
MI6: Secure Enclaves in a Speculative Out-of-Order Processor
Thomas Bourgeat, Ilia Lebedev

Andrew Wright, Sizhuo Zhang
∗

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Arvind

Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

ABSTRACT
Recent attacks have broken process isolation by exploiting microar-

chitectural side channels that allow indirect access to shared mi-

croarchitectural state. Enclaves strengthen the process abstraction

to restore isolation guarantees.

We proposeMI6, an aggressively speculative out-of-order pro-

cessor capable of providing secure enclaves under a threat model

that includes an untrusted OS and an attacker capable of mounting

any software attack currently considered practical, including those

utilizing control flow mis-speculation. MI6 is inspired by Sanctum

[16] and extends its isolation guarantee to more realistic memory

hierarchy. It also introduces a purge instruction, which is used only

when a secure process is (de)scheduled, and implements it for a

complex processor microarchitecture. We model the performance

impact of enclaves in MI6 through FPGA emulation on AWS F1

FPGAs by running SPEC CINT2006 benchmarks as enclaves within

an untrusted Linux OS. Security comes at the cost of approximately

16.4% average slowdown for protected programs.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
Secure processors.

KEYWORDS
secure processors, architectural isolation, microarchitectural isola-

tion

ACM Reference Format:
Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind,

and Srinivas Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-

Order Processor. In Proceedings of The 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’19). ACM, New York, NY, USA,

15 pages.

1 INTRODUCTION
1.1 Secure Enclaves
The process abstraction is pervasive and underpins modern soft-

ware systems. Conventional wisdom pertaining to process security

teaches that an attacker that cannot name a particular state element

cannot attack that element. Even in a situation where unconditional

∗
Student authors listed in alphabetical order.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MICRO’19, October 12-16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN XXX.

trust in the OS is considered tenable, the architectural process iso-

lation an OS can enforce with commodity hardware falls short:

microarchitectural side channels allow indirect access to shared

microarchitectural state from which information about a process

can be leaked (e.g., [8], [65]). Recent attacks based on control flow

speculation (e.g., Spectre [33]) have brought this issue to the fore.

Our focus in this paper is to strengthen the capability of con-

ventional systems, i.e., speculative out-of-order (OOO) multicores

running an OS (e.g., Linux), with processes with strong isolation

guarantees. We will call such processes enclaves, borrowing the

term from Intel SGX [45], though the idea predates SGX. Enclaves

are to be used to run secure tasks, and will coexist with ordinary

processes.

Strong isolation requires a stronger guarantee than private mem-

ory. The goal of the enclave abstraction is to achieve the following

property:

Property 1 (Strong Isolation). Any attack by a privileged
attacker program co-located on amachine with the victim enclave that
can extract a secret inside the victim, can also be mounted successfully
by an attacker on a different machine than the victim.

The attacker on a different machine than the victim is only able

to communicate with the victim through the victim’s public API and

can observe the latency of these API calls. No other program should

be able to infer anything private from the enclave program through

its use of shared resources or shared microarchitectural state, e.g.,

cache or branch predictor state. This implies that it is not enough

to just give a unique set of addresses to an enclave, but separation

of resources has to be provided at all levels of the cache hierarchy

where these addresses may reside. Our goal is to make sure that an

enclave cannot leak information to or be influenced by any program

running in the system. To achieve this, all shared resources in our

microarchitecture are isolated spatially and temporally as required

by our threat model, described in Section 2.3.

Enclaves trade expressivity for security; enclave software is re-

stricted in how it interacts with untrusted software, including the

OS (cf. Section 2.1). A trusted security monitor running in machine

mode mediates enclave entry and exit, and verifies resource allo-

cation decided by untrusted system software to ensure, for exam-

ple, allocation of non-overlapping memory to different enclaves.

The security monitor (cf. Section 6.2) is designed to protect itself

from tampering (by appropriately configuring hardware protection

mechanisms), even if the OS has been compromised.

We trust our hardware and assume that it is bug free. Our threat

model assumes a privileged software adversary and is detailed in

Section 2.3; we also describe what is outside our threat model in

Section 2.4. We are primarily concerned with attacks that exploit

shared hardware resources to interact with the victim enclave via

methods outside its public API.

42

DOI: 10.1145/3352460.3358310

https://doi.org/10.1145/XXXXX.XXXXXX
https://doi.org/10.1145/XXXXX.XXXXXX


MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

MI6 is based on the open-source out-of-order RiscyOO [67]

processor, and provides secure enclaves under our threat model. We

model the performance impact of enclaves inMI6 through FPGA

emulation on AWS F1 FPGAs by running benchmarks from SPEC

CINT2006 on top of an untrusted Linux OS.

1.2 Contributions and organization
Like Sanctum [16], we argue that enclaves defined as a strengthened

process are an excellent abstraction for secure computation. We

make the following contributions in support of our argument:

(1) We show that there are many subtle side channels associated

with queues and associated arbitration required to handle

multiple outstanding memory requests in the memory hier-

archy, and describe how to enforce strong isolation in such

systems (cf. Section 5.4). MI6 therefore protects against a

broader class of attacks than Sanctum, which excludes, for

example, attacks that use the cache coherence bandwidth

and DRAM controller bandwidth channels from its threat

model.

(2) We show that the complexity of the out-of-order processor

core can be completely decoupled from the complexity of a

modern memory hierarchy by using a new purge instruc-

tion, which can be easily incorporated in any Instruction Set

Architecture (ISA). We describe optimizations based on in-

distinguishability to software in our purge implementation

(cf. Section 6.1).

(3) We describe key modifications to the security monitor to

maintain strong isolation in a speculative processor (cf. Sec-

tion 6.2), and an optimization relating to access permissions

checking (cf. Section 5.3).

(4) We provide a detailed evaluation of the performance over-

head of enclaves in an implementation of the MI6 OOO

processor. We show, for example, the cost of flushing shared

microarchitectural state on each system call, which is re-

quired for strong isolation. Overall, security comes at the

cost of approximately 16.4% average slowdown for protected

programs. We note that this number assumes a baseline that

is not protected against physical attacks on memory unlike

Aegis [53] and Intel SGX [45], and with a constant latency

DRAM controller.

Organization: In Section 2, we describe the enclave abstraction

and threat model. Related work is the subject of Section 3. In Sec-

tion 4 we describe the baseline implementation of the RiscyOO

speculative out-of-order processor based on the RISC-V ISA [58]

and list the hardware modifications we made. Section 5 describes

how we provide steady state isolation of enclaves in MI6. Section 6

describes how MI6 handles transitions between enclaves. The per-

formance of MI6 is evaluated in Section 7. We conclude in Section

8.

2 ENCLAVES AND ISOLATED EXECUTION
In this section, we describe the enclave abstraction as presented

in [52] (cf. Section 2.1). We describe the high-level approach to

(micro)architectural isolationMI6 employs to achieve Property 1

(cf. Section 2.2). We then describe the capabilities of the adversary

(cf. Section 2.3). We also discuss what falls outside our threat model

(cf. Section 2.4).

2.1 The Enclave Abstraction
A processor that can serve as an enclave platform implements iso-

lated software environments in disjoint address spaces only accessi-

ble from within a given enclave’s threads of execution. An enclaved
process resides entirely and exclusively in such isolated memory,

which contains all code and data structures comprising the enclave,

and is isolated from all other software in the system.

An enclave platform must guarantee integrity and private exe-

cution of an enclave in the presence of other software, as per its

threat model, and thus strongly isolates the enclave from all other

software. As a consequence of its isolation, an enclave cannot trans-

parently receive system services or issue system calls, as software

outside the enclave is not trusted with access to enclave private

memory. The enclave platform mediates control transfer to and

from an enclave via statically-defined locations called entry points,

and guarantees no side effects of execution remain across these

context switches.

Enclaves requiring system services must proxy through un-

trusted software, and must respect that the OS services are un-

trusted. With these guarantees, enclaves can become the only

trusted components of an application (aside from the platform

itself), and a carefully programmed enclave can execute safely even

when privileged software is compromised.

The platform also implements the measurement and attestation

protocol of [36] to prove enclave integrity to a remote party.

2.2 Enclave Isolation
The goal of the enclave abstraction is to achieve Property 1. To

protect enclave integrity, the processor implements architectural
isolation (that of memory) by setting up invariants in a hardware

mechanism to prevent all accesses to enclave-owned physical mem-

ory, allowing only the enclave’s code access. Any sharing of mi-

croarchitectural resources by mutually distrusting software may

transmit private information via the availability of these finite re-

sources, measurable via the timing of certain operations or other

side channels. Microarchitectural isolation is necessary to not only

protect the confidentiality of enclave execution (for example clos-

ing side channels through cache state), but also to protect enclave

integrity in the context of a core that executes speculatively.

Instead of directly implementing isolated enclaves, theMI6 hard-
ware implements flushing, constraints on core instruction fetch,

and a set of low-level isolation primitives (cf. Section 5) sufficient to

partition each relevant sub-system of MI6 into “protection domains”

that are non-overlapping allocations of machine resources. When

programs are running on multiple cores in different protection do-

mains, in this steady state, MI6 guarantees non-interference and
isolation of these domains.

The platform must also allow for transitions between different

protection domain configurations in order to implement enclaves.

Following the example of [16],MI6 relies on a small trusted security

monitor (cf. Section 6.2), which executes in a dedicated protection

domain to compose the machine’s protection domains and con-

straints on execution into the high-level properties of isolated en-

claves. While the implementation details of anMI6 security monitor

largely borrow from [37], and are out of scope in this manuscript,

Section 6.2 details the aspects of the monitor relevant to the isola-

tion of enclaves.

43



MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

The trusted computing base (TCB) of theMI6 processor includes
the processor chip, memory (i.e., DRAM), as well as the security

monitor binary. The security monitor is the only software running

in the machine mode, which is the highest privilege mode in RISC-

V and is more privileged than the supervisor mode used by the

untrusted OS [57].MI6 isolates the software inside an enclave from

other software on the same speculative out-of-order processor to

satisfy Property 1.

2.3 Attacker Capability
We assume an insidious remote adversary able to exploit software

vulnerabilities expected to be present in large system software.

Specifically, we assume that an attacker can compromise any op-

erating system and hypervisor present on the computer executing

the enclave, and can launch malicious enclaves. The attacker has

complete knowledge of the enclave platform’s architecture and

microarchitecture, and the software it loads. The attacker can ana-

lyze passively observed data, such as page fault addresses, as well

as mount active attacks, such as memory probing, and cache tag

state attacks (e.g., [65]). The attacker can exploit speculative state,

branch predictor state, and other shared microarchitectural state in

any software attack, e.g., Spectre [33].

2.4 What’s Outside the Threat Model
MI6’s isolation mechanisms exclusively address software attacks,

and assume the absence of any adversary with physical access.

We do not protect against attacks such as [11], where the victim

application leaks information via its public API, and the leak occurs

even if the victim runs on a dedicated machine. We also consider

any software attacks that rely on sensor data to be physical attacks.

MI6 does not protect against physical attacks on memory, but can

be augmented with memory encryption and integrity verification

exemplified by processors such as Aegis [53] and Oblivious Random

Access Memory (ORAM) [23] [51] as in Ascend [21] to variously

defend against these attacks. ORAM overhead can be substantially

reduced if smart memory is assumed [2, 6].MI6 does not protect
against denial-of-service (DoS) attacks, assumes correct underlying

hardware, and does not protect against software attacks that exploit

hardware bugs (fault-injection attacks such as rowhammer [31, 49]).

Finally, we exclude attacks that utilize shared performance counters.

3 RELATED WORK
3.1 Microarchitectural side channel attacks
Attacks that exploit microarchitectural side channels to leak infor-

mation come in many varieties. Attacks using cache tag state-based

channels are known to retrieve cryptographic keys from a grow-

ing body of cryptographic implementations: AES[9, 46], RSA [11],

Diffie-Hellman [34], and elliptic-curve cryptography [10], to name a

few. Such attacks can be mounted by unprivileged software sharing

a computer with the victim software [7].

Sophisticated channel modulation schemes such as flush +reload

[64] and variants of prime+probe [44] target the last-level cache

(LLC), which is shared by all cores in a socket. The evict+reload

variant of flush+reload uses cache contention rather than flush-

ing [44]. A less common yet viable strategy corresponds to ob-

serving changes in coherence [63] or replacement metadata [32].

Directories are readily reverse-engineered to construct eviction sets

in [62].

Recently, multiple security researchers (e.g., [25, 33, 40]) have

found ways for an attacker to exploit speculative execution to create

a transmitter within victim code in order to leak secrets. Spectre and

Meltdown have exploited the fact that code executing speculatively

has unrestricted access to any registers and memory, and a host of

variants of these attacks have been proposed. These attacks have

motivated MI6.

3.2 Defending against side channel attacks
Set partitioning, i.e., not allowing occupancy of any cache set by

data from different protection domains, can disable cache state-

based channels. It has the advantage of requiring no new hardware,

provided groups of sets are allocated at page granularity [39, 68]

via page coloring [29, 54]. Sanctum uses set partitioning to block

cache timing attacks, as does MI6.
Intel’s Cache Allocation Technology (CAT) [24, 26] and its vari-

ants (e.g., CATalyst [41]) provide a mechanism to configure each

logical process with a class of service, and allocates Last Level Cache
(LLC) cache ways to logical processes, falling somewhat short of

isolation. In CAT, access patterns may leak through metadata up-

dates on hitting loads, as the replacement metadata is shared across

protection domains. DAWG [32] endows a set associative structure

with a notion of protection domains to provide strong isolation.

Unlike CAT, DAWG explicitly isolates cache replacement state. Page

coloring can be replaced with DAWG or another cache isolation

mechanism in MI6.
A alternative strategy to protect against cache timing attacks

separate from partitioning is to randomize interference in the cache

(e.g., RPcache [35, 56], Random Fill Cache [42], Newcache [43],

CEASER [47]), CEASER-S [48], or alter replacement policies (e.g.,

SHARP [61], RIC [27], [17]). In the MI6 design, we do not allow

adaptivity of cache area allocated to an enclave to protect against

cache occupancy attacks (e.g., [50]) and therefore we cannot use

these techniques.

MI6 uses techniques similar to [20] to achieve timing indepen-

dence (non-interference) in its memory system. To support demand

paging in a secure fashion in MI6 enclaves, page-level ORAM as

briefly described in Sanctum or the more efficient approach of In-

visiPage [3] can be used.

3.3 Secure Processors
A detailed review of secure processors is provided in [15]. Early

architectures such as XOM [38], Aegis [53], ARM’s TrustZone [4],

and Bastion [14] did not consider side channel attacks in their threat

model.

Intel’s SGX [5, 45] adapted the ideas in XOM, Aegis and Bastion

to multi-core processors with a shared, coherent last-level cache.

SGX does not protect against cache timing attacks, nor control flow

speculation attacks [12]. Iso-X extends SGX enclave allocation and

does not protect against cache timing attacks [18].

Sanctum [16] introduced a straightforward software-hardware

co-design to provide enclaves resistant to software attacks, includ-

ing those that exploit shared microarchitectural state in a simple

in-order processor.MI6 is similar to Sanctum, but protects against a

44



MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

broader class of attacks including those that use the cache/cache di-

rectory/DRAM controller bandwidth channels. The cache hierarchy

of MI6 corresponds to a modern processor as compared to the cache

hierarchy modeled by Sanctum, which did not include queues or

arbitration logic. Further, speculation in MI6 provides a rich attack

surface. MI6 introduces a microarchitecture-independent purge in-

struction to flush the out-of-order pipeline. Keystone [30] borrows

from Sanctum to implement enclaves targeting standard RISC-V

in-order processors using RISC-V’s physical memory protection

primitive [57].

Komodo [19] builds a privileged software monitor on top of ARM

TrustZone that implements enclaves. Komodo, as described in [19],

does not support multi-processor execution, and runs on an in-

order processor. InvisiSpec [60] makes speculation invisible in the

data cache hierarchy. This comes at a significant performance cost,

and does not preclude speculation based attacks on other shared

microarchitectural state.

4 BASELINE OOO PROCESSOR
MI6 is based on the open-source RiscyOO speculative OOO pro-

cessor [67]. RiscyOO implements most features of modern micro-

processors, including register renaming, branch prediction, non-

blocking caches and TLBs, and superscalar and speculative exe-

cution. In particular, RiscyOO can issue a load speculatively even

when older instructions have unresolved branches or memory ad-

dresses. RiscyOO also has a shared L2 cache which is coherent and

inclusive with the private L1 caches of each core.We also refer to the

shared L2 as the last level cache (LLC). Therefore, RiscyOO contains

cache-timing side channels and is vulnerable to speculation-based

attacks like Spectre. The detailed configuration of RiscyOO used in

this paper can be found in Figure 4 in Section 7.

RiscyOO uses the open-source RISC-V instruction set [1], and

has been prototyped on AWS F1 FPGAs. Its FPGA implementation

boots Linux and completes SPEC CINT2006 benchmarks with the

largest input size (ref input) in slightly more than a day. RiscyOO

is a great platform that we can build secure enclaves on: it is vastly

more complex than the implementation of Sanctum in [16], and

presents new challenges for security.

4.1 Hardware Modifications
Enclave support in a modern processor system require three inter-

ventions: 1. Physical address protection and isolation through the

memory hierarchy. 2. A rigorous implementation of a “purge” oper-

ation to scrub each type of physical resource that can be separately

allocated to an enclave. 3. A speculation guard for the security mon-

itor: this software has access to all physical addresses, and must

not speculatively load addresses, nor should it speculatively fetch

outside of the security monitor’s own binary.

Specifically, we summarize the the hardware modifications used

by MI6 to support enclaves below. The details of each modification

will be discussed in the rest of paper.

• Flushing microarchitectural states: Sections 6 and 7.1.

• Page-walk check: Section 5.3.

• Turning off speculation and checking instruction fetches in

machine mode: Sections 6.2 and 7.5.

• LLC set-partitioning: Sections 5.2 and 7.2.

• MSHR partitioning in LLC: Sections 5.2 and 7.3.

• Sizing LLC MSHR: Sections 5.2 and 7.3.

• Other LLC changes to block side-channels: Sections 5.4.3

and 7.4.

5 STEADY STATE ISOLATION
When examining the interactions between two programs, there

are two cases to consider: the first is when the two programs are

running on different cores (this section), and the second is when

the two programs run on the same core but at different times (cf.

Section 6).

From an ISA-level point of view, two programs are independent

if a program’s output does not depend on another program. We

call this architectural isolation. This captures the interaction of

instructions in the ISA such as loads and stores, but it does not

include side channels such as timing.

Beyond the basic operations provided by the ISA, we assume

that the precise time of any microarchitectural event within a core

(instruction fetch, issue, execute, commit, etc.) can be measured by

the program running on the core. This conservatively abstracts a

cleverly engineered program’s ability to measure latencies.

First, we define our guarantee of weak timing independence de-
pending on the underlying cause of variation in timing. If the timing

variation is due to one program waiting multiple cycles for another

core to release a reserved resource, we define major timing leak. On
the other hand, if the timing variation is due to two programs com-

pete for a resource within a single clock cycle, requiring per-cycle

arbitration, we define minor timing leakage. Two programs have

weak timing independence if they are architecturally isolated and

only exhibit minor timing leakage (cf. Sections 5.2 and 5.3). Two

programs have strong timing independence if they are architecturally
isolated and have neither flavor of timing leak (cf. Section 5.4).

In Sections 5.2 and 5.3, we ensure that programs using disjoint

protection domains have weak timing independence. Section 5.4

achieves strong timing independence. If two programs use resources

from disjoint microarchitectural protection domains, then they are

timing independent.

Definitions and Assumptions: We consider a program to be the

collection of all the instructions running on a core in supervisor and

lower privilege modes and the corresponding initial data, and we

assume nomachine mode code is run as part of the enclave program

or on the program’s behalf during the program’s lifetime. We ignore

machine mode because software in machine mode can tamper

with arbitrary configuration registers and alter active protection

domains. Including supervisor mode in our analysis simplifies the

problem because we do not have to worry about what the operating

system is doing to provide services such as virtual memory to user

mode programs. All configuration and usage of virtual memory

falls entirely within a program to keep the security monitor as lean

as possible and so minor page table operations do not cause an

enclave exit to the security monitor.

Each program has a set of physical addresses it accesses. There

are many ways a program can access a physical address. When

virtual memory is off, a physical address is accessed for each in-

struction fetch and for each load and store. When virtual memory is

on, physical addresses are also accessed for page table walks. Also

since RiscyOO is an aggressive out-of-order execution processor,

45



MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

speculative instruction fetches, speculative loads, and speculative

page table walks also cause physical memory accesses even if the

speculation was incorrect. When talking about the set of all physical

addresses accessed by a program, we mean the physical addresses

of all the above physical memory accesses, even the speculative

ones.

We also assume that the entire address space is normal memory,

not memory-mapped I/O since we do not trust devices and drivers.

5.1 Establishing Architectural Isolation
If two programs do not share any addresses, then without using the

timing of microarchitectural events, the execution of one program

cannot affect the other. Therefore, disjoint address spaces imply

that programs are architecturally isolated.

5.2 Establishing Weak Timing Independence
Unfortunately, having disjoint address spaces between programs,

while enough for architectural isolation, is not enough even for

weak timing independence.

Cache Partitioning: As an example, consider programs p1 and p2
which access disjoint address spaces. If the two programs access

physical addresses a1 and a2 in the same L2 cache set, then accesses

from p1 to a1 can cause a2 to get evicted causing p2 to see a miss

instead of a hit next time p2 accesses a2.
This issue stems from the two programs dynamically sharing

resources (in this case entries in the same cache set). The on-demand

transition of resources from one program to the other is observable

by the programs and can therefore be used to infer the demand of

the other program. In order to get around this problem and achieve

weak (or strong) timing independence, caches need to be statically

partitioned between programs.

MI6 partitions the cache through set partitioning. Similar to

Sanctum [16],MI6 divides equally the physical memory (DRAM)

into multiple contiguousDRAM regions. MI6 modifies the LLC cache

indexing function so that each pair of DRAM regionsmap to disjoint

cache sets. That is, the higher bits of the original LLC index are

replaced by the DRAM-region ID, which is the highest bits of the

physical address (e.g., the highest 6 bits for 64 DRAM regions). Two

programs using set partitioning must only use physical addresses

that map to disjoint DRAM regions in order to avoid timing leakage

through dynamic sharing of the cache.

MSHR Partitioning: The L2 cache in RiscyOO can only handle

a fixed number of requests at a time. These requests are tracked

using miss status handling registers (MSHRs). If there are no free

MSHRs, then the L2 cannot take any more requests and causes

multiple cycles of backpressure for the child L1 caches trying to

send requests.

Consider programs p1 and p2 where p1 is causing many cache

misses and its requests fill the L2’s MSHRs. If p2 then causes a cache

miss, there will be no MSHR available for p2 and the request will

be stalled. This is a timing variation in p2 that is caused by p1 and
therefore a major timing leak.

To avoid this timing leak, MI6 partitions the MSHRs in the LLC.

Since only processes that are actively running on the processor

cores can occupy MSHRs, MI6 divides equally the MSHRs in the

LLC by the number of processor cores, and statically associates each

MSHR partition with a processor core. p1 using all of its allocated

MSHRs will not affect whether or not a request from p2 is stalled
due to backpressure.

Sizing the MSHRs to Avoid DRAM Backpressure: Say that

dmax is the maximum number of outstanding requests the DRAM

controller can handle. After dmax in-flight requests, the DRAM

controller asserts backpressure and prevents further requests from

being enqueued into it. If the DRAM controller is asserting back-

pressure, then DRAM requests will get delayed causing a major

timing leak.

In RiscyOO, every request sent to the DRAM controller comes

from an L2 request in an MSHR. Moreover, each request put into

an MSHR can send up to two DRAM requests during its lifetime:

one for a possible write back and one for a read request. Therefore,

for a machine with a DRAM controller accepting dmax outstanding

requests, the number of MSHRs in the cache needs to be at most

dmax /2. That amounts to aboutdmax /(2N )MSHRs per core, where

N is the number of cores.

DRAM Controller Latency: Another complication of ensuring

timing independence is the DRAMand the DRAM controller. DRAM

controllers often reorder requests so that requests to the same bank

are done back-to-back to increase the achieved bandwidth of the

DRAM.

Consider programs p1 and p2 where p1 is accessing addresses

in DRAM bank 0, and p2 is accessing addresses in DRAM banks 1,

2, and 3. If p1 and p2 send interleaved requests to DRAM, and p1’s
requests were all to the same bank, a reordering DRAM controller

would perform p1’s requests back-to-back, changing the timing of

p2’s requests. This changes the timing of p2 based on p1, breaking
weak timing independence between the two programs.

For weak (or strong) timing independence, MI6 must either use

a DRAM controller with a constant latency or use a more sophis-

ticated DRAM controller that is aware of protection domains and

associated DRAM regions and ensures timing independence across

protection domains. That is, optimizations such as row buffer are

allowed within a protection domain but not across protection do-

mains. The DRAM controller model RiscyOO used for evaluation

has a constant latency, and we leave the exploration of variable

latency DRAM controllers that are timing independent to future

work.

5.3 Address Validation for Protection Domains
Unlike Sanctum, inMI6 an enclave does not share virtual address

space with untrusted software, as explored in Section 6.2. Coupled

with the mechanism of routing page faults to an enclave, and per-

enclave page tables, this blocks the page fault and page access side

channel and prevents attacks such as [13, 59], where the untrusted

OS views page faults or accesses.

In order to achieve timing independence, programs need to be

able to ensure they only use certain cache sets and no other pro-

grams use those sets. This restriction on address usage includes all
accesses to memory. It is easy to write a program that only performs

loads and stores on certain addresses, but much harder to ensure

that the program will not emit speculative accesses or page table

walks to memory that fall outside that range. It is also much harder

to ensure another program will stay outside of your address range.

To make set partitioning easier, MI6 has hardware support to
ensure all physical accesses fall within the specified DRAM regions

46



MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

(and therefore cache sets) allocated to the running program. Each

core inMI6 has a machine-mode modifiable bitvector containing

a bit for each DRAM region determining if that region can be

accessed or not. If the program makes an access (speculative or non-

speculative) to an address outside the allocated cache sets, the core

will not emit the access to that location and will raise an exception

if that access ends up becoming non-speculative.

We need to check the DRAM region for each physical cache

access. MI6 performs an optimization to simplify the design by

caching DRAM region permissions in the TLB. Each DRAM region

is large enough and has proper alignment so that no 4 KB page falls

in two DRAM regions. Therefore, if a page table walk determines

an access to a specified page is legal, the translation is added to

the TLB and the accesses using the translation are all legal until

the DRAM region allocation changes. To support programs using

physical addresses, the security monitor configures cores to trap on

virtual memory management instructions so the security monitor

can swap in an identity page table when programs try to turn off

virtual memory. Section 6.2 describes how the TLB is maintained

to ensure state transitions do not violate isolation.

5.4 Achieving Strong Timing Independence
This section presents the remainingmodifications required to achieve

strong timing independence, and therefore Property 1. The mech-

anisms introduced in Section 5.2 cannot achieve strong timing

independence primarily because of the shared LLC. We first explain

the structure of LLC in RiscyOO in Section 5.4.1, then show the

possible minor leakages that break strong timing independence

in Section 5.4.2, and present our solution in Section 5.4.3. We also

analyze the performance cost qualitatively in Section 5.4.4.

Shared last level cache (LLC)

Core 0

DRAM

Core 1

Figure 1: Integration of
LLC in RiscyOO

5.4.1 Understanding the LLC of
RiscyOO. Figure 2 shows the in-

ternal details of the LLC.

Figure 1 shows how the LLC is

integrated in a two-core RiscyOO

machine. The LLC uses an MSI

directory-based cache coherency

protocol [55], and it uses a dedi-

cated link to communicate cache-

coherence messages with the L1s

in each processor core. Each link

contains three independent FIFOs

to transfer (1) upgrade requests

from the L1, (2) downgrade responses from the L1, and (3) upgrade

responses and downgrade requests from the LLC, respectively [55].

The LLC is connected to the DRAM controller using a pair of FIFOs,

and the DRAM controller sends responses only for reads.

The LLC contains MSHRs and a cache-access pipeline. Every

incoming message sent to the LLC, including L1 upgrade requests,

L1 downgrade responses and DRAM responses, needs to go through

the cache-access pipeline to access the tag and data SRAMs of the

LLC. An upgrade request from L1 also needs to reserve an MSHR

entry before entering the pipeline. A DRAM response is buffered

in the MSHR entry that initiates the corresponding DRAM read

request before it enters the pipeline, and thus there is no backpressure
on DRAM response.

After a message finishes accessing the SRAMs in the pipeline, it

is processed at the end of the pipeline. After the processing, an L1

upgrade request could be ready to respond, and in this case we enter

the MSHR index of the request into a FIFO, i.e., UQ in Figure 2, and

the response data is buffered in the MSHR entry. The depth of UQ

is equal to the number of MSHRs so it will never backpressure the

pipeline. In other cases where a cache replacement or a cache miss

occurs, the L1 upgrade request that causes the replacement or cache

miss needs to request DRAM. In this case, we enter its MSHR index

into a FIFO, i.e., DQ in Figure 2, and buffer the data in the MSHR

entry if writeback is needed. The depth of DQ is also equal to the

number of MSHRs, so it will also never backpressure the pipeline.

That is, the cache-access pipeline can never be backpressured.
The final piece in the LLC is the Downgrade-L1 logic in Figure 2.

Every cycle, the logic looks for an MSHR entry that needs to down-

grade any L1s, and sends the downgrade request.

Cache-access pipeline

Core 0 downgrade resp
Core 1 downgrade resp

Core 0 upgrade req
Core 1 upgrade req

Process

Downgrade-L1

DRAM resp DRAM req

MSHR index to 
send upgrade resp

Downgrade req
Core 0

Core 1

MSHR index to 
send DRAM req

UQ

DQM
SH

Rs

Figure 2: Internal microarchitecture of LLC in RiscyOO

5.4.2 Minor Timing Leakages in LLC. Section 5.2 has partitioned

the storage elements in the LLC, i.e., cache arrays and MSHRs, to

prevent major timing leakages. However, there are still other shared

resources in the LLC that are contended for by messages belonging

to different cores and potentially different protection domains. As

long as such contention exists, minor timing leakage is possible.

Here, we enumerate all such contended resources.

Entry port of the cache-access pipeline: All the incoming mes-

sages are contending on the entry into the cache-access pipeline

through a two-level mux as shown in Figure 2. If two messages

from two different cores arrive at the LLC at the same time, then

one message will block another for a cycle. This can lead to minor

timing leakage. Contention between different types of messages

from different cores can also form a minor leakage, e.g., a DRAM

response for a miss by core 0 and a L1 upgrade request from core 1.

Downgrade-L1 logic: All the MSHR entries that need to send

downgrade requests are contending on the Downgrade-L1 logic to

send downgrade requests. If the arbitration is not fair, then a large

number of MSHR entries of core 0 that need to send downgrade

requests can block MSHR entries of core 1 from sending downgrade

requests.

UQ and Downgrade requests: A head-of-line block in UQ caused

by a response to core 0 can stall a later response to core 1 in UQ. The

downgrade requests sent by the Downgrade-L1 logic also contend

with the responses in UQ on the outgoing port to processor cores.

DQ: If an MSHR entry is entered into DQ because of a cache miss

without replacement, then it only needs to send one DRAM read

request when it is dequeued from DQ. This will not block the

dequeue port of DQ or lead to leakage. However, if an MSHR entry

enters DQ because of the completion of cache replacement, then it

needs to send not only a DRAMwriteback request, but also a DRAM

47



MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

read request. This is because the MSHR entry must have missed in

the LLC. In this case, the dequeue port of DQ will be blocked for

one cycle in order to send both requests to DRAM. This block may

delay later requests in DQ, creating minor timing leakage.

We have enumerated all instances of contention in the LLC that

can create minor timing leakage. It should be noted that the DRAM-

response port is not a source of leakage, even though responses for

cache misses from different cores all go through this port. This is be-

cause the DRAM-response port is never backpressured as explained

in Section 5.4.1.

5.4.3 LLC with Strong Timing Independence. Figure 3 shows the
microarchitecture of the LLC in MI6 that prevents all the above

minor timing leakages and achieves strong timing independence.

We explain the changes made to handle each of the contended

resources listed in Section 5.4.2.

Cache-access pipeline Process

Downgrade-L1

DRAM resp

DRAM req

MSHR index to send 
upgrade resp

Downgrade req

C
or

e 
1

MSHR index to 
send DRAM req

UQ1

DQRound-robin 
arbiter

UQ0 C
or

e 
0

Retry L1 upgrade req when replacement finishes

Core 1 downgrade resp
Core 1 upgrade req

DRAM resp for Core 1 miss C
or

e 
1

M
SH

R
s

Core 0 downgrade resp
Core 0 upgrade req

C
or

e 
0

M
SH

R
s

DRAM resp for Core 0 miss

Downgrade-L1

Figure 3: Microarchitecture of LLC in MI6 to achieve mi-
croarchitectural isolation

Entry port of the cache-access pipeline: Instead of first merg-

ing incoming messages of the same type and then merging different

message types, the LLC in Figure 3 first merges all incoming mes-

sages for the same core, including L1 upgrade requests, L1 down-

grade responses, and DRAM responses for the misses caused by

the core. Contention between messages for the same core (and

thus the same protection domain) will not cause any leakage. After

merging messages for the same core, we use a round-robin arbiter
to arbitrate messages from different cores before they enter the

cache-access pipeline. Consider the case where we have N cores

with IDs 0 . . .N − 1. In this case, in cycleT , only one message from

core T%N (T modulo N ) can enter the pipeline. It should be noted

that even if there is no incoming message for this core, messages

from other cores cannot proceed. Since the cache-access pipeline

has no backpressure (Section 5.4.1), the round-robin arbiter ensures

that whether messages from a given core can enter the pipeline is

independent from the activity of other cores or protection domains.

That is, strong timing independence is achieved at this entry port.

Downgrade-L1 logic: There are two approaches to solve the con-

tention in the Downgrade-L1 logic. In the first approach, given that

MI6 has already partitioned the MSHRs across processor cores, in-

stead of checking all the MSHRs, the Downgrade-L1 logic examines

only one MSHR partition for a single core at each cycle. The logic

iterates through all partitions in a round-robin fashion, providing

timing independence. The logic will still spend a cycle on a partition

even if no MSHR in the partition has downgrade request to send.

This ensures that whether the MSHRs for a given core can send

downgrade requests is independent from other cores or protection

domains. In the second approach, which we follow, we duplicate

the Downgrade-L1 logic for each MSHR partition. Each copy of the

Downgrade-L1 logic is therefore only responsible for one MSHR

partition, thereby removing any contention (cf. Figure 3).

UQ and Downgrade requests: To resolve the timing dependence

due to UQ, we have split the original UQ into multiple FIFOs (see

Figure 3). That is, UQi keeps only the MSHR indexes for core i , and
the depth of UQi is equal to the size of the MSHR partition for core i .
Thus, head-of-line blocking of UQi is simply a stall within responses

for core i , i.e., there is no timing dependence across different cores

or protection domains. It should be noted that the total number of

entries of all the UQs is still equal to the total number of MSHRs,

that is, there is no area overhead.

After the split of UQ, a downgrade request sent to core i can
contend only with responses to core i in UQi . Consider the case
that the downgrade request is initiated by an upgrade request from

core j. In this case, the address requested by core j is in the same

cache set as the downgrading address owned by core i . Thus, cores
i and j must be in the same protection domain (see Section 5.2), e.g.,

a multithreaded enclave is assigned to cores i and j. Therefore, the
contention between UQ and downgrade requests cannot influence

timing across protection domains.

DQ: The key to solve the problem is to have the dequeue of an

MSHR index fromDQ always take one cycle, in particular for MSHR

entries that are completing cache replacement. In this way, the

dequeue port of DQ will never be blocked, and there is no timing

influence with DQ. Consider an MSHR entry which enters DQ

because of completing cache replacement. In Figure 3, when the

MSHR index is entered into DQ, we set a retry bit in the MSHR

entry. When the MSHR index is dequeued from DQ, it sends only

the writeback request to DRAM, so the dequeue takes only one

cycle. An MSHR entry with the retry bit set will try to re-enter the

cache-access pipeline, and enters DQ again as a pure cache miss

to issue the DRAM read request. The re-entry only contends with

messages for the same core, and will not create new leakage. The

cache slot is also locked to the MSHR entry so that other upgrade

requests cannot occupy the slot.

5.4.4 Qualitative Analysis of Performance Impact. First, we note
that the split of UQ into multiple FIFOs has zero performance over-

head. The retry of a request that finishes replacement will increase

the total processing latency of this request by a few cycles. However,

since the request needs to read DRAM, this increase is negligible.

The Downgrade-L1 logic was duplicated and therefore has zero

performance overhead. If we had chosen to operate the logic in the

round-robin way, then the latency to downgrade L1s may increase

proportionately to the total number of cores.

The performance overhead comes mainly from the round-robin

arbiter in front of the cache-access pipeline. The arbiter gives each

core 1/N of the SRAM bandwidth, where N is the total number of

cores. It should be noted that even without the arbiter, messages

from N cores are still contending on the bandwidth of the SRAM.

Therefore, there is no bandwidth loss in the average case. Perfor-

mance will decrease if the traffic from each core is bursty. This

is not a big problem for a small multiprocessor with 2 or 4 cores,

because the LLC can still take a request from a given core every 2

or 4 cycles, and the core typically will not miss in L1 every cycle.

48



MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

This issue will be exacerbated as the number of cores increases,

but it depends strongly on the timing and contention of memory

accesses from different cores.

The arbiter also introduces extra latency in accessing the pipeline,

i.e., a message from a given core has to wait for its turn to enter the

pipeline. The average latency is roughly N /2 cycles. We evaluate

the performance impact of the increased latency in Section 7.4.

6 ISOLATION ACROSS PROTECTION
DOMAIN TRANSITIONS

In addition to achieving isolation of programs scheduled concur-

rently onto different cores in the system, we must achieve isolation

between programs scheduled to use the same core at different times.

As described earlier, MI6 relies on flushing of microarchitec-

tural state to erase any program-dependent microarchitectural state

when scheduling a new protection domain onto the core. Opera-

tionally, we add a microarchitectural purge instruction to achieve

this; below, we consider the specifics of purge by visiting each

module it scrubs. Section 6.2 discusses how the privileged security

monitor, which occupies a dedicated protection domain and exe-

cutes at highest privilege, orchestrates the low-level operations to

implement a secure context switch across protection domains.

6.1 purge instruction
In-flight instructions: The out-of-order core consists of many

modules containing bookkeeping for in-flight instructions includ-

ing the register renaming table, register free list, reorder buffer,

issue queues, scoreboard, speculation tag manager, load store queue

(with corresponding MSHRs), store buffers, and various FIFOs, and

smaller modules. Between contexts, all of these states must corre-

spond to “no instruction is currently in the processor pipeline” in

order to achieve a comprehensive flush. The baseline RiscyOO pro-

cessor correctly flushes these states on privilege change to handle

read after write hazards when changing the privilege level.

A multitude of states throughout the modules of the out-of-order

core equivalently describe an empty pipeline. For example, a com-

plete register free list indicates an empty pipeline, but there exist

multiple permutations of the free list. Interestingly, this does not re-

quire special consideration so long as these equivalent “free” states

are not distinguishable by any software. A similar situation pertains

to the issue queue, from where instructions are issued to execute

when ready. In the RiscyOO processor, the issue queue is a circular

buffer with associated head and tail pointers. Any configuration

where head and tail pointers are equal maps to an empty state,

yet these are entirely indistinguishable by software means. While

not applicable in the case of RiscyOO’s issue queue, this module

would require additional care to correctly flush program-dependent

state in some priority queues, such as the MIPS R10000 [66], which

favors issuing instructions from low-numbered slots in the queue.

Branch predictor structures: Branch predictors were demon-

strated as a surface for hijacking speculative execution as part

of Spectre [33]. These structures, being deeply stateful, can also

transmit information about the control flow of a previously sched-

uled program via the branch predictions observed after a context

switch. To purge the branch predictor state, the branch predictor

must reach a well-defined public state, for example via a reset to its

initial state. In order to reduce the overhead of cold branch predic-

tion after each context switch, the processor may opt to implement

primitives for saving and restoring predictor state, if practical.

L1 Caches, TLBs, and translation caches: Attacks exploiting
shared cache tag state to observe secret-dependent changes in mem-

ory access latency are a well-explored field, offering increasingly

practical examples of private state leakage via the cache. Any cache

timing attack may use not only the shared L2 cache (which MI6
partitions to address this class of vulnerability), but also the L1

caches, which are time-shared by the programs scheduled onto the

same core. In order to obviate these attack surfaces, L1 caches, along

with TLBs (both L1 and L2) and translation caches, must be flushed

on context switches. (TLBs and translation caches are all private to

the core.) In addition to the tag state, the cache lines’ replacement

policy state must also be scrubbed; RiscyOO fortunately employs a

pseudo-random replacement policy with no replacement state.

The TLBs (both L1 and L2) and translation caches use set asso-

ciative structures with LRU replacement policies. RiscyOO’s imple-

mentation of the LRU policy is self-cleaning: when no line’s data

is present in a set, new lines are filled in a pre-defined order; the

act of filling an LRU cache to prime it for eviction scrubs private

information in the replacement state.

A noteworthy observation: L2 cache sets need only be scrubbed

when re-allocating physical memory. Protection domains use dis-

joint regions of physical memory, which correspond to disjoint

sets in the L2 via set coloring. L2 lines belonging to a de-scheduled

protection domain are inaccessible and can remain in the L2 until

the domain is scheduled.

MI6 does not allow for memory shared between arbitrary pro-

tection domains; all communication between domains is mediated

by a security monitor, as described in Section 6.2.

6.2 Security Monitor Functionality
As in Sanctum [16], we employ a software security monitor to map

the high-level semantics of enclaves onto the low-level invariants

implemented by the hardware. While the implementation of a se-

curity monitor for MI6 is not a contribution of this manuscript,

this section briefly describes its required functionality, and where

it differs slightly from the prior construction [37] for Sanctum. The

security monitor interposes on scheduling and physical resource

allocation decisions made by the untrusted OS to assert that a given

enclave’s resources do not overlap with any other software, and to

scrub these resources before they are available for re-allocation. In

MI6, the security monitor considers two classes of resources: core

state, and memory; both include their respective space of subtle side

effects these resources have on the memory hierarchy, microarchi-

tecture, and the network-on-chip. When an OS requests enclaves

be scheduled or de-scheduled, the security monitor uses purge,
as described above, to scrub a core when scheduling enclaves (to

create a pristine environment free of adversarial influence) and

when de-scheduling enclaves, to erase side effects of enclave exe-

cution. Likewise, before memory is granted to an enclave, or when

an enclave is destroyed, the security monitor must be invoked to

scrub it before it can be given to a new owner. During steady-state

execution, the security monitor is de-scheduled, and protection

domains are isolated via the mechanism is described in Section 5.3.

49



MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

Themonitor also interposes on an enclave’s asynchronous events

and exceptions in order to safely de-schedule the enclave before

delegating control to the OS handler; the OS observes the event as

occurring at the syscall that scheduled the enclave. The security

monitor itself occupies a dedicated protection domain outside the

OS’s reach, and statically reserves sufficient amount of physical

memory for text and data structures implementing the monitor’s

limited functionality. The security monitor sets up a physical mem-

ory protection primitive (PAR: Sanctum’s protected address region)

to ensure its own integrity from all other software.

All protection domains with the exception of the security moni-

tor execute in virtual memory; the operating system transparently

uses an identity page table to access physical addresses. When

protection domains are created or destroyed, stale translations

system-wide must be scrubbed: the security monitor forces a TLB

shootdown during these transitions to ensure cached translations

remain coherent with the system’s current security policy. Because

no translations exist to map any virtual address in a protection

domain to a physical address outside the protection domain (except

as described at the end of the section), speculative fetches and loads

will not fall outside protection domain boundaries, and uphold

isolation.

As described in Section 5.3,MI6 ensures no protection domain

may access the memory of another (with the notable exception of

the security monitor, which relies on a restricted mode of execu-

tion to sidestep any speculative misbehavior, as described below),

resulting in straightforward isolation in the L2 cache via page col-

oring. Of course, enclaves must occasionally communicate with

other software, at a minimum to receive inputs and produce out-

puts. While Sanctum and SGX allowed for rich communication

between an enclave and its host (the untrusted Linux processor in

whose address space the enclaved process exists),MI6 cannot allow
sharing any portion of the address space with untrusted software

in order to silo speculative execution. The security monitor imple-

ments explicit messaging between protection domains by allowing

a sender to request a message to be copied from the sending domain

to a pre-allocated buffer in the receiving domain. Sanctum’s mail-

box primitive is one such mechanism, allowing enclaves to send

and receive authenticated private 64 Byte messages (local attesta-

tion). MI6 extends this primitive to also implement a privileged

memcopy between an enclave and the untrusted software via an

agreed-upon pair of buffers of equal size. The security monitor

responds to an enclave’s request to “read” the OS buffer by copying

its contents to the enclave, and to “write” it by copying from the

enclave’s buffer to OS memory. The security monitor’s handling

of the primitives above does not depend on the transmitted data,

and an enclave’s invocation of these APIs is not considered private.

The security monitor therefore need not perform a purge when it

mediates communication. These primitives are a restriction to the

more permissive communication mechanism allowed by SGX and

Sanctum, so as to defend against timing attacks on shared memory,

including those that exploit speculative execution.

Allowing an enclave to interact with the outside world, even only

through the security monitor, has implications for our definition

of security: instead of leaking its completion time, the enclave also

transmits the timing and sequence of its interactions to a potential

adversary. Any communications received from untrusted software

are untrusted, and a potential influence channel. The enclave is

responsible for padding the timing of its interactions, and tolerating

malicious responses. The padding can be to a constant value for

zero leakage, or some value from a fixed size set to limit leakage

[22].

Protection domains other than the security monitor (enclaves,

untrusted software) share no resources with one another, so side

effects of speculative execution within these domains are not vis-

ible across protection domain boundaries. Cores executing these

protection domains may therefore speculate with no restrictions.

This is not the case for the security monitor’s domain, which ex-

ecutes with highest privilege, and may access arbitrary virtual

memory. As in [16], the security monitor’s code is trusted to main-

tain its own integrity, and to not violate the isolation of other

domains. This trust is insufficient in MI6, and we must restrict

speculative execution of the security monitor to prevent side ef-

fects of mis-speculated fetches and accesses from being observable

across protection domain boundaries. We achieve this by restricting

instruction fetch to a range of addresses corresponding to the secu-

rity monitor, and by throttling register renaming in machine-mode

execution (exclusively used by the security monitor), effectively

serializing execution. Restricting instruction fetch prevents the

security monitor from leaking information via the shared cache

by jumping/branching to a data-dependent address visible to an

adversary. Further, we replicate the security monitor’s code within

each enclave (these replicas contain nothing confidential and pro-

tect their integrity via PAR: Sanctum’s physical memory protection

mechanism), so invoking an enclave’s communication primitive

does not leave unintended side effects: the monitor’s text is not

shared by protection domains, and the memcopy is non-speculative

(see above), and touches only the two buffers the enclave explicitly

intends to access. A more sophisticated implementation that allows

for safe speculation within the security monitor while guarantee-

ing isolation, and allows finer-grained communication between

protection domains, is deferred to future work.

6.3 Strong Isolation Argument
In steady-state execution, the enclave is straightforwardly isolated

through its uniquely allocated core and address range. Since it

does not share a core with any other software, its core-local micro-

architectural state is private. Since it does not share an allocated

address range with any threads running on other cores, the page

invariant circuit ensures external software is not able to access the

enclave’s physical memory, and the enclave is not able to access

addresses outside its address range, including speculative accesses.

Page coloring results in cache set isolation in the shared cache, and

MSHR partitioning and other changes result in memory request

timing isolation in the cache hierarchy. The enclaved program is

responsible for safeguarding the timing of its public operations.

In transient execution, which includes enclave scheduling, de-

scheduling, creation, and destruction, the enclave is isolated by the

security monitor sanitizing architectural and micro-architectural

state within the core during each event. When the security monitor

is called to perform one of the enclave transient operations, the

core switches to machine mode, and that switch causes the pipeline

to flush all in-flight speculation from the previously executing

program. The security monitor uses the purge instruction to fully

50



MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

flush all the mircoarchitectural state from the processor and it runs

a software routine to scrub the architectural state to a known initial

state. Before returning control to software outside machine mode,

the security monitor re-purges relevant architectural and micro-

architectural state to grant the incoming software a fresh execution

environment.

A subtle complication in this process is the security monitor’s

own unrestricted access to physical memory. Speculative misbehav-

ior within the security monitor itself might be able to circumvent

the isolation of private enclave memory, so we do not speculate in

machine mode.

7 PERFORMANCE EVALUATION
The performance overheads of MI6 come from (1) flushing per-core

microarchitectural states on a context switch, (2) partitioning the

shared last level cache (LLC), (3) partitioning and sizing the MSHRs

in LLC, (4) the round-robin arbiter for the LLC pipeline, and (5)

turning off speculation in machine mode. Here, we do not evaluate

the performance overheads of the changes made in Section 5.4.3

outside of the arbiter due to the reasons explained in Section 5.4.4.

We evaluate each of these five overheads in Sections 7.1 to 7.5,

respectively, and summarize the overall performance overheads

of MI6 in Section 7.6. Overheads (1) and (5) apply only to enclave

applications while overheads (2), (3) and (4) apply to all processes.

Turning off speculation is needed only when the security monitor

transfers data on behalf of the enclave to and from the outside world.

We expect these to be rare events which typically only happen at

the beginning and end of enclave execution, so we will not take

into account the effect of turning off speculation when evaluating

the overall performance overheads of MI6 in Section 7.6.

We use the following 7 variants of the RiscyOO processor:

(1) BASE: the baseline insecure RiscyOO processor with param-

eters listed in Figure 4.

(2) FLUSH : flushes per-core microarchitectural states at every

context switch on top of the BASE processor (used in Sec-

tion 7.1).

(3) PART : set-partitions the LLC of the BASE processor (used in

Section 7.2).

(4) MISS: changes the organization of LLC MSHRs of the BASE

processor to model the effect of LLC-MSHR partitioning and

sizing (used in Section 7.3).

(5) ARB: increases the LLC pipeline latency of the BASE pro-

cessor to model the effect of the round-robin arbiter for the

LLC pipeline (used in Section 7.4).

(6) NONSPEC: executes memory instructions non-speculatively

on top of the BASE processor (used in Section 7.5).

(7) F+P+M+A: the combination of FLUSH, PART, MISS and ARB

(used in Section 7.6).

We prototyped all 7 processors on AWS F1 FPGAs, and ran SPEC

CINT2006 benchmarks with the ref input size. We did not run

benchmark perlbench because we could not cross-compile it to

RISC-V. For benchmarks with multiple ref inputs, we present the

aggregate performance number over all the inputs. In most cases, all

benchmarks ran to completion under Linux without sampling. The

only exception is the evaluation of turning off speculation, in which

casewe truncate the runs because the processorwithout speculation

becomes too slow to finish the benchmarks (see Section 7.5).

Front-end 2-wide superscalar fetch/decode/rename

256-entry direct-mapped BTB

tournament branch predictor as in Alpha 21264 [28]

8-entry return address stack

Execution 80-entry ROB with 2-way insert/commit

Engine Total 4 pipelines: 2 ALU, 1 MEM, 1 FP/MUL/DIV

16-entry IQ per pipeline

Ld-St Unit 24-entry LQ, 14-entry SQ, 4-entry SB (each 64B wide)

L1 TLBs Both I and D are 32-entry, fully associative,

D TLB has max 4 requests

L2 TLB Private to each core, 1024-entry, 4-way associative

max 2 requests

Includes a translation cache which contains 24 fully

associative entries for each intermediate translation step

L1 Caches Both I and D are 32KB, 8-way associative, max 8 requests

L2 Cache 1MB, 16-way, max 16 requests

(LLC) coherent with I and D

Memory 2GB, 120-cycle latency, max 24 requests

(12.8GB/s for 2GHz clock)

Figure 4: Insecure baseline (BASE) configuration

7.1 Flushing Per-Core Microarchitectural State
Methodology: We compare the single-core performance of BASE

and FLUSH to study the influence of flushing per-core microarchi-

tectural states, including TLBs, L1 caches and branch predictors. In

FLUSH, these states are flushed whenever the processor takes a trap

(i.e., an exception or an interrupt) or returns from trap handling. In

one cycle, the hardware can only flush a few entries of L1 caches,

TLBs and branch predictors.

Each L1 cache has 512 cache lines, we invalidate one line per

cycle. We cannot invalidate a whole set (i.e., 8 lines) per cycle, be-

cause the coherence protocol used in RiscyOO requires L1 to notify

L2 even for the invalidation of a clean line. Entries in TLBs and

branch predictors can be discarded directly. The fully associative L1

TLBs can be flushed in one cycle. The L2 TLB has 256 sets (each set

has 4 entries) and we discard one set per cycle. For the tournament

branch predictor, the largest table has 4096 entries (each of 2 bits),

and we discard 8 entries per cycle. L2 can sustain a bandwidth of

one eviction per cycle, though the latency of completing an eviction

is larger than one cycle. All these flushes done in parallel take 512

cycles to complete, during which time the processor idles.

The stall time for flushing is not the only cost. When the appli-

cation resumes from trap handling, the L1 caches, TLBs and branch

predictors are all “cold,” and it takes time to warm them up. This

will lead to more misses in caches and TLBs, and more branch

mispredictions.

Results: Figure 5 shows the increased execution time caused by

flushing for each benchmark. The last column shows the average

across all benchmarks. Lower bars mean less performance over-

heads. The average overhead in execution time is 5.4%, and the

maximum overhead is 10.9% (in benchmark astar). As explained

earlier, these overheads are caused by (1) the stall time waiting for

flushes to be completed, (2) the additional cache and TLB misses

51



MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

5

10

In
cr

ea
se

d 
ru

nt
im

e 
(%

)

Figure 5: The overall overhead of FLUSH in execution time
normalized to the execution time of BASE

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

1

2

3

No
rm

al
ize

d 
tim

e 
(%

)

Figure 6: The stall time for flushing states in FLUSH normal-
ized to the execution time of BASE

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

20

40

M
iss

es
 p

er
 1

K 
in

st
.

BASE FLUSH

Figure 7: Branch mispredictions in BASE and FLUSH

caused by the cold start after flushing, and (3) the additional branch

mispredictions caused by the cold start after flushing. We now

examine each of these three sources one by one.

Figure 6 shows the stall time in FLUSH just waiting for the

microarchitectural states to be flushed, and the last column is the

average across all benchmarks. As we can see, flushing the states

takes merely 0.4% of the execution time. Benchmark xalancbmk

has the longest stall time (3.2%) because it makes a large number

of system calls (which trigger exceptions) to print characters to

stdout.

While we do not show the results here, the changes in instruction

and data cache and TLB misses are negligible, so they are unlikely

to be the source of performance degradation.

Figure 7 shows the number of branch mispredictions per thou-

sand instructions in BASE and FLUSH. The last column is the aver-

age across all benchmarks. It turns that flushing the branch predic-

tions has substantial impact on the misprediction rate. On average,

the mispredictions per thousand instructions rise from 18.3 to 24.3

after microarchitecture-state flushing is enabled. This significant

increase is responsible for the 5.4% overall performance overhead

in Figure 5. For benchmark astar, mispredictions go up from 30.1 to

46.2. This leads to the maximum overhead of 10.9% in Figure 5.

Summary: Flushing per-core microarchitectural states on context

switches has little impact on the miss rates of caches or TLBs, but

it increases the branch-misprediction rate substantially. However,

the overall performance overhead caused by flushing is still small.

7.2 Set-Partitioning the LLC
Methodology: For LLC partitioning, the ideal evaluation method-

ology would run multiprogrammed workloads on a multiprocessor.

For example, we would like to evaluate a 16-core multiprocessor

with 16MB shared L2 cache (LLC). We assume that each core is

still using the parameters in Figure 4, and the LLC is still 16-way

set-associative and using 64B cache lines. However, the FPGA does

not have enough logic gates and SRAMs for us to prototype such a

multiprocessor. We now explain how to closely approximate the

evaluation of a multiprocessor using a single core.

We first point out that the performance overheads of LLC set

partitioning mainly come from (1) the decreased LLC size allocated

for the enclave application, and (2) the additional conflict misses in

LLC caused by changing the cache-indexing function as described

below. In fact, the allocated LLC size is not a concern because

our system allows an enclave to claim multiple sets of the LLC.

Besides, running multiprogrammed workloads without considering

security would also require partitioning the LLC for Quality of

Service (QoS). This evaluation is not about how to size each LLC

partition to achieve the best QoS, so we focus on the second type

of overhead, i.e., cache misses caused by changing the indexing

function of LLC.

Consider the case that we run a multiprogrammed workload,

which consists of 16 SPEC benchmarks, on the 16-core multiproces-

sor with one benchmark on each core. For simplicity, we assume

the insecure baseline partitions the LLC to allocate 1MB to each

core. If the baseline is using way partitioning, then each core is

using effectively a 1MB direct-mapped LLC. Here, we overestimate

the baseline performance by assuming that each core in baseline

is using a 1MB cache which still has 16 associative ways. That is,

the insecure baseline performance can be approximated by the per-

formance of the BASE processor. In our secure system, consider

the case that we set-partition the 16MB LLC into 64 regions, each

with 256KB and we assign 4 regions (1MB) to each enclave which

runs one SPEC benchmark on a core. In this case, there is no differ-

ence in the allocated LLC size, and the performance overhead of

set-partitioning comes only from the change in the cache-indexing

function, which we explain next.

Consider a cache-line addressAwhich does not contain the 6-bit

line offset (for 64B cache line). For the baseline insecure 1MB LLC

of BASE which has 2
10

sets, the cache index for this line is the lower

10 bits of A, i.e., A[9 : 0]. For the set-partitioned 16MB LLC of our

conceptual multiprocessor which has 2
14

sets, the cache index is

the combination of the 6-bit DRAM region R and the lower 8 bits

of A, i.e., {R[5 : 0],A[7 : 0]}. Since one enclave only gets 4 regions,

the higher 4 bits of region R is fixed, and the effective cache index

is 10 bits, i.e., {R[1 : 0],A[7 : 0]}. This is equivalent to indexing the

1MB LLC of BASE using a different index function.

As a result, to approximate the performance impact of LLC set-

partitioning, we can simply measure the influence of replacing the

higher 2 bits of the LLC index of BASE with the lower 2 bits of

the DRAM region, i.e., the effect of changing the LLC index from

A[9 : 0] to {R[1 : 0],A[7 : 0]}. We refer to the processor that uses

the new LLC index as PART, and we compare the performance of

PART against BASE.

52



MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

The DRAM region R is the higher bits of the cache-line address.

In the case of 2GB DRAM, R[1 : 0] would be A[20 : 19]. The

performance overhead of PART is caused by using higher address

bits to index the LLC.

Results: Figure 8 shows the increased execution time caused by

LLC set-partitioning. The last column shows the average across all

benchmarks. Lower bars mean less performance overheads. The

average overhead in execution time is 7.4%, and the maximum

overhead is 21.6% (in benchmark gcc).

To better understand the performance overhead, we show the

number of LLC misses per thousand instructions for BASE and

PART in Figure 9. Because of using higher address bits in the LLC

index, the average LLC misses per thousand instructions increase

from 17.4 to 19.6 (the last column in the figure). For benchmark gcc

which has the maximum execution-time overhead, its LLC misses

get doubled. These increased misses can be understood as follows.

In our evaluation, we start the benchmark right after the Linux

boots. At that time, most of the physical memory has not been

allocated, and Linux tends to allocate physical pages sequentially

for the benchmark. Thus, physical addresses in the working set of

the benchmark are likely to share the same higher bits, and thus

get mapped to the same LLC index, leading to more LLC conflict

misses.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

10

20

In
cr

ea
se

d 
ru

nt
im

e 
(%

)

Figure 8: Overhead of PART in execution time normalized
to the execution time of BASE

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

20

40

M
iss

es
 p

er
 1

K 
in

st
. 91.5 97.7

BASE PART

Figure 9: LLC (L2$) misses in BASE and PART

7.3 Partitioning and Sizing LLC MSHR
Methodology: We still consider the case of a multiprocessor as

in Section 7.2. For the insecure baseline, we assume the average

memory-system bandwidth available to each core is the same as a

single-core BASE processor. That is, each core in the multiprocessor

can occupy 16 LLC MSHR entries and have 24 in-flight DRAM

requests on average.

Now consider the secure case that we partition and size the LLC

MSHRs to prevent side channels due to contention for LLC MSHRs

and DRAM bandwidth. According to Section 5.2, the LLC MSHRs

should be partitioned to allocate 12 entries for each core, so that

the memory requests (including both writebacks and data fetches)

generated by each core can never exceed the DRAM bandwidth

available to the core (i.e., 24 requests). If the LLC is organized as

several cache banks, then the partition of MSHRs should be done

in each LLC bank. In this evaluation, we consider the case that the

LLC is sliced into 4 banks according to the lower bits of the cache

index. In this case, one core will be allocated with 3 entries in each

bank (still 12 entries in total). In the insecure baseline, cache misses

by a core can occupy MSHR entries in any bank, i.e., the 16 LLC

MSHRs can be distributed across 4 banks in any form.

According to the above analysis, the performance overheads of

LLC-MSHR partitioning and sizing come from (1) the reduction in

MSHR size, and (2) insufficient MSHRs in a single cache bank (i.e.,

bank conflicts). To model the effects of these two overheads, we

instantiate the MISS processor based on the BASE processor. The

MISS processor has only 12 LLC-MSHR entries compared to 16 in

BASE, and the MSHRs in MISS are sliced into 4 banks (according to

the lower bits of cache-line addresses). The performance overheads

of LLC-MSHR partitioning can be characterized by the performance

difference between BASE and MISS. The performance of MISS is

a pessimistic estimate. This is because overwhelming one MSHR

bank will stall the whole MSHR structure in MISS, while different

MSHR banks are independent from each other in the real case. This

modeling error can be avoided by refining the implementation in

the future.

Results: Figure 10 shows the increased execution time caused by

partitioning the MSHRs in the LLC. Lower bars mean less perfor-

mance overheads. The average overhead in execution time is 3.2%

(the last column), and the maximum is 8.3% (in benchmark astar).

This overhead is not large.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

5

10

In
cr

ea
se

d 
ru

nt
im

e 
(%

)

Figure 10: Overhead of MISS in execution time normalized
to the execution time of BASE

7.4 LLC Arbiter
Methodology: As described in Section 5.4.4, the performance over-

heads of the round-robin arbiter associated with the LLC cache-

access pipeline are caused by bandwidth loss in case of bursty cache

traffic and the increased latency in accessing the pipeline. We do

not evaluate the overhead due to bursty traffic because it depends

strongly on the timing of the concurrently running applications

and we are unable to fit a big RiscyOO multiprocessor on an FPGA.

As an approximation, we evaluate only the overhead caused by in-

creased pipeline latency. For a 16-core multiprocessor, the pipeline

latency is increased by 8 cycles on average (cf. Section 5.4.4). We

instantiate the ARB processor, which increases the LLC-pipeline

latency in BASE by 8 cycles, to model the overhead.

Results: Figure 11 shows the increased execution time caused by

the LLC arbiter. Lower bars mean less performance overheads. The

53



MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

average overhead in execution time is 8.5% (the last column), and

the maximum is 14% (in benchmark libquantum). This overhead is

comparable to LLC set-partitioning.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

5

10

In
cr

ea
se

d 
ru

nt
im

e 
(%

)

Figure 11: Overhead of ARB in execution time normalized
to the execution time of BASE

7.5 Turning off Speculation
Methodology:When a processor runs non-speculatively, the ad-

dress translation and execution of a memory instruction (e.g., a load

or a store) cannot start until the instruction can never be squashed

(e.g., by branch mispredictions or exceptions). Since turning off

speculation is uncommon, we implement the non-speculative mode

on top of the BASE processor in a simple (but less optimized) way.

In the non-speculative mode, the processor does not rename a mem-

ory instruction (and thus cannot enter it into the ROB) until the

ROB is empty. We refer to this processor as NONSPEC.
To evaluate the performance overhead of turning off specula-

tion, we run benchmarks on NONSPEC entirely in non-speculative

mode. Since non-speculative mode is much slower than the normal

speculative mode, we truncate the benchmarks. Each benchmark

was run for 20 billion instructions without collecting performance

data, and then run for 40 billion instructions collecting performance

data. Benchmarks were rerun on BASE using this methodology to

get the baseline performance.

Results: Figure 12 shows the increased execution time caused by

running in the non-speculative mode. Lower bars mean less perfor-

mance overheads. The average overhead in execution time is 205%

(the last column), and the maximum overhead is 427% (in bench-

mark h264ref). Although the overhead is large, it is incurred only

at the beginning and end of an enclave program for the common

use cases of enclaves, and it does not apply to insecure programs

running outside enclaves.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

200

400

In
cr

ea
se

d 
ru

nt
im

e 
(%

)

Figure 12: Overhead of NONSPEC in execution time normal-
ized to the execution time of BASE

7.6 Overall Performance Overheads of MI6
Overheads of enclave processes: A enclave program running

onMI6 is affected by flushing microarchitectural states on every

context switch, LLC set-partitioning, LLC-MSHR partitioning and

sizing, and the LLC round-robin arbiter. (We omit the influence

of turning off speculation as discussed earlier.) Its overhead can

be approximated by evaluating the performance of the F+P+M+A
processor, which is simply a combination of FLUSH, PART, MISS

and ARB. Figure 13 shows increased execution time of F+P+M+A

compared to BASE, i.e., the performance overhead of an enclave pro-

gram. Lower bars mean less performance overheads. The average

overhead of running in the enclave of MI6 is 16.4% (the last column

in the figure), and the maximum overhead is 34.8% (benchmark

gcc).

These performance numbers are a good approximation. The

primary omission is ignoring the effect of bursty traffic on the over-

head of the LLC arbiter. However, we are conservative in modeling

the overhead of LLC-MSHR partitioning and sizing.

bzip2 gcc mcf
gobmk

hmmer sjeng
libquantum

h264ref
omnetpp astar

xalancbmk
average

0

10

20

30

In
cr

ea
se

d 
ru

nt
im

e 
(%

)

Figure 13: Execution-time overhead of an enclave applica-
tion in MI6 normalized to the execution time of BASE

Overheads of non-enclave processes: Compared to the perfor-

mance overhead of an enclave program shown in Figure 13, the

overhead of a non-enclave program in MI6 will be less because

there is no flushing of microarchitectural states.

Area overhead: Our synthesis results show that both BASE and

F+P+M+A can be clocked at a maximum of 1GHz. Therefore, the

additional hardware for enforcing security does not affect clock

frequency. As for area, F+P+M+A is approximately 2% bigger than

BASE. Several area-consuming components like LLC, L1 SRAMs

and FPUs are not included in the area results, so a 2% area increase

on the rest is quite small.

8 CONCLUSION
Enclaves strengthen the process abstraction to restore isolation

guarantees under a specified threat model. Through careful design,

prototyping and evaluation, we show how such enclaves can be

supported in MI6, an aggressive speculative out-of-order proces-

sor prototype, with reasonable overhead. Further design effort can

lower overhead for unprotected programs by turning on strong tim-

ing independence only when at least one enclave is running, and for

unprotected and protected programs by modifying the OS to reduce

the overhead of cache-indexing. A primary remaining challenge

is allowing enclave software to be more expressive, e.g., allowing

sharing of memory across protection domains while maintaining

isolation.

9 ACKNOWLEDGMENTS
Funding for this research was partially provided by the National

Science Foundation under contract number CNS-1413920, Analog

Devices, Inc., DARPA & SPAWAR under contract N66001-15-C-4066

and DARPA under HR001118C0018.

54



MICRO’19, October 12-16, 2019, Columbus, OH, USA Bourgeat, Lebedev, Wright, Zhang, Arvind and Devadas

REFERENCES
[1] [n. d.]. RISC-V Instruction Set. https://riscv.org/.

[2] Shaizeen Aga and Satish Narayanasamy. 2017. InvisiMem: Smart Memory De-

fenses for Memory Bus Side Channel. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’17). 94–106.

[3] Shaizeen Aga and Satish Narayanasamy. 2019. InvisiPage: Oblivious Demand

Paging for Secure Enclaves. In Proceedings of the 46th International Symposium
on Computer Architecture (ISCA ’19). 372–384.

[4] Tiago Alves and Don Felton. 2004. TrustZone: Integrated Hardware and Software

Security. Information Quarterly (2004).

[5] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-

vative Technology for CPU Based Attestation and Sealing. In HASP.
[6] Amro Awad, Yipeng Wang, Deborah Shands, and Yan Solihin. 2017. ObfusMem:

A Low-Overhead Access Obfuscation for Trusted Memories. SIGARCH Comput.
Archit. News 45, 2 (June 2017), 107–119.

[7] Sebastian Banescu. 2011. Cache Timing Attacks. http://www.academia.edu/

3224323/Cache_Timing_Attacks. (2011). [Online; accessed 26-January-2014].

[8] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against

AES. In Cryptographic Hardware and Embedded Systems (CHES). Springer.
[9] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against

AES. In Cryptographic Hardware and Embedded Systems-CHES 2006. Springer,
201–215.

[10] Billy Bob Brumley and Nicola Tuveri. 2011. Remote timing attacks are still

practical. In Computer Security–ESORICS. Springer.
[11] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.

Computer Networks (2005).
[12] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18).

[13] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul

Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-Based

Attacks on Enclaved Execution. In 26th USENIX Security Symposium (USENIX
Security 17). 1041–1056.

[14] David Champagne and Ruby B Lee. 2010. Scalable architectural support for

trusted software. In HPCA. IEEE, 1–12.
[15] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology

ePrint Archive, Report 2016/086.

[16] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal

Hardware Extensions for Strong Software Isolation. In 25th USENIX Security
Symposium (USENIX Security 16). 857–874.

[17] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry

Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of

cache side channel attacks. Transactions on Architecture and Code Optimization
(TACO) (2012).

[18] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev, Nael

Abu Ghazaleh, and Ryan Riley. 2014. Iso-X: A flexible architecture for hardware-

managed isolated execution. In Microarchitecture (MICRO). IEEE.
[19] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.

Komodo: Using Verification to Disentangle Secure-enclave Hardware from Soft-

ware. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP
’17). 287–305.

[20] Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew Myers, and

Edward Suh. 2017. Full-processor timing channel protection with applications to

secure hardware compartments. Technical Report (2017).
[21] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A Secure

Processor Architecture for Encrypted Computation on Untrusted Programs. In

Workshop on Scalable Trusted Computing. ACM.

[22] C. W. Fletcher, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas. 2014. Sup-

pressing the Oblivious RAM timing channel while making information leakage

and program efficiency trade-offs. In 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA). 213–224.

[23] Oded Goldreich. 1987. Towards a theory of software protection and simulation

by oblivious RAMs. In Theory of Computing. ACM.

[24] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal, and R. Iyer.

2016. Cache QoS: From concept to reality in the Intel Xeon processor E5-2600

v3 product family. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 657–668. https://doi.org/10.1109/HPCA.2016.

7446102

[25] Jann Horn. 2018. Reading privileged memory with a side-channel. https://

googleprojectzero.blogspot.com/2018/01/.

[26] Intel Corp. 2015. Improving Real-Time Performance by Utilizing Cache Allocation

Technology. (April 2015).

[27] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-Ghazaleh, D.

Ponomarev, and A. Jaleel. 2017. RIC: Relaxed Inclusion Caches for mitigating LLC

side-channel attacks. In 2017 54th ACM/EDAC/IEEE Design Automation Conference

(DAC). 1–6.
[28] Richard E Kessler. 1999. The alpha 21264 microprocessor. IEEE micro 19, 2 (1999),

24–36.

[29] Richard E Kessler and Mark D Hill. 1992. Page placement algorithms for large

real-indexed caches. Transactions on Computer Systems (TOCS) (1992).
[30] Keystone. 2018. Keystone: Open-source Secure Hardware Enclave. https://

keystone-enclave.org/.

[31] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory

without accessing them: An experimental study of DRAM disturbance errors. In

ISCA. IEEE Press.

[32] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative

Execution Processors. In Proceedings of the 51st International Symposium on
Microarchitecture (MICRO-51).

[33] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

[34] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems. In Advances in Cryptology (CRYPTO). Springer.
[35] Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. 2008. De-

constructing new cache designs for thwarting software cache-based side channel

attacks. In workshop on Computer security architectures. ACM.

[36] Ilia A. Lebedev, Kyle Hogan, and Srinivas Devadas. 2018. Secure Boot and Remote

Attestation in the Sanctum Processor. In 31st IEEE Computer Security Foundations
Symposium, CSF. 46–60.

[37] Ilia A. Lebedev, Kyle Hogan, Jules Drean, David Kohlbrenner, Dayeol Lee, Krste

Asanovic, Dawn Song, and Srinivas Devadas. 2018. Sanctorum: A lightweight

security monitor for secure enclaves. CoRR abs/1812.10605 (2018).

[38] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,

John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and

tamper resistant software. SIGPLAN Notices (2000).
[39] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P

Sadayappan. 2008. Gaining Insights into Multicore Cache Partitioning: Bridging

the Gap between Simulation and Real Systems. In HPCA. IEEE.
[40] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.

2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207
[41] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. CATalyst: Defeating Last-Level Cache Side Channel

Attacks in Cloud Computing. In HPCA.
[42] Fangfei Liu and Ruby B Lee. 2014. Random Fill Cache Architecture. In Microar-

chitecture (MICRO). IEEE.
[43] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. 2016. Newcache: Secure

Cache Architecture Thwarting Cache Side-Channel Attacks. IEEE Micro 36, 5
(2016), 8–16.

[44] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In Security and Privacy. IEEE.
[45] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instructions

and Software Model for Isolated Execution. HASP (2013).

[46] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-

termeasures: the case of AES. In Topics in Cryptology–CT-RSA 2006. Springer,
1–20.

[47] Moinuddin Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks

via Encrypted-Address and Remapping. In Proceedings of the 51st International
Symposium on Microarchitecture (MICRO-51).

[48] Moinuddin K. Qureshi. 2019. New attacks and defense for encrypted-address

cache. In Proceedings of the 46th International Symposium on Computer Architec-
ture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019. 360–371.

[49] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer

bug to gain kernel privileges. http://googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html. [Online; accessed 9-March-

2015].

[50] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,

Yossi Oren, and Yuval Yarom. 2018. Robust Website Fingerprinting Through

the Cache Occupancy Channel. CoRR abs/1811.07153 (2018). http://dblp.uni-

trier.de/db/journals/corr/corr1811.html#abs-1811-07153

[51] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path oram: An extremely simple

oblivious ram protocol. In SIGSAC Computer & communications security. ACM.

[52] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas Devadas, and Sanjit A

Seshia. 2017. A formal foundation for secure remote execution of enclaves. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2435–2450.

[53] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas

Devadas. 2003. AEGIS: architecture for tamper-evident and tamper-resistant

55

https://riscv.org/
http://www.academia.edu/3224323/Cache_Timing_Attacks
http://www.academia.edu/3224323/Cache_Timing_Attacks
https://doi.org/10.1109/HPCA.2016.7446102
https://doi.org/10.1109/HPCA.2016.7446102
https://googleprojectzero.blogspot.com/2018/01/
https://googleprojectzero.blogspot.com/2018/01/
https://keystone-enclave.org/
https://keystone-enclave.org/
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01207
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://dblp.uni-trier.de/db/journals/corr/corr1811.html#abs-1811-07153
http://dblp.uni-trier.de/db/journals/corr/corr1811.html#abs-1811-07153


MI6: Secure Enclaves in a Speculative Out-of-Order Processor MICRO’19, October 12-16, 2019, Columbus, OH, USA

processing. In international conference on Supercomputing (ICS). ACM.

[54] George Taylor, Peter Davies, and Michael Farmwald. 1990. The TLB Slice - a

Low-cost High-speed Address Translation Mechanism. SIGARCH Computer
Architecture News (1990).

[55] Muralidaran Vijayaraghavan, AdamChlipala, Arvind, and Nirav Dave. 2015. Mod-

ular deductive verification of multiprocessor hardware designs. In International
Conference on Computer Aided Verification (CAV). Springer, 109–127.

[56] Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting

Software Cache-based Side Channel Attacks. In International Symposium on
Computer Architecture (ISCA).

[57] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, and Krste

Asanovic. 2015. The RISC-V Instruction Set Manual Volume II: Privileged Ar-
chitecture Version 1.7. Technical Report UCB/EECS-2015-49. EECS Department,

University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/

2015/EECS-2015-49.html

[58] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovic. 2014.

The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54. EECS Department, University of California, Berkeley.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[59] Y. Xu, W. Cui, and M. Peinado. 2015. Controlled-Channel Attacks: Deterministic

Side Channels for Untrusted Operating Systems. In 2015 IEEE Symposium on
Security and Privacy. 640–656. https://doi.org/10.1109/SP.2015.45

[60] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W

Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution In-

visible in the Cache Hierarchy. In Proceedings of the 51st International Symposium

on Microarchitecture (MICRO-51).
[61] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017.

Secure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against

Cache-Based Side Channel Atacks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). 347–360.

[62] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy

Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel

attacks in a non-inclusive world. In 2015 IEEE Symposium on Security and Privacy.
[63] F. Yao, M. Doroslovacki, and G. Venkataramani. 2018. Are Coherence Protocol

States Vulnerable to Information Leakage?. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 168–179.

[64] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium.

[65] Yuval Yarom and Katrina E Falkner. 2013. Flush+Reload: a High Resolution, Low

Noise, L3 Cache Side-Channel Attack. IACR Cryptology ePrint Archive (2013).
[66] Kenneth C. Yeager. 1996. The Mips R10000 Superscalar Microprocessor. IEEE

Micro 16, 2 (April 1996), 28–41.
[67] Sizhuo Zhang, Andrew Wright, Thomas Bourgeat, and Arvind. 2018. Compos-

able Building Blocks to Open up Processor Design. In Proceedings of the 51st
International Symposium on Microarchitecture (MICRO-51).

[68] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards Practical Page

Coloring-based Multicore Cache Management. In Proceedings of the 4th ACM
European Conference on Computer Systems (EuroSys ’09). ACM, New York, NY,

USA, 89–102. https://doi.org/10.1145/1519065.1519076

56

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-49.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/1519065.1519076

	Abstract
	1 Introduction
	1.1 Secure Enclaves
	1.2 Contributions and organization

	2 Enclaves and Isolated Execution
	2.1 The Enclave Abstraction
	2.2 Enclave Isolation
	2.3 Attacker Capability
	2.4 What's Outside the Threat Model

	3 Related Work
	3.1 Microarchitectural side channel attacks
	3.2 Defending against side channel attacks
	3.3 Secure Processors

	4 Baseline OOO Processor
	4.1 Hardware Modifications

	5 Steady State Isolation
	5.1 Establishing Architectural Isolation
	5.2 Establishing Weak Timing Independence
	5.3 Address Validation for Protection Domains
	5.4 Achieving Strong Timing Independence

	6 Isolation Across Protection Domain Transitions
	6.1 purge instruction
	6.2 Security Monitor Functionality
	6.3 Strong Isolation Argument

	7 Performance Evaluation
	7.1 Flushing Per-Core Microarchitectural State
	7.2 Set-Partitioning the LLC
	7.3 Partitioning and Sizing LLC MSHR
	7.4 LLC Arbiter
	7.5 Turning off Speculation
	7.6 Overall Performance Overheads of MI6

	8 Conclusion
	9 Acknowledgments
	References



