
Robomorphic Computing: A Design Methodology for
Domain-Specific Accelerators Parameterized by

Robot Morphology
Sabrina M. Neuman

sneuman@seas.harvard.edu
Harvard University
Cambridge, MA, USA

Brian Plancher
brian_plancher@g.harvard.edu

Harvard University
Cambridge, MA, USA

Thomas Bourgeat
bthom@csail.mit.edu

MIT
Cambridge, MA, USA

Thierry Tambe
ttambe@g.harvard.edu
Harvard University
Cambridge, MA, USA

Srinivas Devadas
devadas@mit.edu

MIT
Cambridge, MA, USA

Vijay Janapa Reddi
vj@eecs.harvard.edu
Harvard University
Cambridge, MA, USA

ABSTRACT
Robotics applications have hard time constraints and heavy com-
putational burdens that can greatly benefit from domain-specific
hardware accelerators. For the latency-critical problem of robot mo-
tion planning and control, there exists a performance gap of at least
an order of magnitude between joint actuator response rates and
state-of-the-art software solutions. Hardware acceleration can close
this gap, but it is essential to define automated hardware design
flows to keep the design process agile as applications and robot plat-
forms evolve. To address this challenge, we introduce robomorphic
computing: a methodology to transform robot morphology into a
customized hardware accelerator morphology. We (i) present this
design methodology, using robot topology and structure to exploit
parallelism and matrix sparsity patterns in accelerator hardware;
(ii) use the methodology to generate a parameterized accelerator
design for the gradient of rigid body dynamics, a key kernel in
motion planning; (iii) evaluate FPGA and synthesized ASIC imple-
mentations of this accelerator for an industrial manipulator robot;
and (iv) describe how the design can be automatically customized
for other robot models. Our FPGA accelerator achieves speedups of
8× and 86× over CPU and GPU when executing a single dynamics
gradient computation. It maintains speedups of 1.9× to 2.9× over
CPU and GPU, including computation and I/O round-trip latency,
when deployed as a coprocessor to a host CPU for processing mul-
tiple dynamics gradient computations. ASIC synthesis indicates
an additional 7.2× speedup for single computation latency. We de-
scribe how this principled approach generalizes to more complex
robot platforms, such as quadrupeds and humanoids, as well as to
other computational kernels in robotics, outlining a path forward
for future robomorphic computing accelerators.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446746

CCS CONCEPTS
• Hardware → Hardware accelerators; • Computer systems
organization→ Robotics.

KEYWORDS
robotics, hardware accelerators, dynamics, motion planning
ACM Reference Format:
Sabrina M. Neuman, Brian Plancher, Thomas Bourgeat, Thierry Tambe,
Srinivas Devadas, and Vijay Janapa Reddi. 2021. Robomorphic Computing:
A Design Methodology for Domain-Specific Accelerators Parameterized by
Robot Morphology. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3445814.3446746

1 INTRODUCTION
Complex robots such as manipulators, quadrupeds, and humanoids
that can safely interact with people in dynamic, unstructured, and
unpredictable environments are a promising solution to address
critical societal challenges, from elder care [24, 53] to the health
and safety of humans in hazardous environments [34, 60]. A major
obstacle to the deployment of complex robots is the need for high-
performance computing in a portable form factor. Robot perception,
localization, and motion planning applications must be run online
at real-time rates and under strict power budgets [12, 26, 47, 55].

Domain-specific hardware acceleration is a emerging solution
to this problem, building on the success of accelerators for other
domains such as neural networks [7, 23, 49]. However, while ac-
celerators have improved the power and performance of robot
perception and localization [7, 49, 56], relatively little work has
been done for motion planning [33, 38].

Motion planning algorithms calculate a valid motion path from
a robot’s initial position to a goal state. Online motion planning
approaches [41, 57] rely heavily on latency-critical calculation of
functions describing the underlying physics of the robot, e.g., rigid
body dynamics and its gradient [5, 14, 18]. There exist several
software implementations that are sufficient for use in traditional
control approaches [6, 16, 22, 27, 36, 39], but emerging techniques
such as whole-body nonlinear model predictive control (MPC) [9,
26] reveal a performance gap of at least an order of magnitude:

674

https://doi.org/10.1145/3445814.3446746
https://doi.org/10.1145/3445814.3446746

ASPLOS ’21, April 19–23, 2021, Virtual, USA S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. Janapa Reddi

Figure 1: Overview of robomorphic computing, a design
methodology to transform robot morphology into cus-
tomized accelerator hardware morphology by exploiting ro-
bot features such as limb topology and joint type. This
methodology can be applied to a wide variety of complex
robots. Pictured are the Atlas [3], Spot [4], and LBR iiwa [31]
robots, as examples.

robot joint actuators respond at kHz rates, but these promising
approaches are limited to 100s of Hz by state-of-the-art software [12,
47]. This gap exists despite software code generation to optimize
functions for a particular robot model [36].

Hardware acceleration can shrink the motion planning perfor-
mance gap, but traditional accelerator design can be tedious, itera-
tive, and costly. The paramount challenge is to provide formalized
methodologies for systematic hardware synthesis that can gener-
alize across different robots and algorithms, keeping the design
process agile as applications evolve [21].

We address this challengewith robomorphic computing: a method-
ology to transform robot morphology into customized accelerator
hardware morphology. Our systematic design methodology intro-
duces robotics software optimizations to the hardware domain by
exploiting high-level information about a robot model to parameterize
features of the accelerator, e.g., using robot limb topology to deter-
mine processing element parallelism (Figure 1). In the robomorphic
computing design flow: (1) a parameterized hardware template is
created for a robotics algorithm once; then, (2) for each robot, the
template parameters are set according to the robot morphology to
create an accelerator customized to that robot model.

We demonstrate the use of our robomorphic computing method-
ology to design what we believe to be the first domain-specific hard-
ware architecture for the gradient of rigid body dynamics. Previous
workload analysis has shown that the dynamics gradient kernel,
which is the target of the accelerator artifact presented in this work,
can take 30% to 90% of the overall runtime of state-of-the-art non-
linear MPC motion planning and control algorithms [5, 41, 46, 47].
Using robomorphic computing, we identify opportunities in the dy-
namics gradient algorithm to parameterize parallelism and matrix
sparsity patterns based on robot topology and joint types. Then,

for a specific robot model we systematically set these parameters to
exploit parallelism in hardware datapaths and sparsity in linear al-
gebra functional units, resulting in a robot-customized accelerator.

We implement our dynamics gradient accelerator design on an
FPGA for an industrial manipulator. Our FPGA accelerator, which
implements the dynamics gradient kernel in hardware, achieves
speedups of 8× and 86× over the computation latency of state-of-
the-art CPU and GPU implementations for the task of computing a
single dynamics gradient calculation. We also integrate the FPGA
accelerator as a coprocessor system with I/O connections to a host
CPU, as it would be deployed for an off-the-shelf solution today.
Our FPGA accelerator demonstrates speedups of 1.9× to 2.9× over
state-of-the-art CPU and GPU implementations when deployed as
a coprocessor to a host CPU (measurements including computation
and I/O round-trip latency) for the task of computing multiple
dynamics gradients calculations, which is the typical use case in
real motion planning and control applications. We also synthesize
an ASIC implementation to evaluate the performance and power
opportunities of a system on chip. ASIC synthesis using a 12 nm
technology node indicates an additional 7.2× speedup for a single
dynamics gradient calculation over our FPGA implementation.

In summary, the key contributions of this work include:
• Robomorphic computing, a new general methodology for
the co-design of hardware accelerator architectures based
on the high-level physical topology of a robot;

• Design of the first domain-specific accelerator for the gradi-
ent of rigid body dynamics, implemented for an industrial
manipulator on an FPGA and a synthesized ASIC; and

• Discussion of how our design methodology generalizes to
more complex robot platforms, e.g., quadrupeds and hu-
manoids, and other computational kernels in robotics.

Our accelerator for the gradient of rigid body dynamics is a critical
step towards enabling real-time, onlinemotion planning and control
for complex robots. More importantly, the general methodology
that guided its design provides a roadmap for future accelerators
for robotics applications.

2 BACKGROUND
In robotics, the main processing pipeline can be broken down into
three fundamental stages: (1) perception, (2) mapping and local-
ization, and (3) motion planning and control (see Figure 2). These
stages can be run sequentially as a pipeline or in parallel loops
leveraging asynchronous data transfers during runtime. During per-
ception, a robot gathers information from its sensors and processes
that data into usable semantic information (e.g., depth, object classi-
fications). Next, the robot uses that labeled data to construct a map
of its surrounding environment and estimates its location within
that map. Finally, the robot plans and executes a safe obstacle-free
motion trajectory through the space. If this is done online in real
time, it allows the robot to adapt to unpredictable environments.

2.1 Robot Morphology
Traditional robots, including most commercial manipulator arms,
quadrupeds, and humanoids, can be modeled as a topology of rigid
links connected by joints (see Figure 3). The morphology of the
robot can be disassembled into three principal components: 𝐿 limbs,

675

Robomorphic Computing ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 2: The processing pipeline for robotics. This work
demonstrates applying robomorphic computing to a key
kernel in the motion planning and control stage.

Figure 3: Robot morphology can be modeled as a topology
of limbs, rigid links, and joints. Robomorphic computing ex-
ploits parallelism and matrix sparsity patterns determined
by this structure.

a chain of 𝑁 rigid links in a single limb, and the joints that connect
those links.

The rigid links of the robot’s limbs have inertial properties de-
termined by their shape and distribution of mass. The joint type
describes the movement constraints imposed upon the links con-
nected by the joint. For example, a “revolute” joint about the 𝑥-axis
means that the links connected by that joint can only rotate about
the 𝑥-axis with respect to one another, and all other degrees of
freedom are constrained.

A quadruped robot might have, e.g., 𝐿 = 4 limbs, each with𝑁 = 3
links: a thigh, shin, and foot. The joint types might all be revolute
about the 𝑥-axis. If the quadruped has an arm mounted on its torso,
then it would have 𝐿 = 5 limbs, where e.g., the arm has 𝑁 = 4 links
with 𝑧-axis revolute joints.

2.2 Algorithms Using Robot Morphology
Many critical robotics applications use information about robot
morphology, including collision detection, localization, kinematics,
and dynamics for soft and rigid robots [2, 11, 32, 45]. The design
methodology we develop in this work can extend to all of these
applications (see Section 7). In this paper, we focus on applying
the methodology to develop an accelerator for one key kernel, the
gradient of rigid body dynamics (see Section 3).

The dynamics of a robot with rigid limbs are described by its
equations of motion, which relate the accelerations and forces on
the joints of the robot. Common rigid body dynamics functions
using the equations of motion include computing forward dynamics:
joint accelerations out, given joint positions, velocities, and forces
in; and inverse dynamics: joint forces out, given joint positions,
velocities, and accelerations in. Several state-of-the-art software
libraries [6, 16, 27, 36, 39], implement these functions using standard
algorithms [14].

Figure 4: Estimated control rates for three robots using
different trajectory lengths (based on state-of-the-art rigid
body dynamics software implementations [5]), compared to
ideal control rates required for online use [12]. We assume
10 iterations of the optimization loop. Current control rates
fall short of the desired 250 Hz and 1 kHz targets for most
trajectory lengths. This performance gap is worse for more
complex robots, and growswith the number of optimization
loop iterations.

3 MOTIVATION
In this work, we use our design methodology to accelerate a compu-
tational bottleneck in motion planning and control, the dynamics
gradient, which can take, e.g., 30% to 90% of the total runtime for
emerging techniques such as whole-body nonlinear model predic-
tive control (MPC) [5, 41, 46, 47].
KeyKernel: ForwardDynamicsGradient.Akey kernel inmany
motion planning techniques is the first-order gradient of forward
dynamics, which can be calculated in several ways [5, 17, 18, 26, 57].
The fastest of these methods uses analytical derivatives of the recur-
sive Newton-Euler algorithm (RNEA) for inverse dynamics [5, 14,
35]. The result is then multiplied by a matrix of inertial quantities,
to recover the gradient of forward dynamics (details in Section 5.1).

The fastest state-of-the-art software implementations of rigid
body dynamics and its gradient [40] use templating and code gen-
eration [6, 36] to optimize functions for a particular robot model,
incorporating robot morphology features into the code. In this
work, we extend this software approach to the hardware domain
with robomorphic computing. Using this methodology, we exploit
computational opportunities in the dynamics gradient kernel to
design a hardware accelerator.
Control Rate Performance. To motivate our work, we focus on
a promising motion planning and control approach, whole-body
nonlinear MPC [12, 26, 47]. Nonlinear MPC involves iteratively op-
timizing a candidate trajectory describing a robot’s motion through
space. This trajectory is made up of the robot’s state at discrete
time steps, looking some time horizon into the future. Longer time
horizons increase resilience to disturbances. This online approach
allows a robot to adapt to unpredictable environments by quickly
recomputing safe trajectories in response to changes in the world.

676

ASPLOS ’21, April 19–23, 2021, Virtual, USA S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. Janapa Reddi

Figure 5: Using robomorphic computing for motion planning and control. First, a parameterized hardware template of the
algorithm is created, exploiting high-level information about the robot model to identify opportunities for parallelism and
sparse linear algebra. Then, for every target robot, the parameters of the hardware template are set based on the morphology
of the robot to create a customized accelerator.

A significant performance gap exists for current state-of-the-art
implementations of nonlinear MPC. Figure 4 shows estimated mo-
tion planning control rates for three robot models of increasing
complexity (a manipulator, quadruped, and humanoid), for trajec-
tories of different lengths. The three bands represent control rates
for the three robots, extrapolated analytically from state-of-the-art
compute times for the gradient of robot dynamics [5]. Control rates
are calculated for 10 iterations of the optimization loop, allowing
the trajectory to begin to converge towards an optimal solution.

Two horizontal thresholds are shown in Figure 4. The upper
threshold is the 1 kHz control rate at which robot joint actuators
are capable of responding. The lower 250 Hz threshold is a mini-
mum suggested rate for nonlinear MPC to be run online [12]. The
250 Hz MPC planner would have to be part of a hierarchical system
with faster-running low-level controllers interacting with the joint
actuators. A performance gap of at least an order of magnitude has
emerged: if nonlinear MPC could be run at kHz rates instead of 100s
of Hz, the joint actuators could be controlled directly, maximizing
robot reflexes and responsiveness.

With current software solutions, nonlinear MPC is unable to
meet the desired 1 kHz or 250 Hz control rates in most cases. For
example, the manipulator can only achieve the 1 kHz rate for short
time horizons (under 25 time steps) and cannot achieve the min-
imum 250 Hz rate for more than about 80 time steps. The perfor-
mance gap is worse for more complex robots such as the quadruped
and humanoid. Additionally, for some applications, more than 10
iterations of the optimization loop may be required to achieve con-
vergence [37], stretching the performance gap even further.

4 ROBOMORPHIC COMPUTING
Robomorphic computing is a hardware design methodology for
robotics accelerators in which we exploit high-level information
about a robot model to parameterize features of the accelerator. We

introduce robomorphic computing to address performance chal-
lenges in motion planning and other robotics applications. There
are two steps in the methodology:

(1) Create a hardware template for an algorithm once, parame-
terized by key components of robot morphology, e.g., limbs,
links, and joints;

(2) For each robot, set the template parameters to customize
the processors and functional units to produce a hardware
accelerator tailored to that particular robot model.

This methodology enables the systematic identification of funda-
mental architectural design paradigms, such as parallelism and
sparse data structures, in robotics algorithms. After these structures
are identified once, a portable accelerator template can be used
indefinitely to programmatically exploit these computational op-
portunities for each new robot platform. In this section, we briefly
describe the robomorphic design flow in the context of motion
planning applications (see Figure 5).
Step 1: Create Hardware Template. A parameterized hardware
template needs to be created once per robotics algorithm, e.g., in-
verse dynamics (Section 2.2). We break down the algorithm to
identify architectural structures that are parameterizable by robot
morphology features.

We take parallelism from loops iterating over the robot’s limbs
and links, and map that to parallel processing elements in the hard-
ware accelerator template. We also identify linear algebra opera-
tions on key sparse robotmatrices, andmap them to functional units
whose constant values and sparsity patterns are parameterized by
the robot links and joint types.

For example, using joint transformation matrix sparsity patterns,
we can prune operations from multiplication-addition trees imple-
menting matrix-vector multiplications. This optimization affects
the number of multipliers and adders, the circuit routing connecting
them, and the decision of which values are constants and which
are updated by joint position inputs during runtime. We can also
identify constant values in the link inertia matrices, allowing us to

677

Robomorphic Computing ASPLOS ’21, April 19–23, 2021, Virtual, USA

Algorithm 1 ∇ Forward Dynamics w.r.t. 𝑢 = {𝑞, ¤𝑞} [5].
1: 𝑣, 𝑎, 𝑓 = Inverse Dynamics(𝑞, ¤𝑞, ¥𝑞) ⊲ Step 1
2: 𝜕𝜏/𝜕𝑢 = ∇ Inverse Dynamics(¤𝑞, 𝑣, 𝑎, 𝑓) ⊲ Step 2
3: 𝜕 ¥𝑞/𝜕𝑢 = −𝑀−1𝜕𝜏/𝜕𝑢 ⊲ Step 3

Algorithm 2 Inverse Dynamics (ID) [14].
Sparse matrices 𝑖𝑋𝜆𝑖 , 𝐼𝑖 , 𝑆𝑖 derived from robot morphology.

1: 𝑣0 = 0; 𝑎0 = gravity; Define 𝜆𝑖 = Parent of Link 𝑖
2: for Link 𝑖 = 1 : 𝑁 do ⊲ Forward Pass
3: Update 𝑖𝑋𝜆𝑖 (𝑞𝑖)
4: 𝑣𝑖 =

𝑖𝑋𝜆𝑖 𝑣𝜆𝑖 + 𝑆𝑖 ¤𝑞𝑖
5: 𝑎𝑖 =

𝑖𝑋𝜆𝑖𝑎𝜆𝑖 + 𝑆𝑖 ¥𝑞𝑖 + 𝑣𝑖 × 𝑆𝑖 ¤𝑞𝑖
6: 𝑓𝑖 = 𝐼𝑖𝑎𝑖 + 𝑣𝑖 ×∗ 𝐼𝑖𝑣𝑖 − 𝑓 external

𝑖

7: for Link 𝑖 = 𝑁 : 1 do ⊲ Backward Pass
8: 𝑓𝜆𝑖 += 𝑖𝑋𝑇

𝜆𝑖
𝑓𝑖

9: 𝜏𝑖 = 𝑆𝑇
𝑖
𝑓𝑖

implement some operations as multiplication by a constant, which
is a simpler operation than multiplication between two variables.

Again, the benefit of this method is that algorithm features that
can be exploited for accelerator design (e.g., parallelism, sparse
matrix operations) only need to be identified once, after which it is
trivial to tune their parameters for each robot model.

Libraries of hardware templates can be distributed like software
libraries or parameterized hardware intellectual property (IP) cores,
e.g., RISC-V “soft” processors [20].
Step 2: Set Template Parameters. Once a hardware template has
been created, it can be used to create customized accelerators for
many different robot models by setting the parameters to match
the robot morphology.

We use the numbers of limbs and links in the robot to set the
numbers of parallel processing elements in the accelerator template.
Additionally, we use link inertia values and joint types to set the
constant values and sparsity patterns in key link and joint matrices.
This tunes the sparsity and complexity of hardware functional
units that perform linear algebra manipulations of these matrices,
streamlining the type and number of mathematical operations.

For example, the first two links in the LBR iiwa manipulator [31]
are connected by a joint whose transformation matrix has only 13 of
36 elements populated. As a result, in the corresponding functional
unit for matrix-vector multiplication implemented using a tree
of multipliers and adders, operations on zeroed elements can be
pruned, reducing multipliers by 64% and adders by 77%.

5 DESIGN
To demonstrate robomorphic computing, we design a hardware
accelerator for the dynamics gradient algorithm. We:

(1) Create a hardware template for the dynamics gradient; and
(2) Set the template parameters to customize the accelerator for

an example target robot model, an industrial manipulator.

We chose a target robot with only a single limb as a proof of concept,
however the techniques demonstrated here readily generalize to
robots with multiple limbs (see Section 7). We evaluate this novel
accelerator implemented in an FPGA coprocessor and a synthesized
ASIC in Section 6.

5.1 Algorithm Details
In many state-of-the-art motion planning and control applications,
quantities computed earlier in the optimization process (the joint
acceleration ¥𝑞 and the inverse of the mass matrix𝑀−1) can be used
to compute the forward dynamics gradient [5] using Algorithm 1:
(Step 1) Compute inverse dynamics using ¥𝑞; (Step 2) Compute the
inverse dynamics gradient with respect to inputs from all links; and
(Step 3) Recover the forward dynamics gradient by multiplication
with the inverse of the mass matrix𝑀−1.
Inverse Dynamics. The standard implementation of inverse dy-
namics (ID) is the Recursive Newton-Euler Algorithm [14] (Algo-
rithm 2). First, there is a sequential forward pass from the base
link of the robot out to its furthest link 𝑁 , propagating per-link
spatial velocities, accelerations, and forces (𝑣𝑖 , 𝑎𝑖 , 𝑓𝑖) outward. Then,
there is a sequential backward pass, updating the force values 𝑓𝑖
and generating the output joint torques 𝜏𝑖 .

The inputs to the algorithm are the link position, velocity, and
acceleration (𝑞𝑖 , ¤𝑞𝑖 , ¥𝑞𝑖) expressed in their local coordinate frame,
and three key matrices: the link inertia matrix, 𝐼𝑖 ; the joint transfor-
mation matrix, 𝑖𝑋𝜆𝑖 (where 𝜆𝑖 is defined as the parent of link 𝑖); and
the joint motion subspace matrix, 𝑆𝑖 . The 𝐼𝑖 , 𝑖𝑋𝜆𝑖 , 𝑆𝑖 matrices all
have deterministic sparsity patterns derived from the morphology
of the robot model (details in Section 5.2). The sin and cos of the link
position 𝑞, used to construct the transformation matrices 𝑖𝑋𝜆𝑖 , can
also be cached from an earlier stage of the optimization algorithm.
∇ Inverse Dynamics. The gradient of inverse dynamics (∇ID) is
derived from line-by-line analytical derivatives of the ID (Algo-
rithm 2) with respect to position 𝑞 𝑗 and velocity ¤𝑞 𝑗 for all links 𝑗 .
For details, see previous work [5]. Again, there is a sequential for-
ward pass and backward pass. Operations on the sparse 𝐼𝑖 , 𝑖𝑋𝜆𝑖 , 𝑆𝑖
matrices are similarly fundamental.
𝑀−1 Multiplication. After calculating ∇ID with respect to inputs
from all links, multiplication with 𝑀−1 recovers the forward dy-
namics gradient.
Workload Characteristics. Prior work has performed substantial
workload analysis of these algorithms (see Section 8 for details).
The dynamics gradient kernel spends most of its runtime on compu-
tation, instead of onmemory accesses, making it a “compute-bound”
application. Most of the workload is matrix-vector multiplication
using matrices that are small (6×6 elements) and middlingly sparse
(around 30% to 60% sparse), compared to the large and very sparse
matrices in applications such as neural networks (around 50% to
99.9% sparse) [19] which have been the subject of much recent work
on hardware acceleration [7, 23, 49]. Compression approaches that
offer high performance for large sparse matrices, e.g., compressed
sparse row (CSR) encoding [19], are not suitable for exploiting the
sparsity in this application because they incur large overheads for
encoding and decoding.

678

ASPLOS ’21, April 19–23, 2021, Virtual, USA S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. Janapa Reddi

Figure 6: Datapath of the forward and backward pass units
for a single link in Step 2 of Algorithm 1. The length of a
single datapath and the total number of parallel datapaths
are parameterized by the number of links in a robot’s limb.
The forward pass unit is folded into three sequential stages
for efficient resource utilization.

5.2 Step 1: Create Hardware Template
Link-Based Parallelism and Data Flow. The first step of the
forward dynamics gradient (Algorithm 1) is computing ID (Algo-
rithm 2). This is a sequential operation with forward and backward
passes whose lengths are parameterized by the number of links in
a robot, 𝑁 .

For the second step, ∇ID, we can design the datapaths of our
accelerator template to exploit fine-grained link-based parallelism
between partial derivatives. We refer to this parallelism as “fine-
grained” because of the short duration of the independent threads
of execution. They are joined in the third step of Algorithm 1,
multiplication of the full gradient matrix with𝑀−1.

To exploit this parallelism, we create separate datapaths per link,
made up of sequential chains of forward and backward pass pro-
cessing units to compute each partial derivative. A single datapath
of forward and backward pass units is illustrated in Figure 6. The
latency of the computation in each datapath grows linearly with the
number of links,𝑂 (𝑁). Because there are also as many datapaths as
links, the total amount of work in the ∇ID step grows with 𝑂 (𝑁 2),
but when parallelized, its latency grows with 𝑂 (𝑁).

Note that we compute ∇ID with respect to two inputs, position 𝑞
and velocity ¤𝑞. The gradients with respect to 𝑞 and ¤𝑞 are completely
independent, but share common inputs, so datapaths for both can
run in parallel to take advantage of data locality by processing
common inputs at the same time.

Every step in the ∇ID forward and backward passes requires
inputs 𝑣𝑖 , 𝑎𝑖 , 𝑓𝑖 , produced by the ID for link 𝑖 . To satisfy this data
dependency, the steps of the computation of ID must execute one
link ahead of the computation of the ∇ID datapaths. As a result,
we are able to exploit parallelism between the first two steps of
Algorithm 1, running the datapath that computes ID almost entirely
in parallel to the∇ID datapaths (offset by one link).With this design,
computing both ID and ∇ID with respect to 𝑞 and ¤𝑞 can all be done
with 𝑂 (𝑁) total latency.
Link and Joint-Based Sparse Functional Units. The datapaths
of the accelerator are built from chains of forward and backward
pass processing units (see Figure 6). Within these units are circuits
of sparse matrix-vector multiplication functional units, e.g., the
𝐼 ·, 𝑋 ·, and ·𝑣 𝑗 blocks in the forward pass. To minimize latency,

Figure 7: Example of one row of a transformationmatrix dot
product functional unit 𝑋 · (as used, e.g., in the forward pass
unit in Figure 6) for the joint between the first and second
links of a manipulator. The sparsity of the tree of multipli-
ers and adders is determined by the robot joint morphology.

dot products in these functional units are implemented as trees of
multipliers and adders. Robot link and joint information can be
used to parameterize these operations.

The link inertia matrix 𝐼 has a fixed sparsity pattern for all robots.
Its elements, however, are constant values that are determined by
the distribution of mass in a robot’s links. If these values are set
per-robot, the multipliers in the 𝐼 · unit can all be implemented as
multiplications by a constant value, which are smaller and simpler
circuits than full multipliers.

The joint transformation matrix 𝑖𝑋𝜆𝑖 has a variable sparsity pat-
tern that is determined by robot joint type. When this sparsity is set
per-robot, the tree of multipliers and adders in the𝑋 · can be pruned
to remove operations on zeroed matrix elements, streamlining the
functional unit (see Figure 7).

The joint motion subspace matrix 𝑆𝑖 has a sparsity pattern deter-
mined by joint type. For many common joint types, the columns of
𝑆𝑖 are vectors of all zeroes with a single 1 that filter out individual
columns of matrices multiplied by 𝑆𝑖 . Per robot, this can be encoded
within functional units such as 𝑋 · and ·𝑣 𝑗 by pruning or muxing
operations and outputs from matrix columns that are not selected
by the 𝑆𝑖 sparsity.

Robot-agnostic sparsity is also exploited in the hardware tem-
plate. Cross product operations are encoded either as muxes that
re-order outputs, or implemented as sparse matrix-vector multipli-
cations, e.g., in the 𝑓 𝑥 · units.
Architectural Optimizations. The final design is shown in Fig-
ure 8. We pipeline the forward and backward passes to hide latency
and increase throughput for multiple computations.

We perform folding at two different levels of the design, to com-
press total accelerator area and conserve resources for FPGA imple-
mentation. Without aggressive folding, the number of multipliers
needed for the template design would be enormous for almost any
robot model, making it impossible to implement using the limited
number of digital signal processing multiplier units on an FPGA,
and consuming a large amount of area in an ASIC. We fold the for-
ward passes of all parallel datapaths into a processor that executes
for a single link at a time. We then feed back the results to iterate
over all links in the sequential chain. This significantly reduces the
number of functional units (a reduction of approximately 𝑂 (𝑁) in
area) in exchange for a small latency penalty (the cost of loading
and storing intermediate results to registers). We fold the backward
passes in the same manner.

679

Robomorphic Computing ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 8: Parameterized hardware template of the dynamics
gradient accelerator. The number of links𝑁 , link inertia and
geometry, and joint types are all parameters that can be set
to customize themicroarchitecture for a target robot model.

For additional area and resource savings, we also fold the forward
pass link units along three divisions, indicated in Figure 6. This
allows us to re-use the sparse matrix-vector joint functional units,
conserving the number of multipliers and adders needed in the
design. Finally, we also performed folding to incorporate the third
step of Algorithm 1 into the existing logic for earlier steps. We
supplement the multipliers of the backward pass units of ∇ID with
respect to velocity ¤𝑞 to perform the −𝑀−1 multiplications in two
clock cycles.

5.3 Step 2: Set Template Parameters
In Section 6 we evaluate our accelerator design implemented for
the LBR iiwa industrial manipulator (pictured in Figure 1). This
target robot model has 𝑁 = 7 links and “revolute”-type joints
about the 𝑧-axis. We set these parameters to customize the template
in Figure 8, instantiating 7 parallel datapaths in the forward and
backward passes of the gradients with respect to 𝑞 and ¤𝑞, and fixing
the constants and sparsity patterns of the functional units (see the
example illustrated in Figure 7).

6 EVALUATION
We evaluate the performance of the FPGA implementation of our
accelerator, comparing it to off-the-shelf CPU and GPU baselines.
We also evaluate a synthesized ASIC version of the accelerator
pipeline. In these experiments, our accelerator is implemented for
an industrial manipulator. However, in Section 7 we describe how
robomorphic computing can be used to adapt the design for differ-
ent robot models.

Table 1: Hardware System Configurations

Platform CPU GPU FPGA

Processor i7-7700 RTX 2080 XCVU9P
of Cores 4 2944 CUDA (46 SM) N/A
Max Frequency 3.6 GHz 1.7 GHz 55.6MHz

Figure 9: FPGA coprocessor system implementation.

6.1 Methodology
Our accelerator and the software baseline implementations all tar-
get the Kuka LBR iiwa-14 manipulator [31] (see Figure 1) using the
robot model description file from the rigid body dynamics bench-
mark suite, RBD-Benchmarks [40].
Baselines. As baselines for comparison, we used state-of-the-art
CPU and GPU software implementations of the rigid body dynam-
ics gradient from previous work. The CPU baseline is from the
dynamics library Pinocchio [6]. The application was parallelized
across the trajectory time steps using a thread pool so that the
overheads of creating and joining threads did not impact the timing
of the region of interest. The GPU baseline is taken from previous
work on implementing nonlinear MPC on a GPU [47], and is also
parallelized across trajectory time steps.
Hardware Platforms. The platforms used in our evaluation are
summarized in Table 1. Our CPU is a quad-core Intel i7-7700 run-
ning Ubuntu 16.04.6. Quad-core Intel i7 processors have been a
common choice for the on-board computation for complex robot
platforms, including many humanoids featured in the DARPA Ro-
botics Challenge [29, 30, 48, 54]. Similarly, the Spot quadruped from
Boston Dynamics [4] offers a quad-core Intel i5 processor on board.
The GPU is an NVIDIA GeForce RTX 2080 with 2944 CUDA cores.
This platform offers comparable compute resources to the GPU
available as an add-on for the Spot quadruped, the NVIDIA P5000
with 2560 CUDA cores. We implemented our accelerator in Ver-
ilog on a Xilinx Virtex UltraScale+ VCU-118 board with a XCVU9P
FPGA. This platform was selected because it offers a high number
of digital signal processing units, which we use to perform the
multiplications in our linear algebra-heavy workload. The FPGA
design was synthesized at 55.6 MHz.

CPU code was compiled using Clang 10. Code for the GPU was
compiled with nvcc 11 using g++5.4. The GPU and FPGA were
connected to a host CPU via PCIe. The GPU used PCIe Gen 3,
however the FPGA was restricted to PCIe Gen 1 due to software
limitations in the Connectal [25] framework used to implement
communication between the host CPU and FPGA.

680

ASPLOS ’21, April 19–23, 2021, Virtual, USA S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. Janapa Reddi

Figure 10: Computation latency of a single calculation of the
dynamics gradient. Our FPGA accelerator gives 8× and 86×
speedups over theCPU andGPU. TheGPU suffers here from
high synchronization and focus on throughput, not latency.

Measurements. We disabled TurboBoost on the CPU and fixed
all cores at maximum frequency. HyperThreading was enabled
for threadpool use. Time was measured with clock_gettime(),
using CLOCK_MONOTONIC. For Section 6.2, we take the mean of one
million trials for CPU and GPU. For FPGA, we extract computation
latency from cycle counts and clock frequency. For Section 6.3, we
measure round-trip wall clock time (including computation and I/O
latency) and take the mean of one hundred thousand trials.1
Coprocessor System Integration.We integrated our design into
a system with the accelerator as an FPGA coprocessor connected
to a host CPU (see Figure 9). The CPU generates inputs, then calls
the accelerator on the FPGA to compute the dynamics gradient.

Communication between the CPU and FPGA is implemented
using Connectal [25]. This framework sets up links that act as
direct memory accesses in C++ on the CPU-side software, and FIFO
buffers in Bluespec System Verilog on the FPGA-side hardware.
Connectal’s support of our FPGA board is currently limited to PCIe
Gen 1, but the bandwidth is sufficient for our accelerator to out-
perform CPU and GPU baselines (Section 6.3). Conversion between
CPU floating-point data types and accelerator fixed-point data types
is implemented on the FPGA using Xilinx IP Cores.

6.2 FPGA Accelerator Evaluation
Latency Results. We compare the latency of a single execution
of forward dynamics gradient on the CPU, GPU, and our FPGA
implementation (Figure 10). The result is broken down into the
three steps of Algorithm 1: inverse dynamics (ID); the gradient of
inverse dynamics (∇ID); and𝑀−1 multiplication.

In the FPGA results in Figure 10, the pipelining (which would
overlap the latency of the forward and backward pass pipelines)
was ignored in order to present the latency of a single time step
computation being passed through the entire accelerator, from
1For the GPU and FPGA 98% of trials were within 2% of the mean. For the CPU 90% of
trials were within 2% of the mean for longer trajectories (≥ 32 time steps) but only
within 10% of the mean for shorter trajectories.

Figure 11: To reduce FPGA resource utilization, we imple-
ment a single transformation matrix-vector multiplication
unit for all joints in the target robot. Using a superposition
of sparsity patterns, we recover 33.3% of average sparsity
while conserving area.

start to finish. Additionally, in our design the datapaths of ID and
∇ID are largely overlapped for the forward and backward passes,
but slightly offset. There is a 2-iteration delay that represents the
latency overhead of this offset. The ID algorithm needs to be run
one robot link “iteration” ahead of each link in the ∇ID algorithm,
to produce the “v,a,f” inputs it requires (see Algorithm 1). Because
this happens in both the forward pass and the backward pass, it
translates into a total overhead of 2 iterations: one extra iteration
of the forward pass, plus one extra iteration of the backward pass.

Figure 10 shows the FPGA accelerator demonstrating a signifi-
cant speedup over the CPU and GPU, despite a much slower clock
speed (see Table 1). The accelerator latency is 8× faster than the
CPU and 86× faster than the GPU.

The FPGA outperforms the CPU and GPU because it has minimal
control flow overhead and can fully exploit parallelism from small
matrix operations throughout the workload and parallelism from
partial derivatives in ∇ID before they join for the𝑀−1 multiplica-
tions. This is because the structure of the algorithm is explicitly
implemented in the datapaths of the accelerator (Figure 8), includ-
ing parallelism directly determined by the target robot.

The GPU fares poorly in this experiment because it is a platform
optimized for parallel throughput, not the latency of a single calcu-
lation. It experiences an especially long latency for ∇ID, the step
of Algorithm 1 with the largest computational workload. GPU pro-
cessors are designed for large vector operations and have difficulty
exploiting parallelism from the small sparse matrices in ∇ID. The
algorithm is also very serial because of inter-loop dependencies
in the forward and backward passes, and joining of partial deriva-
tives in ∇ID for𝑀−1 multiplications, forcing many synchronization
points and causing overall poor thread occupancy.

The CPU can also only exploit limited parallelism in the linear
algebra through vector operations, but its pipeline is optimized for
single-thread latency, so it outperforms the GPU.
Joint Transformation Matrix Sparsity. Our FPGA platform of-
fered a limited number of digital signal processing multipliers. We
found that our accelerator design used 77.5% of 6840 digital signal
processing (DSP) blocks available on our FPGA platform because of
the high number of matrix-vector multiplications in the workload.

681

Robomorphic Computing ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 12: We used 32-bit fixed-point with 16 decimal bits in
our design due to FPGA multiplier constraints. However, a
range of fixed-point numerical types deliver comparable op-
timization cost convergence to baseline 32-bit floating-point.
Fixed-point labeled as “Fixed{integer bits, decimal bits}”.

To conserve multiplier resources, we implemented a single transfor-
mation matrix-vector multiplication unit for all seven joints in our
target robot model (see Section 5.3). This unit covers a superposition
of the matrix sparsity patterns in all individual joints. This design
choice uses sparsity to reduce the total operations, while avoiding
the waste of area and resources from creating seven separate units.

Figure 11 compares the reduction in operations from this design
choice to several baselines. “No Sparsity” is total operations for a
dense 6×6matrix-vector multiplication. “Robot-Agnostic” assumes
the upper-right quadrant of the transformation matrix is empty,
which is true regardless of robot model. “Robomorphic, Superposi-
tion All Joints” is our design choice. Finally, “Robomorphic, Average
All Joints” shows the average sparsity of all seven joint matrices, to
indicate how well superposition approaches individual sparsity. To
achieve or pass this bound would require seven separate units.

Our design choice recovered 33.3% of the average robomorphic
sparsity of the individual joint matrices in a single matrix-vector
multiplication unit, avoiding the expense of area and resources it
would take to instantiate seven units instead. This was a worthwhile
tradeoff on our FPGA platform, where area and resources were
highly constrained.
Accuracy and Numerical Precision. In our FPGA design, we
used a 32-bit fixed-point numerical type with 16 decimal bits. Fixed-
point reduces the area and complexity of arithmetic operations com-
pared to floating-point. To validate this choice, we experimented
with different data types for the dynamics gradient function within
a nonlinear MPC implementation [47]. Figure 12 shows optimiza-
tion cost convergence results. We used a type-generic Julia software
implementation to compare 32-bit fixed-point to a 32-bit floating-
point baseline. We explored different numbers of bits for the integer
versus decimal, labeled as “Fixed{integer bits, decimal bits}”.

A range of fixed-point values worked as well as floating-point,
validating our design choice. Results indicate it is possible to use
20 bits (14 integer, 6 decimal) in future work, reducing bit width
throughout the computation by 37.5%.

Figure 13: Coprocessor round-trip latency (including I/O) for
a range of trajectory time steps. Our FPGA accelerator (F)
gives speedups of 2.2× to 2.9× over CPU (C) and 1.9× to 5.5×
over GPU (G) for the task of computing multiple dynamics
gradients calculations (one per time step).

However, we used 32 bits in our current design both because it
was convenient for data I/O with a CPU, and our FPGA’s digital
signal processingmultipliers are 27×18 bits, so all operands between
19 and 36 bits require two multipliers.

6.3 Coprocessor System Evaluation
Coprocessor Round-Trip Timing Results. While the results in
Figure 10 show computation-only latency for a single calculation
of the dynamics gradient, Figure 13 shows coprocessor round-trip
latency for a coprocessor system implementation of the accelerator
(Figure 9) performing multiple gradient calculations. We define the
“coprocessor round-trip” latency as the time between the host CPU
making the function call to perform the gradient calculation, and
the time when the final gradient calculation data is available in the
host CPU memory. This time includes the latency of sending inputs
to the coprocessor over communication channels, the latency of
all of the computation run on the coprocessor, and the latency of
sending and writing outputs back from the coprocessor to the host
CPU memory.

The inputs and outputs of the gradient calculations were sent
and received by the host CPU, but in the GPU and FPGA experi-
ments, all of the gradient calculations were performed on the GPU
or FPGA. FPGA and GPU results include I/O overheads. We eval-
uate a representative range of trajectories, from 10 to 128 time
steps [8, 10, 42, 47, 57]. Each time step requires one dynamics gra-
dient calculation.

The FPGA accelerator gives speedups of 2.2× to 2.9× over CPU
and 1.9× to 5.5× over GPU because of its very low latency (see
Figure 10). However, the scaling of FPGA performance in this ex-
periment is ultimately limited by throughput at higher numbers
of time steps. On our current FPGA platform we heavily utilized
the limited digital signal processor resources on the FPGA for lin-
ear algebra operations (see Section 6.2). As a result, we could only
instantiate the complete accelerator pipeline for a single gradient
computation. By contrast, the CPU has 4 cores and the GPU has 46
SMs, so they can process multiple gradient computations in parallel.

682

ASPLOS ’21, April 19–23, 2021, Virtual, USA S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. Janapa Reddi

Table 2: SynthesizedASIC (12nmGlobal Foundries) and base-
line FPGA results for accelerator computational pipeline.

Platform FPGA Synthesized ASIC

Process Corner Typical Slow Typical
Technology Node [nm] 14 12 12
Max Clock [MHz] 55.6 250 400
Area [mm2] N/A 1.627 1.885
Power [W] 9.572 0.921 1.095

Figure 14: ASIC synthesis indicates a 4.5× to 7.2× speedup in
single computation latency over the FPGA results.

The FPGA and GPU have comparable I/O overhead from round-
trip memory transfers to the host CPU, despite the FPGA having
a lower bandwidth I/O connection than the GPU (PCI Gen 1 vs.
Gen 3). We achieve this by pipelining the I/O data marshalling with
the execution of each computation.

For small numbers of time steps (32 time steps and below in
Figure 10), the CPU benefits from low latency and outperforms the
GPU. Beginning at 64 time steps, however, the GPU benefits from
high throughput on the large number of parallel computations, and
surpasses the CPU. Thread and kernel launch overheads flatten the
scaling of both the CPU and GPU at low numbers of time steps (10,
16, and 32).

6.4 Synthesized ASIC Results
While we already see meaningful speedups from implementing
our accelerator on an FPGA (see Figures 10 and 13), an ASIC plat-
form offers additional performance and power benefits. We ran
ASIC synthesis on the core computational pipeline of our design:
the forward and backward pass processors, plus the intermediate
SRAM between them (see Figure 8), using the Global Foundries
12nm technology node at both slow and typical process corners.
Table 2 compares these ASIC results to our Xilinx XCVU9P FPGA
synthesized using the Vivado Design Suite [15]. The FPGA results
are the power of the accelerator design measured from Vivado
simulation. We report the user design power of the FPGA for fair
comparison with our ASIC values. The accelerator design power
results include static power.

The maximum clock speed of the core computational pipeline
on the ASIC (typical corner) is 7.2× faster than the clock speed of
our FPGA implementation. Figure 14 compares the latency for a
single computation on the ASIC versus the FPGA.

Figure 15: Projected control rate improvements from our dy-
namics gradient accelerator using the analyticalmodel from
Figure 4. We enable planning on longer time horizons for
a given control rate, e.g., up to about 100 or 115 time steps
instead of 80 at 250 Hz. ASIC results show a narrow range
between process corners.

A system-on-chip will allow us to instantiate multiple parallel
pipelines, improving the throughput of our accelerator. On the
FPGA we can only fit a single pipeline due to limited multiplier
resources (Section 6.3). A synthesized ASIC area of 1.9mm2 (typical
corner), however, suggests many pipelines can fit on a chip. For
example, Intel’s 14 nm quad-core SkyLake processor [13] is around
122 mm2, nearly 65× our pipeline area.

Amajor ASIC benefit is low power dissipation. Power budgets are
an emerging constraint in robotics [55], especially for untethered
robots carrying heavy batteries. For example, the Spot quadruped
has a typical runtime of 90 minutes on a single charge of its bat-
tery [4], limiting its range and potential use cases. Power dissipation
of our design on an ASIC (typical corner) is 8.7× lower than the
calculated power on an FPGA.

6.5 Projected Control Rate Improvement
Finally, we revisit the analytical model from Figure 4 to project
control rate improvements from using our dynamics gradient ac-
celerator (Figure 15). We enable faster control rates, which robots
can use to either perform more optimization loop iterations to com-
pute better trajectories, or plan on longer time horizons, e.g., up
to about 100 or 115 time steps instead of 80 at 250 Hz. Exploring
longer planning horizons allows robots to increase their resilience
to disturbances and unlock new behaviors.

7 DISCUSSION AND FUTUREWORK
Targeting Other Robotics Applications. The robomorphic com-
puting design methodology can be applied to other critical robotics
applications that draw on robot morphology information, including
collision detection, localization, kinematics, and dynamics for flexi-
ble “soft” robots [2, 11, 32, 45]. For all of these additional robotics
applications, a parameterized template only needs to be created
once per algorithm.

683

Robomorphic Computing ASPLOS ’21, April 19–23, 2021, Virtual, USA

Figure 16: Other examples of joints on real robots [3, 52]. The
transformation matrices of these joints exhibit different
sparsity patterns, which robomorphic computing translates
into sparse matrix-vector multiplication functional units.

These algorithms can be addressed with robomorphic computing
because they are tightly coupled with the physical properties of the
target robot. For example, standard implementations of rigid body
dynamics and kinematics are built upon the same transformations
and inertial properties represented in the sparse matrices (e.g.,
joint transformation matrices 𝑖𝑋𝜆𝑖 and link inertia matrices 𝐼𝑖) that
robomorphic computing maps into pruned sparse linear algebra
functional units (Figure 5).

High-fidelity collision detection requires kinematics implicitly.
While approximate approaches to collision detection might draw
conservative ellipses around the robot and not require precise kine-
matics, high-fidelity approaches using full kinematics are required
when the robot must operate in tight spaces or perform dexterous
tasks.

The dynamics of “soft” robots with flexible limbs can be modeled
as piecewise approximations using long chains of rigid bodies [44]
or by using hybrid rigid-soft dynamics algorithms built on top of
traditional rigid body dynamics algorithms [50]. Such approaches
are suitable targets for acceleration using robomorphic computing
by scaling and extending the methodology for rigid body robots.
TargetingDifferent RobotModels. In previous sections, we eval-
uated an accelerator that was customized to target the LBR iiwa
industrial manipulator [31]. Here, we describe how the accelerator
design would change if it were implemented for other robot models
with different joint types, and topologies of limbs and links. Be-
cause we used robomorphic computing to design a parameterized
accelerator template, it is systematic and simple to customize the
template to different robots.

Like the iiwa joint in Figure 7, additional examples of joints on
real robots are shown in Figure 16: the left hind knee of the HyQ
quadruped [52], and the right shoulder of the Atlas humanoid [3].
Each joint’s transformation matrix has a sparsity pattern. Using
robomorphic computing, these sparsity patterns directly program
the structure of sparse matrix-vector multiplication units by prun-
ing a tree of multipliers and adders.

The topology of limbs and links in a robot model parameterizes
the parallelism exposed in the hardware template. For example, if
we target our dynamics gradient template to the HyQ quadruped,
the customized accelerator will have 4 parallel limb processors, each
with 3 parallel datapaths (one per link). The limb outputs will be
periodically synchronized at a central torso processor to combine
their overall impact.
Automating theMethodology. Themost significant contribution
of robomorphic computing is that while we performed it manually
as a proof-of-concept in Section 5, it is a systematic design flow
(Figure 5) that can be automated in future work.

The design of the parameterized hardware template can be auto-
mated using a domain-specific language and a high-level synthesis
(HLS) flow [1]. These HLS flows use a combination of domain-
specific libraries of hand-optimized RTL modules (written once by
a hardware engineer) and high-level languages that parameterize
and instantiate those modules.

Setting the parameters per-robot to create customized hardware
accelerators is also simple to automate. The necessary parameters
are already parsed and extracted from robot description files by
existing robot dynamics software libraries [6, 36]. These parameters
can be used in an HLS flow to automatically output customized
hardware. Users can then create accelerators without intervention
from roboticists or hardware engineers.

8 RELATEDWORK
Workload Analysis. Previous work [40] performed a thorough
architectural performance analysis of our key algorithm, RNEA
(Algorithm 2), giving insights into its computational characteristics
(e.g., compute-bound, spends less than around 10% of clock cycles
on memory stalls, working set fits in a 32kB L1 cache with a < 0.3%
miss rate). This analysis, combined with our insights into robot
morphology (e.g., deterministic matrix sparsity patterns), motivated
our design of a hardware accelerator where we could tailor the
computational resources to exactly match the needs of this highly
compute-bound application.

Previous work has also broken down how much time is spent on
eachmajor computational component of the high-level motion plan-
ning workload we examine in Section 3, nonlinear MPC. This work
has shown that the dynamics gradient kernel is a major bottleneck,
taking as much as 30% to 90% of the total runtime [5, 41, 46, 47],
depending on implementation details of the higher-level algorithm
and hardware platform. This analysis also demonstrates that the
dynamics gradient kernel is an atomic step of the overall work-
load with a clearly-defined interface, making it an ideal target for
hardware acceleration.
Software. Our design methodology builds on previous work in
robotics software engineering [5, 36] by introducing per-robot opti-
mization techniques to the hardware domain. Several state-of-the-
art software libraries [6, 16, 27, 36, 39] implement robot dynamics
functions for use in motion planning and control, but current solu-
tions exhibit a significant performance gap for complex robots (see
Section 3).
Hardware.Most work on robotics hardware acceleration to date
has focused on perception, including numerous accelerators for
neural networks and computer vision [7, 23, 49]. There has also

684

ASPLOS ’21, April 19–23, 2021, Virtual, USA S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. Janapa Reddi

been recent work on hardware for mapping and localization, e.g.,
simultaneous localization and mapping (SLAM) [56]. For motion
planning and control, prior hardware acceleration work has been
limited to collision detection [33, 38] and planning for systems with
simple dynamics, such as cars and drones [51]. The focus of our
work is motion planning and control applications for robots with
complex multi-body dynamics, e.g., manipulators, quadrupeds, and
humanoids, which remain largely unexplored.
DesignMethodologies. There is an expanding ecosystem of work
in developing automatable architectural design tools [21]. A few
examples include simulation tools that automatically model under-
lying computing hardware targets [58]; languages and compilers
for performing high-level synthesis from software to RTL [43]; and
domain-specific design methodologies to codesign algorithms, ar-
chitecture, and circuits for, e.g., neural networks and digital signal
processing [49, 59]. Our approach shares features with some of
these related works, such as the use of parameterized hardware
templates, but it also opens up new design possibilities by intro-
ducing a new input to the hardware-software codesign process: the
physical morphology of a complex robot model.

There is emerging interest in hardware codesign for robotics
applications, but work has been limited to neural network-based
techniques and platforms with simple dynamics, like drones [28].
Our methodology, by contrast, can be applied to traditional, non-
learning-based robotics algorithms and robots with complex dy-
namics, e.g., manipulators.

9 CONCLUSION
In this work, we introduce robomorphic computing: a designmethod-
ology to transform robot morphology into a customized hardware
accelerator morphology. Using robomorphic computing, we de-
velop the first hardware accelerator for the gradient of rigid body
dynamics, a key bottleneck in emerging robot motion planning and
control techniques. We implement the accelerator for an industrial
manipulator on an FPGA deployed in a coprocessor system, and a
synthesized ASIC. Our accelerator achieves significant speedups
over state-of-the-art CPU and GPU solutions. Robomorphic comput-
ing generalizes to different robot models and robotics applications,
and has a clear pathway to automation. This methodology provides
a roadmap for future work in accelerators for robotics applications.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant 2030859 to the Computing Research As-
sociation for the CIFellows Project, Grant DGE1745303, and Grant
1718160; and the Defense Advanced Research Projects Agency un-
der Grant HR001118C0018. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
organizations.

REFERENCES
[1] Oriol Arcas-Abella, Geoffrey Ndu, Nehir Sonmez, Mohsen Ghasempour, Adria

Armejach, Javier Navaridas, Wei Song, John Mawer, Adrián Cristal, and Mikel
Luján. 2014. An empirical evaluation of high-level synthesis languages and
tools for database acceleration. In 2014 24th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 1–8.

[2] Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger, Chris-
tian Gehring, C David Remy, and Roland Siegwart. 2013. State estimation for
legged robots-consistent fusion of leg kinematics and IMU. Robotics 17 (2013),
17–24.

[3] Boston Dynamics. Accessed in 2020. Atlas® | Boston Dynamics. https://www.
bostondynamics.com/atlas Available: bostondynamics.com/atlas.

[4] Boston Dynamics. Accessed in 2020. Spot® | Boston Dynamics. https://www.
bostondynamics.com/spot Available: bostondynamics.com/spot.

[5] Justin Carpentier and Nicolas Mansard. 2018. Analytical Derivatives of Rigid
Body Dynamics Algorithms. Robotics: Science and Systems (2018).

[6] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent
Lamiraux, Olivier Stasse, and Nicolas Mansard. 2019. The Pinocchio C++ library:
A fast and flexible implementation of rigid body dynamics algorithms and their
analytical derivatives. In 2019 IEEE/SICE International Symposium on System
Integration (SII). IEEE, 614–619.

[7] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architec-
ture for energy-efficient dataflow for convolutional neural networks. In ISCA.
ACM/IEEE.

[8] Jared Di Carlo, Patrick M Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae
Kim. 2018. Dynamic locomotion in the mit cheetah 3 through convex model-
predictive control. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 1–9.

[9] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. 2009. Efficient numer-
ical methods for nonlinear MPC and moving horizon estimation. In Nonlinear
model predictive control. Springer, 391–417.

[10] Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and
Emanuel Todorov. 2013. An integrated system for real-time model predictive
control of humanoid robots. In 2013 13th IEEE-RAS International conference on
humanoid robots (Humanoids). IEEE, 292–299.

[11] Christer Ericson. 2004. Real-time collision detection. CRC Press.
[12] Farbod Farshidian, Edo Jelavic, Asutosh Satapathy, Markus Giftthaler, and Jonas

Buchli. 2017. Real-time motion planning of legged robots: A model predictive
control approach. In 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids). IEEE, 577–584.

[13] Eyal Fayneh, Marcelo Yuffe, Ernest Knoll, Michael Zelikson, MuhammadAbozaed,
Yair Talker, Ziv Shmuely, and Saher Abu Rahme. 2016. 14nm 6th-generation Core
processor SoC with low power consumption and improved performance. In 2016
IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 72–73.

[14] Roy Featherstone. 2008. Rigid body dynamics algorithms. Springer.
[15] Tom Feist. 2012. Vivado design suite. White Paper 5 (2012), 30.
[16] Martin L. Felis. 2016. RBDL: an efficient rigid-body dynamics library using

recursive algorithms. Autonomous Robots (2016), 1–17. https://doi.org/10.1007/
s10514-016-9574-0

[17] Gianluca Garofalo, Christian Ott, and Alin Albu-Schäffer. 2013. On the closed
form computation of the dynamic matrices and their differentiations. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2364–
2359.

[18] Markus Giftthaler, Michael Neunert, Markus Stäuble, Marco Frigerio, Claudio
Semini, and Jonas Buchli. 2017. Automatic differentiation of rigid body dynamics
for optimal control and estimation. Advanced Robotics 31, 22 (2017), 1225–1237.

[19] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[20] Carsten Heinz, Yannick Lavan, Jaco Hofmann, and Andreas Koch. 2019. A Catalog
and In-Hardware Evaluation of Open-Source Drop-In Compatible RISC-V Soft-
core Processors. In 2019 International Conference on ReConFigurable Computing
and FPGAs (ReConFig). IEEE, 1–8.

[21] John L Hennessy and David A Patterson. 2019. A new golden age for computer
architecture. Commun. ACM (2019).

[22] Michael G Hollars, Dan E Rosenthal, and Michael A Sherman. 1991. SD/FAST
User’s Manual. Symbolic Dynamics Inc (1991).

[23] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, iemthu DLe, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter performance analysis of a
tensor processing unit. In ISCA. ACM/IEEE.

685

https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas
bostondynamics.com/atlas
https://www.bostondynamics.com/spot
https://www.bostondynamics.com/spot
bostondynamics.com/spot
https://doi.org/10.1007/s10514-016-9574-0
https://doi.org/10.1007/s10514-016-9574-0

Robomorphic Computing ASPLOS ’21, April 19–23, 2021, Virtual, USA

[24] Claudia Kalb. 2020. Could a robot care for grandma? National Geographic (Jan
2020).

[25] Myron King, Jamey Hicks, and John Ankcorn. 2015. Software-driven hardware
development. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 13–22.

[26] Jonas Koenemann, Andrea Del Prete, Yuval Tassa, Emanuel Todorov, Olivier
Stasse, Maren Bennewitz, and Nicolas Mansard. 2015. Whole-body model-
predictive control applied to the HRP-2 humanoid. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 3346–3351.

[27] Twan Koolen and Robin Deits. 2019. Julia for robotics: Simulation and real-time
control in a high-level programming language. In 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 604–611.

[28] Srivatsan Krishnan, ZishenWan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra
Faust, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi. 2020. The Sky Is
Not the Limit: A Visual Performance Model for Cyber-Physical Co-Design in
Autonomous Machines. IEEE Computer Architecture Letters 19, 1 (2020), 38–42.

[29] Eric Krotkov, Douglas Hackett, Larry Jackel, Michael Perschbacher, James Pippine,
Jesse Strauss, Gill Pratt, and Christopher Orlowski. 2017. The DARPA robotics
challenge finals: results and perspectives. Journal of Field Robotics 34, 2 (2017),
229–240.

[30] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai
Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake. 2016.
Optimization-based locomotion planning, estimation, and control design for
the atlas humanoid robot. Autonomous Robots 40, 3 (2016), 429–455.

[31] KUKA AG. Accessed in 2020. LBR iiwa | KUKA AG. https://www.kuka.
com/products/robotics-systems/industrial-robots/lbr-iiwa Available: kuka.com/
products/robotics-systems/industrial-robots/lbr-iiwa.

[32] Steven M LaValle. 2006. Planning algorithms. Cambridge university press.
[33] Shiqi Lian, Yinhe Han, Xiaoming Chen, YingWang, and Hang Xiao. 2018. Dadu-p:

A scalable accelerator for robot motion planning in a dynamic environment. In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[34] Courtney Linder. 2019. A Cave Is No Place for Humans, So DARPA Is Sending In
the Robots. Popular Mechanics (Aug 2019).

[35] J Luh, M Walker, and R Paul. 1980. Resolved-acceleration control of mechanical
manipulators. IEEE Trans. on Automatic Control 25, 3 (1980), 468–474.

[36] Frigerio Marco, Buchli Jonas, Darwin G Caldwell, and Semini Claudio. 2016.
RobCoGen: a code generator for efficient kinematics and dynamics of articulated
robots, based on Domain Specific Languages. Journal of Software Engineering in
Robotics 7, 1 (2016), 36–54.

[37] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Ham-
moud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayaku-
mar, and Nicolas Mansard. 2020. Crocoddyl: An Efficient and Versatile Framework
for Multi-Contact Optimal Control. In IEEE International Conference on Robotics
and Automation (ICRA).

[38] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and Daniel J Sorin.
2016. The microarchitecture of a real-time robot motion planning accelerator. In
MICRO. IEEE/ACM.

[39] Maximilien Naveau, Justin Carpentier, Sébastien Barthelemy, Olivier Stasse, and
Philippe Souères. 2014. METAPOD: Template META-PrOgramming applied to
dynamics: CoP-CoM trajectories filtering. In Humanoid Robots (Humanoids), 2014
14th IEEE-RAS International Conference on. IEEE, 401–406.

[40] Sabrina M Neuman, Twan Koolen, Jules Drean, Jason E Miller, and Srinivas
Devadas. 2019. Benchmarking and Workload Analysis of Robot Dynamics Al-
gorithms. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE.

[41] Michael Neunert, Cédric De Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian,
Roland Siegwart, and Jonas Buchli. 2016. Fast nonlinear model predictive control
for unified trajectory optimization and tracking. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE, 1398–1404.

[42] Michael Neunert, Farbod Farshidian, Alexander W Winkler, and Jonas Buchli.
2017. Trajectory optimization through contacts and automatic gait discovery for
quadrupeds. IEEE Robotics and Automation Letters 2, 3 (2017), 1502–1509.

[43] Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE’04. IEEE, 69–70.

[44] KeJun Ning and Florentin Wörgötter. 2009. A novel concept for building a
hyper-redundant chain robot. IEEE transactions on robotics (2009).

[45] Cagdas D Onal and Daniela Rus. 2013. Autonomous undulatory serpentine
locomotion utilizing body dynamics of a fluidic soft robot. Bioinspiration &
biomimetics 8, 2 (2013), 026003.

[46] Zherong Pan, Bo Ren, and Dinesh Manocha. 2019. GPU-based contact-aware
trajectory optimization using a smooth force model. In Proceedings of the 18th
annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM,
4.

[47] Brian Plancher and Scott Kuindersma. 2018. A Performance Analysis of Parallel
Differential Dynamic Programming on a GPU. In International Workshop on the
Algorithmic Foundations of Robotics (WAFR).

[48] Nicolaus A Radford, Philip Strawser, Kimberly Hambuchen, Joshua S Mehling,
William K Verdeyen, A Stuart Donnan, James Holley, Jairo Sanchez, Vienny
Nguyen, Lyndon Bridgwater, Reginald Berka, Robert Ambrose, Christopher Mc-
Quin, John D. Yamokoski, Stephen Hart, Raymond Guo, Adam Parsons, Brian
Wightman, Paul Dinh, Barrett Ames, Charles Blakely, Courtney Edmonson, Brett
Sommers, Rochelle Rea, Chad Tobler, Heather Bibby, Brice Howard, Lei Nui, An-
drew Lee, Michael Conover, Lily Truong, David Chesney, Robert Platt Jr., Gwen-
dolyn Johnson, Chien-Liang Fok, Nicholas Paine, Luis Sentis, Eric Cousineau,
Ryan Sinnet, Jordan Lack, Matthew Powell, Benjamin Morris, and Aaron Ames.
2015. Valkyrie: NASA’s first bipedal humanoid robot. Journal of Field Robotics
32, 3 (2015), 397–419.

[49] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network accel-
erators. In ISCA. ACM/IEEE.

[50] Federico Renda and Lakmal Seneviratne. 2018. A geometric and unified approach
for modeling soft-rigid multi-body systems with lumped and distributed degrees
of freedom. In ICRA. IEEE.

[51] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. 2018.
RoboX: An end-to-end solution to accelerate autonomous control in robotics. In
2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 479–490.

[52] Claudio Semini, Nikos G Tsagarakis, Emanuele Guglielmino, Michele Focchi,
Ferdinando Cannella, and Darwin G Caldwell. 2011. Design of HyQ–a hydrauli-
cally and electrically actuated quadruped robot. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 225, 6
(2011), 831–849.

[53] Jonathan Shaw. 2020. The Coming Eldercare Tsunami. Harvard Magazine (Jan
2020).

[54] Anthony Stentz, Herman Herman, Alonzo Kelly, Eric Meyhofer, G Clark Haynes,
David Stager, Brian Zajac, J Andrew Bagnell, Jordan Brindza, Christopher Dellin,
Michael George, Jose Gonzalez-Mora, Sean Hyde, Morgan Jones, Michel Laverne,
Maxim Likhachev, Levi Lister, Matt Powers, Oscar Ramos, Justin Ray, David Rice,
Justin Scheifflee, Raumi Sidki, Siddhartha Srinivasa, Kyle Strabala, Jean-Philippe
Tardif, Jean-Sebastien Valois, J. Michael Vande Weghe, Michael Wagner, and Carl
Wellington. 2015. CHIMP, the CMU highly intelligent mobile platform. Journal
of Field Robotics 32, 2 (2015), 209–228.

[55] Soumya Sudhakar, Sertac Karaman, and Vivienne Sze. 2020. Balancing Actuation
and Computing Energy in Motion Planning. In ICRA. IEEE.

[56] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. 2018. Navion: a fully integrated energy-efficient visual-inertial odometry
accelerator for auto. nav. of nano drones. In VLSI Circuits. IEEE.

[57] Yuval Tassa, Tom Erez, and Emanuel Todorov. 2012. Synthesis and stabilization
of complex behaviors through online trajectory optimization. In Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 4906–4913.

[58] Manish Vachharajani, Neil Vachharajani, David A Penry, Jason A Blome, and
David I August. 2002. Microarchitectural exploration with Liberty. In 35th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2002.(MICRO-35).
Proceedings. IEEE, 271–282.

[59] Alexa VanHattum, Rachit Nigam, Vincent T Lee, James Bornholt, and Adrian
Sampson. 2020. A Synthesis-Aided Compiler for DSP Architectures (WiP Paper).
In The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems. 131–135.

[60] Guang-Zhong Yang, Bradley J. Nelson, Robin R. Murphy, Howie Choset, Henrik
Christensen, Steven H. Collins, Paolo Dario, Ken Goldberg, Koji Ikuta, Neil
Jacobstein, Danica Kragic, Russell H. Taylor, andMarciaMcNutt. 2020. Combating
COVID-19—The role of robotics inmanaging public health and infectious diseases.
Science Robotics (Mar 2020).

686

https://www.kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa

	Abstract
	1 Introduction
	2 Background
	2.1 Robot Morphology
	2.2 Algorithms Using Robot Morphology

	3 Motivation
	4 Robomorphic Computing
	5 Design
	5.1 Algorithm Details
	5.2 Step 1: Create Hardware Template
	5.3 Step 2: Set Template Parameters

	6 Evaluation
	6.1 Methodology
	6.2 FPGA Accelerator Evaluation
	6.3 Coprocessor System Evaluation
	6.4 Synthesized ASIC Results
	6.5 Projected Control Rate Improvement

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

