniently set-up targets

exposing all the tools that we commonly use, like VCD trace

generation, GCOV instrumentation, GDB and LLDB debugging,

performance profiling, etc.

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Waterman,

Rimas Avizienis, JohnWawrzynek, and Krste Asanovic. 2012. Chisel: constructing
hardware in a Scala embedded language. In The 49th Annual Design Automation
Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012. 1216ś1225.
https://doi.org/10.1145/2228360.2228584

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

802

https://doi.org/10.1145/2228360.2228584

Effective Simulation and Debugging for a High-Level Hardware Language using Software Compilers ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1ś7. https://doi.org/10.1145/2024716.2024718

[3] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The
Essence of Bluespec: A Core Language for Rule-Based Hardware Design. In Pro-
ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation (London, UK) (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 243ś257. https://doi.org/10.1145/3385412.3385965

[4] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason Helge Anderson, Stephen Dean Brown, and Tomasz S. Czajkowski. 2011.
LegUp: high-level synthesis for FPGA-based processor/accelerator systems.
In Proceedings of the ACM/SIGDA 19th International Symposium on Field Pro-
grammable Gate Arrays, FPGA 2011, Monterey, California, USA, February 27, March
1, 2011. 33ś36. https://doi.org/10.1145/1950413.1950423

[5] Yuze Chi, Young-kyu Choi, Jason Cong, and JieWang. 2019. Rapid Cycle-Accurate
Simulator for High-Level Synthesis. In Proceedings of the 2019 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA)
(FPGA ’19). Association for Computing Machinery, New York, NY, USA, 178ś183.
https://doi.org/10.1145/3289602.3293918

[6] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-
pala, and Arvind. 2017. Kami: A Platform for High-Level Parametric Hardware
Specification and Its Modular Verification. Proc. ACM Program. Lang. 1, ICFP,
Article 24 (Aug. 2017), 30 pages. https://doi.org/10.1145/3110268

[7] The MyHDL community. [n.d.]. MyHDL. http://www.myhdl.org/.
[8] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees A. Vissers,

and Zhiru Zhang. 2011. High-Level Synthesis for FPGAs: From Prototyping to
Deployment. IEEE Trans. on CAD of Integrated Circuits and Systems 30, 4 (2011),
473ś491. https://doi.org/10.1109/TCAD.2011.2110592

[9] George Economakos, Petros Oikonomakos, Ioannis Panagopoulos, Ioannis
Poulakis, and George K. Papakonstantinou. 2001. Behavioral synthesis with
systemC. In Proceedings of the Conference on Design, Automation and Test
in Europe, DATE 2001, Munich, Germany, March 12-16, 2001. 21ś25. https:
//doi.org/10.1109/DATE.2001.914995

[10] Conal Elliott. 2017. Compiling to categories. PACMPL 1, ICFP (2017), 27:1ś27:27.
https://doi.org/10.1145/3110271

[11] Jakob Engblom. 2012. A review of reverse debugging. In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference. IEEE, 1ś6.

[12] Daniel D. Gajski. 2001. SpecCDesign Environment. SystemDesign (2001), 217ś235.
https://doi.org/10.1007/978-1-4615-1481-7_5

[13] Abhijit Ghosh, Joachim Kunkel, and Stan Y. Liao. 1999. Hardware Synthesis from
C/C++. In 1999 Design, Automation and Test in Europe (DATE ’99), 9-12 March
1999, Munich, Germany. 387ś389. https://doi.org/10.1109/DATE.1999.761152

[14] Mentor Graphics. [n.d.]. Handle-C. https://www.mentor.com/products/fpga/
handel-c/.

[15] D. J. Greaves. 2000. A Verilog to C compiler. In Proceedings 11th International
Workshop on Rapid System Prototyping. RSP 2000. Shortening the Path from Speci-
fication to Prototype (Cat. No.PR00668). 122ś127. https://doi.org/10.1109/IWRSP.
2000.855208

[16] David J. Greaves. 2019. Further sub-cycle and multi-cycle schedulling support for
Bluespec Verilog. In Proceedings of the 17th ACM-IEEE International Conference
on Formal Methods and Models for System Design, MEMOCODE 2019, La Jolla, CA,

USA, October 9-11, 2019. 2:1ś2:11. https://doi.org/10.1145/3359986.3361199
[17] Sumit Gupta, Nikil D. Dutt, Rajesh Gupta, and Alexandru Nicolau. 2004. Loop

Shifting and Compaction for the High-Level Synthesis of Designs with Complex
Control Flow. In 2004 Design, Automation and Test in Europe Conference and
Exposition (DATE 2004), 16-20 February 2004, Paris, France. 114ś121. https:
//doi.org/10.1109/DATE.2004.1268836

[18] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE
Press, Piscataway, NJ, USA, 29ś42. https://doi.org/10.1109/ISCA.2018.00014

[19] D. Kim, C. Celio, S. Karandikar, D. Biancolin, J. Bachrach, and K. Asanović.
2018. DESSERT: Debugging RTL Effectively with State Snapshotting for Error
Replays across Trillions of Cycles. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). 76ś764. https://doi.org/10.1109/FPL.
2018.00021

[20] Zainalabedin Navabi. 1997. VHDL: Analysis and modeling of digital systems.
McGraw-Hill, Inc.

[21] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings of the Second ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04.
IEEE, 69ś70. https://doi.org/10.1109/MEMCOD.2004.1459818

[22] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel S.
Emer. 2009. A-Port Networks: Preserving the Timed Behavior of Synchronous
Systems for Modeling on FPGAs. ACM Trans. Reconfigurable Technol. Syst. 2, 3
(2009), 16:1ś16:26. https://doi.org/10.1145/1575774.1575775

[23] QBayLogic. [n.d.]. Clash: A modern, functional, hardware description language.
https://clash-lang.org/.

[24] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Mi-
croarchitectural Simulation of Thousand-Core Systems. In Proceedings of the
40th Annual International Symposium on Computer Architecture (Tel-Aviv, Israel)
(ISCA ’13). Association for Computing Machinery, New York, NY, USA, 475ś486.
https://doi.org/10.1145/2485922.2485963

[25] Jane Street. [n.d.]. Hardcaml. https://github.com/janestreet/hardcaml.
[26] The Coq Development Team. 2020. The Coq Proof Assistant, version 8.11.0. https:

//doi.org/10.5281/zenodo.3744225
[27] Donald E. Thomas and Philip Moorby. 1996. The Verilog hardware description

language (3. ed.). Kluwer. https://doi.org/10.1007/978-1-4615-3992-6
[28] Veripool. [n.d.]. Verilator. https://www.veripool.org/wiki/verilator.
[29] Muralidaran Vijayaraghavan and Arvind. 2009. Bounded Dataflow Networks and

Latency-Insensitive circuits. In 7th ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE 2009), July 13-15, 2009, Cambridge,
Massachusetts, USA. IEEE, 171ś180. https://doi.org/10.1109/MEMCOD.2009.
5185393

[30] Stephen Williams. [n.d.]. Icarus Verilog. http://iverilog.icarus.com/.
[31] Xilinx. [n.d.]. Vivado HLS. https://www.xilinx.com/products/design-tools/

vivado/integration/esl-design.html.
[32] Matt Yourst. 2007. PTLsim: A Cycle Accurate Full System x86-64 Microarchitec-

tural Simulator. ISPASS 2007: IEEE International Symposium on Performance Anal-
ysis of Systems and Software, 23ś34. https://doi.org/10.1109/ISPASS.2007.363733

803

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/3289602.3293918
https://doi.org/10.1145/3110268
http://www.myhdl.org/
https://doi.org/10.1109/TCAD.2011.2110592
https://doi.org/10.1109/DATE.2001.914995
https://doi.org/10.1109/DATE.2001.914995
https://doi.org/10.1145/3110271
https://doi.org/10.1007/978-1-4615-1481-7_5
https://doi.org/10.1109/DATE.1999.761152
https://www.mentor.com/products/fpga/handel-c/
https://www.mentor.com/products/fpga/handel-c/
https://doi.org/10.1109/IWRSP.2000.855208
https://doi.org/10.1109/IWRSP.2000.855208
https://doi.org/10.1145/3359986.3361199
https://doi.org/10.1109/DATE.2004.1268836
https://doi.org/10.1109/DATE.2004.1268836
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1145/1575774.1575775
https://clash-lang.org/
https://doi.org/10.1145/2485922.2485963
https://github.com/janestreet/hardcaml
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.1007/978-1-4615-3992-6
https://www.veripool.org/wiki/verilator
https://doi.org/10.1109/MEMCOD.2009.5185393
https://doi.org/10.1109/MEMCOD.2009.5185393
http://iverilog.icarus.com/
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://doi.org/10.1109/ISPASS.2007.363733

	Abstract
	1 Introduction
	2 Rule-based Designs and their Simulation Overheads
	2.1 Rule-Based Designs
	2.2 Generating Circuits for Rule-Based Designs
	2.3 Overheads in Simulating Kôika

	3 Compiling Kôika for Simulation
	3.1 Matching Kôika's Transactional Semantics
	3.2 Optimizing Transactions
	3.3 Leveraging Design-Specific Knowledge

	4 Evaluation
	4.1 Simulation Performance
	4.2 Debugging, Verification, and Digital Design Exploration Case Studies

	5 Correctness and Interoperability
	5.1 Cycle Accuracy
	5.2 Interoperability
	5.3 Correctness

	6 Related Work
	7 Conclusion
	Acknowledgments
	A Compiler Details
	A.1 Structure of Cuttlesim Models
	A.2 Generating Compiler-Friendly Code
	A.3 Generating Usable Code

	B Artifact
	B.1 Abstract
	B.2 Artifact Checklist (Meta Information)
	B.3 Description
	B.4 Warming Up
	B.5 Experiment Workflow
	B.6 Evaluation and Expected Results
	B.7 Exploring and Extending

	References

