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Abstract—It is well known that there are micro-architectural
vulnerabilities that enable an attacker to use caches to exfiltrate
secrets from a victim. These vulnerabilities exploit the fact that
the attacker can detect cache lines that were accessed by the
victim. Therefore, architects have looked at different forms of
randomization to thwart the attacker’s ability to communicate
using the cache. The security analysis of those randomly mapped
caches is based upon the increased difficulty for the attacker to
determine the addresses that touch the same cache line that the
victim has accessed.

In this paper, we show that the analyses used to evaluate those
schemes were incomplete in various ways. For example, they were
incomplete because they only focused on one of the steps used in
the exfiltration of secrets. Specifically, the step that the attacker
uses to determine the set of addresses that can monitor the
cache lines used by the transmitter address. Instead, we broaden
the analysis of micro-architecture side channels by providing an
overall view of the communication process. This allows us to
identify the existence of other communication steps that can also
affect the security of randomly mapped caches, but have been
ignored by prior work.

We design an analysis framework, CaSA, to comprehensively
and quantitatively analyze the security of these randomly mapped
caches. We comprehensively consider the end-to-end commu-
nication steps and study the statistical relationship between
different steps. In addition, to perform quantitative analysis, we
leverage the concepts from the field of telecommunications to
formulate the security analysis into a statistical problem. We
use CaSA to evaluate a wide range of attack strategies and
cache configurations. Our result shows that the randomization
mechanisms used in the state-of-the-art randomly mapped caches
are insecure.

Index Terms—Micro-architecture side channel, randomly
mapped cache, security analysis.

I. INTRODUCTION

The class of attacks that exploit micro-architectural vul-

nerabilities to breach processor security, generally referred

to as side-channel attacks, have become a serious security

threat. Using these attacks, an attacker can steal secrets from a

victim application running on the same machine by monitoring

the side effects of the victim’s actions on various micro-

architectural states. Such attacks are effective and have been

used to leak encryption keys [1], [2]. Many of these attacks

employ speculative execution to modify cache states [3]–[5] to

completely bypass memory isolation and leak arbitrary data.

As described in [6], there is a series of elements common

to most attacks that exploit micro-architectural vulnerabilities.

These include either pre-existing or attacker-generated code run

in the victim’s security domain that 1) accesses secret informa-

tion and 2) transmits that information over a communication

channel that 3) is received by an attacker. The signal received

by the receiver leaks a secret that was supposed to stay within

the victim’s security domain.

Focusing just on the communication phase of an attack,

the transmitter is in the victim’s code, and the receiver is

in the attacker’s code. The medium of the communication

channel is the micro-architectural state that can be modified, i.e.,

modulated, by the activity of the transmitter. A communication

channel may actually be composed of multiple subchannels,

just as a radio transmission may use multiple frequencies.

For numerous contemporary attacks, the communication

medium is the last-level cache, and each cache line can be

considered a communication subchannel. In the simple case of

a directly mapped cache, modulating a subchannel involves the

transmitter accessing a specific address, since that will change

the state of exactly one well-defined cache line. A receiver

can monitor the state of the same cache line (subchannel) for

changes (modulation) by accessing an address to occupy that

cache line (subchannel) and, at a later time, measure the latency

of a re-access to the same address to determine whether it is a

hit or miss.

For a more complex cache, such as a set-associative cache,

the receiver needs to use multiple addresses to monitor the

cache set that will be used by the transmitter, i.e, multiple

subchannels. In other cases, the transmitter might also use

multiple addresses, i.e., modulating multiple subchannels. These

sets of addresses accessed by the transmitter and receiver

are referred to as the transmitter set and the receiver set

respectively. The attacker generates a receiver set by using a

so-called eviction set construction algorithm [7], [8]. Later we

generalize this operation as the process of receiver calibration.

Randomly Mapped Caches. Among various architectural

solutions that address security vulnerabilities by disrupting

communication via cache-based channels, randomly mapped

caches [9]–[12] are considered highly effective with plausible

security properties and low performance overhead. Randomly

mapped caches aim to significantly increase an attacker’s efforts

to find a receiver set that monitors all the possible subchannels

that might be modulated by the transmitter. They leverage one

of the two ideas: make cache behavior non-deterministic by

introducing some randomness into the functions used to map

memory addresses to cache lines (subchannels) [10], [11], and



dynamically change these functions [9], [10], [12].

In such complex caches, the subchannels that the transmitter

will modulate are not publicly known to attackers. Moreover,

with non-deterministic caches, the attacker can only guess the

probability of an address to be mapped to a given cache line,

and modulation can only be observed probabilistically. This

uncertainty requires the attacker to use complex methods to

generate receiver addresses that have a high probability to

monitor the cache lines modulated by the transmitter.

Unfortunately, the security claims of randomly mapped

caches are quite fragile. For example, a recent secure cache

design, CEASER [9], which claimed to be able to tolerate

years of attack, has been broken by more advanced eviction set

construction algorithms [7], [10]. Similarly, ScatterCache [11],

another recently proposed randomly mapped cache design, can

be broken by a new eviction set construction algorithm [13]

within a few seconds.

The reason behind the failures of those designs lies in their

limited security analyses. In fact, those defense mechanisms

were designed to block very specific eviction set construction

techniques. For instance, some weak security analyses [9]–

[11], [13] only consider the case where the attacker tries to

obtain a receiver set that monitor the subchannels used by

the transmitter with high probability. Such an analysis ignores

the existence of alternative strategies where the attacker could

spend a modest amount of resources on constructing a receiver

set that has a lower probability to monitor these subchannels.

With such a weak receiver set, she would rely on repeatedly

monitoring the modulations from the transmitter to ultimately

leak the secret.

Communication Paradigm. In this paper, we introduce a

generalized communication paradigm for micro-architecture

side channels. The paradigm serves two purposes. First, it

provides the overall view of the communication process

and identifies the end-to-end communication steps that a

comprehensive security analysis has to consider. Second, it

enables us to think of micro-architecture side-channel attacks

using concepts from telecommunications, so we can formulate

the security analysis into a statistical problem and perform

quantitative analyses.
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Fig. 1: Communication paradigm.

The communication paradigm, shown in Fig. 1, consists of

three steps: calibration, signaling and decode.

First, the receiver often needs to perform a calibration step.

Calibration is like a tuning process in a radio-based system,

and aims to determine which subchannels will be modulated

by the transmitter, and where to tune the receiver to monitor

those subchannels. For a cache-based channel, the calibration

step involves running an eviction set construction algorithm [7].

Prior analyses [9]–[11], [13] have only focused on this step.

The second step is a signal transfer step (signaling for short)

where the receiver obtains the signal from the transmitter.

To obtain the signal, the receiver needs to detect the state

changes of the channel caused by the transmitter. In cache-

based side channels, the receiver can obtain the signal using

various approaches, such as Prime+Probe [2]. The signal—

made of cache hit and miss events—can then be formalized

mathematically and studied with statistics and probabilities.

Finally, the receiver needs to perform a decode step to

interpret the detected signals. The decode step can be straight-

forward if the detected signal directly corresponds to the

secret value. In cache-based channels, this decode step can

be complicated if it needs to cope with noise, and non-

deterministic behaviors of the cache.

This Paper. We propose Cache Security Analyzer (CaSA) to

quantitatively analyze the security of randomly mapped caches.

We aim to use CaSA to comprehensively evaluate a wide range

of communication strategies and cache configurations.

The design of CaSA is built from three insights. First, instead

of solely focusing on the calibration step, CaSA performs an

end-to-end analysis on the three communication steps in Fig. 1.

Second, it leverages telecommunication concepts to formulate

the security analysis into a statistical problem and quantify

the security by measuring the end-to-end communication cost.

Third, CaSA identifies the existence of a trade-off in distributing

resources between the calibration step and the signaling step.

It explores that trade-off to find the communication strategy

that minimizes the overall communication cost.

We use CaSA to evaluate randomly mapped caches of

different configurations and discover the quantitative impacts of

different parameters on the communication cost (Findings 1-4

in Section VII). Furthermore, we have made new observations

to better understand the limitations and benefits of randomly

mapped caches that refute several common beliefs. We highlight

two takeaways here:

1) When communicating on randomly mapped caches, spend-

ing the maximum amount of resources on calibration is

neither the only nor always the best strategy. This refutes the

common belief [11], [13] that an effective receiver set must

be able to achieve a high eviction rate, i.e., that monitors

most subchannels that the transmitter could modulate.

2) In the case where dynamic changes in mapping functions

are used, information can be leaked and accumulated across

mapping function changes. This refutes the common belief

that attacks must be completed during the life of a single

mapping function [9], [10].

With those insights and quantitative results, we show that

the randomization mechanisms used in the state-of-the-art

randomly mapped caches [9]–[11] (except for NewCache [12])

are insecure.

The contributions of this paper are:

• A three-step, end-to-end communication paradigm expanding

the security analysis of cache-based side channels beyond

just the calibration of the receiver.

• Formulating the security analysis into a statistical problem

to enable quantitative analysis.



• CaSA, a comprehensive and quantitative security analysis

framework of side-channel communication via randomly

mapped caches.

• A thorough security evaluation and new observations to

understand the limitations and benefits of randomly mapped

caches.

II. BACKGROUND

A. Cache-based Side Channel Attacks

In a cache-based side channel attack, the transmitter and the

receiver use the cache as the communication channel, and each

cache line as a subchannel. Various such attacks exist [1], [8],

[14]–[25], and follow the procedure described in Fig. 1.

In each attack, the receiver first performs a calibration step

by finding a group of addresses called receiver addresses.

The receiver uses the receiver addresses to monitor a set of

subchannels, usually a cache set. Next, the receiver performs the

signaling step, which consists of two substeps: precondition and

detection. The receiver preconditions a group of subchannels

into a known state in order to optimize its chances of monitoring

state changes in these subchannels. The precondition generally

involves accessing the receiver addresses to fill a cache set. It

waits for the transmitter to modulate some of the monitored

subchannels by accessing some cache lines. It then detects the

modulation of those subchannels by either measuring the time

of re-accessing the receiver addresses (Prime+Probe [1], [8]),

or measuring the time of accessing the transmitter addresses

(Evict+Reload [15]), or measuring the execution time of the

transmitter (Evict+Time). Finally, it performs the decode step

based on the measurement result.

set0
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time
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b
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Fig. 2: An example of Prime+Probe attacks. Line a and b are

receiver addresses; line x is the transmitter address.

Fig. 2 visualizes an example of using Prime+Probe as the

signaling strategy on a two-way cache, which contains three

steps: Prime, Wait, and Probe. The receiver preconditions two

subchannels in set0 by accessing lines a and b (Prime). It then

waits for the transmitter to modulate a subchannel in set0 by

accessing line x, which evicts line b from that subchannel

(Wait). At a later time, the receiver checks the state of the

subchannels in set0 by re-accessing lines a and b, and measuring

the access latency (Probe). Based on the long access latency,

the receiver knows that line b missed in the cache and the state

of a subchannel in set0 has been modified (modulated) by the

transmitter.

B. Randomly Mapped Cache Designs

The mapping function in a cache decides how memory

addresses are mapped to cache sets. Randomly mapped caches

introduce randomness into the mapping functions to make

it harder for a receiver to know which subchannels will

be modulated by a transmitter, and which subchannels are

preconditioned or monitored by the receiver. It aims to mitigate

cache attacks by significantly increasing the difficulty of the

receiver’s calibration step.

There are various flavors of randomly mapped cache de-

signs [9]–[12], each with different performance and security

characteristics. To better understand their differences, we

distinguish these designs based on three characteristics of the

mapping function, namely whether:

1) It uses public or secret hash functions;

2) It is static or can be dynamically changed over time;

3) It uses a single or multiple hash functions at a point in

time.

Table I categorizes each design by mapping strategy.

Static Dynamic

Single Set-associative cache∗ CEASER [9]
Hash Group Intel sliced LLC [26] NewCache [12]

Multiple
ScatterCache [11] Skewed-CEASER [10]

Hash Groups

TABLE I: Classification of cache mapping strategies. ∗ Uses

public hash functions.

1) Public vs. Secret hash functions. Traditional set-associative

caches use a public hash function, which simply extracts

bits from the physical address and uses them as the set

index. The other caches in Table I use secret hash functions.

For example, the last-level caches in Intel processors are

organized into multiple slices. The mapping function includes

an undocumented slice hash function to decide which slice an

address should map to. NewCache [12] uses a table-based hash

function. CEASER [9] and ScatterCache [11] use encryption-

based hash functions.

Even though using a secret mapping function could be

thought to make calibration more difficult, it alone cannot

thwart cache attacks. It has been demonstrated that there

exist efficient algorithms for attackers to reverse engineer the

hash function [27], [28] or even to directly construct effective

receiver sets [7], [10] without needing to know anything about

the mapping function.

2) Static v.s. Dynamic hash functions. To further secure the

cache, researchers proposed to periodically change the hash

function instead of using a static hash function. A cache with

a dynamic mapping function uses one hash function in each

epoch, and switches to a different hash function at the end of

an epoch.

The length of an epoch has a significant impact on the

performance and security of the design. To be secure, the epoch

should be short enough so that the receiver cannot both calibrate

and detect signals within one epoch. However, upon epoch

switching, every line in the cache has to be remapped, and

using small epochs thus incurs serious performance overhead.

NewCache [12] uses extremely small epochs—changing the

hash function every time a cache conflict occurs. CEASER [9]

and Skewed-CEASER [10] change the hash function when the

number of cache accesses reaches a threshold. The threshold is



configured to be smaller than the number of accesses required

by the state-of-the-art eviction set construction algorithm [7].

Skewed-CEASER [10] claims years of security when setting

the threshold as 100×L, where L is the total number of lines

in the cache.

3) Single vs. Multiple hash functions. Researchers have pro-

posed more advanced secure cache designs, namely multi-hash

caches such as ScatterCache [11] and Skewed-CEASER [10],

which use multiple hash functions at any point in time. These

designs contrast with single-hash caches, which only ever use

a single hash function.

……
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group 0

hash
group g-1

……

hash
group 1

addr
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Fig. 3: A cache with multiple hash groups.

As shown in Fig. 3, a multi-hash cache is organized as

multiple hash groups. Each hash group is organized as a normal

set-associative cache, and uses a distinct hash function. To do

a lookup in the cache, all the hash-groups are looked up, with

at most one of them being a cache hit. On a cache miss, the

cache first picks one of the hash groups using a uniformly

random policy and then uses the corresponding hash function

to generate the set index for that hash-group.

As a result, the mapping function becomes non-deterministic.

An address can end up in different hash groups, i.e., modulating

different subchannels, even within one epoch. It significantly

increases the attacker’s difficulty in obtaining a receiver set to

monitor all the subchannels that will be used by the transmitter.

ScatterCache [11] uses a single-way per hash group design.

Skewed-CEASER [10] makes the number of ways per hash

group a configurable parameter.

III. THREAT MODEL AND SCOPE

We follow the standard threat model of cross-core cache-

based side channel attacks. We assume the attacker and the

victim are co-located on the same processor chip, but reside

on different cores. A transmitter embedded in the victim and a

receiver controlled by the attacker communicate via channels

in a shared last-level cache. Even though we focus on the

last-level cache, our analysis and our tool, CaSA, can be easily

extended to other levels of the cache hierarchy.

The attacker can reside in a user-level process or in a

malicious operating system in a secure enclave context, such as

SGX [29]. Like previous work [20], we assume the receiver can

use a single thread or multiple threads to control multiple cores

on the chip. The transmitter may be latent in the code of the

victim and execute as part of the victim’s normal processing, or

the attacker can leverage speculative execution [3] to provoke

the execution of the transmitter.

Scope. Our analysis focuses on investigating the fundamental

problems in the randomization schemes used by randomly

mapped caches. Prior work [30] has shown that the mapping

function used in CEASER [9] and Skewed-CEASER [10] only

consists of linear functions and has a key invariant vulnerability,

that is, changing the key used in the mapping function cannot

change the collisions between addresses. This vulnerability

can be fixed using non-linear hash functions. Note that, our

analysis is independent of which hash function is used and

studies new vulnerabilities that have not been explored in prior

work [30]. Indeed, we focus on analyzing the fundamental

problem that is intrinsic to randomly mapped caches.

Besides, we consider the analysis of the following two types

of attacks orthogonal to the analysis of randomly mapped

caches: flush-based attacks [14], [18] and occupancy-based

attacks [31]. The reason is that randomly mapped caches are

not designed to and thus are unable to mitigate these attacks.

Hence, we do not analyze such attacks in this paper.

IV. MOTIVATION

Correctly reasoning about the security of randomly mapped

caches is challenging. Prior security analyses have made

incorrect security claims by narrowly considering two communi-

cation strategies by the attacker. We claim that a comprehensive

security analysis should provide an end-to-end quantitative

analysis of a broad range of communication strategies.

A. Limitations of Prior Work

Prior security analyses [10], [11], [13] only targeted specific

calibration strategies that require a huge amount of resources

and are unlikely to be completed within one epoch. We use the

following simple example in Fig. 4 to illustrate the limitations

of their analyses. Fig. 4 compares the results of three different

calibration strategies on a cache with 2 hash groups and 1

way in each group. Each figure shows hash group 0 on top,

hash group 1 at the bottom, and how the transmitter and

receiver addresses are mapped to corresponding subchannels.

The subchannels that can be used by the transmitter address

are marked in grey.

set 0

set 1

set 2

set 3

hash

group 0

hash

group 1

hash

group 0

hash

group 1

hash

group 0

hash

group 1

(a) (b) (c)

transmitter address receiver address

Fig. 4: An illustrative example of different calibration strategies:

(a) hard-conflict receiver addresses; (b) many soft-conflict

receiver addresses; (c) one soft-conflict receiver address.



The security analysis in Skewed-CEASER [10] only con-

sidered using “hard-conflict” receiver addresses for signaling.

A “hard-conflict” receiver address maps to the same cache

set as the transmitter address in every hash group, shown in

Fig. 4(a). Their analysis only consider such addresses because

once the attacker has enough hard-conflict addresses (2 in this

example), she can perform the rest of the communication (e.g.,

Prime+Probe) in the same way as on a conventional cache.

Randomly mapped caches are designed to make it extremely

difficult to obtain hard-conflict addresses. In fact, for a given

transmitter address, when there are 8 or 16 hash groups, there

may not exist enough hard-conflict addresses given the limited

size of the address space in the state-of-the-art systems [11].

Even though a receiver set with hard-conflict addresses is

guaranteed to be functional, i.e., guarantee to monitor all the

subchannels that will be used by the transmitter, it is not the

only way to communicate on randomly mapped caches.

The security analysis in ScatterCache [11] considered using

a large number of “soft-conflict” receiver addresses. A “soft-

conflict” receiver address maps to the same set as the transmitter

address in at least one hash group, as shown in Fig. 4(b). Soft-

conflict addresses are much easier to find than hard-conflict

addresses but can only be used to monitor the transmitter with

some probability. The assumption behind their analysis is that

the attacker needs to get a large receiver set (e.g., 256 addresses

on an 8MB LLC) in order to monitor the transmitter with 99%

probability. Crafting such a large receiver set is expensive

and unlikely to be completed within one epoch. Consequently,

strong security claims were made under such assumptions.

There exists a key problem with these analyses: they

overlooked a broad range of communication strategies that

are available to the attacker. In addition to the prior analysis

where the receiver spends a huge amount of resources on

calibration to achieve a high monitoring probability, other

effective communication strategies are also possible, such as,

using a small amount of resources on calibration to obtain

a receiver set with low monitoring probability, and relying

on repeating the signaling step to decode secrets with a high

success rate. A comprehensive analysis should explore the

trade-off in distributing resources between calibration and

signaling.

Fig. 4(c) shows an example of using 1 receiver address

that soft-conflicts with the transmitter on a single subchannel.

Such a receiver set is fairly cheap to construct. In this

example, the receiver has a probability of 0.5 to monitor that

subchannel and the transmitter also has a probability of 0.5 to

modulate that subchannel. As a result, when the transmitter

address is accessed, the probability of the receiver observing

a modulation is 0.5×0.5=0.25. When the transmitter is not

accessed, this probability is 0. Even though the probability

to observe a modulation is low, the receiver can repeat the

signal transfer step to accumulate samples. Those samples are

then used to infer if the transmitter was accessed (observing

some modulation) or not (observing no modulation). This

last phase is the decoding step and increasing the number of

samples will increase the decode success rate. In our example,

by accumulating 16 samples, the receiver can know if the

transmitter was accessed or not with 99% confidence, based on

whether it detects modulations in at least one of the signaling

samples or it detects no modulations across all samples.

Alternatively, the receiver could spend more resources on

calibration to obtain two receiver addresses instead of one. In

this situation, she would only need to accumulate 7 samples

to decode the secret with the same level of confidence. The

examples above clearly demonstrate the existence of a trade-off

in distributing resources between calibration and signaling.

B. The Need for Comprehensive and Quantitative Analysis

In addition to the trade-off between calibration and signal

transfer, we find it is necessary to perform a comprehensive

and quantitative analysis of randomly mapped caches, since

there exist multiple other factors that can affect the security of

these designs. We provide the intuitions of how these factors

can affect communication on randomly mapped caches below.

First, we need to consider the effects of having multiple

transmitter addresses. Intuitively, having more transmitter

addresses can make communication easier, because the num-

ber of subchannels associated with the transmitter increases

and the communication can work as long as the receiver

can successfully monitor at least one modulation from the

transmitter. Note that, in practice, multi-address transmitters

do occur in many security-sensitive applications. For example,

the square-and-multiply exponentiation algorithm used in RSA

encryption [32] acts as a multi-address transmitter: both the

square and multiply functions are composed of instructions

residing in multiple cache lines.

Second, we need to consider the effects of noise. Intuitively,

the presence of noise can make communication more difficult,

because the receiver often cannot distinguish the modulations

generated by the transmitter or by the noise. CaSA quantita-

tively measures the impacts of noise and we discovered a new

finding that noise can have a positive impact on communication.

Finally, for caches that periodically change the mapping

functions, we investigate the feasibility of performing the

communication across epochs. Prior work assumed that commu-

nication must complete within one epoch and no information

can be carried across epochs. In this paper, we challenge this

assumption. It is true that, a receiver set constructed in an

epoch can only be used for the signaling steps in the same

epoch. However, we observe that different receiver sets from

different epochs generate signals—made of cache hit and miss

events—that are similar to each other, since the signals are

mainly determined by the numbers of addresses in the receiver

sets. Intuitively, if the same secret bit is transmitted, the samples

obtained from different epochs can be combined to increase

decoding accuracy.

CaSA is designed to quantitatively analyze the impacts of

the above factors on the security of randomly mapped caches.

Specifically, CaSA can answer the following questions.

• Given a cache configuration, such as the one in Fig. 4, and

the number of transmitter addresses, how should a receiver



distribute resources between calibration and signal transfer

to exfiltrate the maximum amount of information?

• Considering background noise, how much more difficult is

it for an attacker to mount a successful attack?

• Among different cache configurations (e.g., 1-way per hash

group and 2-way per hash group), which one is more

difficult to attack, measured by the number of attacker’s

cache accesses to leak one secret bit?

V. CASA OVERVIEW

The goal of CaSA is to measure the security of differ-

ent configurations of randomly mapped caches. We strive

to comprehensively evaluate how various communication

parameters quantitatively affect the amount of information

leakage on a given cache configuration. To enable quantitative

analysis, we innovatively leverage concepts from the field

of telecommunications (Section I) and formulate the signals

in cache-based side channels into a statistical representation.

In this section, we first describe the full security analysis

space, and then describe the statistical representation of signals,

followed by the security metric used in CaSA.

A. The Security Analysis Space

The paper strives to comprehensively evaluate the choices

available with respect to the three components used in cache-

based side channel communication, i.e., transmitter, receiver

and channel (i.e., cache), as well as parameters related to noise.

Transmitter. An important parameter related to the transmitter

is the number of transmitter addresses. We expect program

developers to set that sole transmitter parameter based on

their knowledge of the applications or using program analysis

tools [33]–[35].

Receiver. The receiver can choose from a wide range of

calibration, signaling and decoding strategies, and it can

accumulate information across epochs on caches periodically

changing their hash functions. We investigate various possible

combinations of calibration, signaling and decoding strategies,

especially considering the case that the receiver spends medium

to low resources on calibration.

Time

one round of calibration one round of signal transfer

#rounds of

calibration

……

beginning/end of an epoch

epoch 0

#rounds of

signal transfer

epoch n

Fig. 5: Attack procedure on a multi-hash cache that periodically

changes hash functions.

Fig. 5 visualizes the communication process on a multi-hash

cache that periodically changes hash functions and indicates

receiver parameters. The cache changes the hash functions

at the end of each epoch (marked as circles). Within each

epoch, the receiver generates a receiver set via multiple rounds

of calibration (white boxes), and then uses the receiver set

to perform signal transfer and collect signal samples once

or multiple times before the epoch ends (highlighted boxes).

The receiver strategy decides how to distribute efforts between

calibration and signal transfer

If enough samples have been acquired within one epoch to

allow decoding of the secret value with sufficient certainty,

the communication of the secret is complete. If the number

of samples acquired is insufficient to decode the secret, the

attacker will start a new epoch with a new calibration step,

acquiring more samples.

Our analysis assumes that the epoch size is constant and

epoch changes are public to the receiver. It is useful to study

the security of randomly mapped caches independently of

complicated epoch parameters, especially as the security of

those caches is not believed to rely on hiding epoch parameters.

We discuss how CaSA can be extended to analyze detecting

epoch changes and handling variable-size epoch in Section VIII.

Channel (Cache). We consider randomly mapped caches with

varied configurations, in terms of the number of hash groups,

the number of ways in each hash group, the number of cache

sets, and the epoch length. To make our analysis tractable, in

this paper, we do not consider other cache parameters such

as the ones related to number of cache levels, directories,

or MSHRs. However, note that CaSA can be extended to

incorporate those parameters.

Noise. In a cache attack, noise can add spurious modulations

and confuse the receiver. We identify and consider two types

of noise. The first type is the background noise, which consists

of random addresses and modulates random subchannels.

The second type is the carrier noise, which modulates

a fixed set of subchannels independently from the

secret. Taking the following victim code for example,

if (secret) {access A; access B;} else {access A;}.

Address A is a carrier address. If the receiver is calibrated

on the subchannels mapped to A, it will waste resources

monitoring subchannels that will not provide any useful

information about the secret. As a result, carrier noise makes

communication more difficult.

A summary of the parameters of all the communication

components considered in this paper is shown in Table II.

Component Parameters

transmitter number of transmitter addresses

receiver
number of rounds of calibration in one epoch
number of rounds of signal transfer in one epoch

number of hash groups
number of ways per group

channel number of sets
(cache) epoch length

size of upper-level caches

noise
background noise
carrier noise

TABLE II: The communication parameters considered in CaSA.

B. The Statistical Representation of Signals

We model the signal observed by a receiver as a random

variable X , counting the number of modulations detected by the

receiver during a signal transfer step. X follows a probability
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Fig. 6: CaSA: end-to-end quantitative security analysis framework.

distribution that can be characterized by a probability density

function (PDF for short) f (n) = P(X =n). We also note F(n) =
P(X ≥n) the cumulative density function (CDF for short), is

sometimes more convenient to use.

To give a concrete example, let’s consider a transmitter that

communicates a secret bit to a receiver by modulating one

subchannel to send bit “1” and doing nothing to send bit “0”.

We use f0(n) and f1(n) to represent the density functions for

X when the bit sent is “0” or “1” respectively. To decode the

signal, the receiver samples X to determine whether X follows

f0 or f1. Note that, one of the key tasks of CaSA is to compute

the PDFs or CDFs for a given communication configuration.

When communicating on a multi-hash cache, if the receiver

uses soft-conflict addresses, such as in Fig. 4(b) and (c), she

will be only able to monitor the subchannels used by the

transmitter with a certain probability. The corresponding PDFs

are as below, with p>0.

f0(n) =

{

1, if n=0

0, otherwise
; f1(n) =











p, if n=0

1−p, if n=1

0, otherwise

(1)

In a noiseless environment, both f0(n) and f1(n) have non-

zero values at n = 0. Visually, the two functions partially

overlap with each other. In the examples in Fig. 4, when

using one soft-conflict receiver address, p= 0.25, and when

using a large number of soft-conflict receiver addresses, the

value of p can decrease to 0.01 (i.e., f1(1)= 1−p= 0.99).

The smaller the value of p is, the easier the two distributions

can be distinguished. In a noisy environment, even when the

transmitter does nothing, the receiver can observe modulations

which are generated by noise. Therefore, the corresponding

PDF of the received signal, f0(n), will have non-zero values

at n≥ 1. Moreover, if the transmitter and the receiver are

composed of multiple addresses, the PDFs can have non-zero

values at n≥2.

With the two PDFs partially overlapped, the decoding

step becomes complicated, but still feasible. As discussed

in Section IV, if the receiver can collect enough samples of

the signal, she can decode the secret bit with a high success

rate, e.g., 99%.

C. The Security Metric

To evaluate randomly mapped caches and compare different

cache configurations, we propose to use end-to-end commu-

nication costs as the quantitative security metric. Recall that,

prior works [9]–[11], [13] analyze randomly mapped caches

by quantifying the difficulty to perform the calibration step

and have led to misleading security claims. Our end-to-end

communication cost consists of the receiver’s cost on the

calibration step and the signaling step. Specifically, in CaSA,

we use the number of cache accesses required by the receiver

to decode the secret with a 99% confidence, where the cache

accesses include the accesses performed by the receiver during

the calibration step and the signal transfer step. Note that, other

resources can also be used to express a cost, such as time or

the number of times the victim is triggered.

VI. CASA IMPLEMENTATION DETAILS

CaSA is an end-to-end quantitative security analysis frame-

work for communication via randomly mapped caches. Note

that, even though we designed the framework for randomly

mapped caches, it can be easily used to analyze other simpler

cache designs.

A. CaSA Work Flow

CaSA is composed of three modules analysing the three

identified steps in the communication process: calibration,

signaling and decode, shown in Fig. 6. It can be used to

explore a large security analysis space listed in Table II and

compute the communication cost for various communication

parameters.

The first module is the calibration module ( 1 ), which uses

a cache emulator to simulate the cache’s behavior during

calibration. It takes the transmitter parameters and the cache

parameters as input, and generates the calibration result. Due

to the random behavior of the cache, the module runs the

calibration algorithm multiple times and each run generates

a receiver set. We encode the calibration result (a group of

receiver sets) as subchannel mapping graphs ( 2 ). The graph

representation is to precisely capture the mapping relationship

between addresses and subchannels (cache lines).

Fig. 7 shows an example of a subchannel mapping graph on

a cache with 4 sets and 2 hash groups. The graph is a directed

bipartite graph with two disjoint sets of vertices for addresses

(pentagon and circle) and subchannels (square). An edge always

connects an address vertex to a subchannel vertex, indicating

the address can map to the subchannel. An address vertex can

either be a transmitter address (pentagon) or a receiver address

(circle). The graph does not include the subchannels which no

address maps to, such as set 2 in hash group 1. There may

exist multiple connected components in the graph, depending



on the conflict relationships between addresses, such as the

two shaded areas in Fig. 7.

The second module is the signaling module ( 3 ), which

takes a subchannel mapping graph as input and uses a

mathematical model to compute the signal transfer result. For

each value the secret can take, the signaling module outputs a

signal probability density function ( 4 ), which describes the

distribution of the number of modulations observed by the

receiver.

subchannel

transmitter address

can map to

receiver address

set 3

set 2

set 1

set 0

hash
group 0

hash
group 1

Fig. 7: An example of subchannel mapping graph.

The last module is the decode module ( 5 ), which takes the

probability density functions (PDFs) as input and computes the

end-to-end communication cost of the receiver (Section V-C).

It uses a statistical analysis method to compute the number

of accesses needed by the receiver to decode the secret with

a given confidence value, e.g., ≥99%. Note that, it can also

measure the cost for communicating across epochs.

To evaluate the security of a cache configuration, we use

the above framework to compute the communication cost for

different combinations of receiver parameters and find the one

with the lowest cost.

We now provide details for each module.

B. The Calibration Module

The calibration module uses a cache emulator to model the

state-of-the-art calibration algorithms. These algorithms are

eviction set construction algorithms proposed by Qureshi et

al. [10] and Purnal et al. [13]. We generalize the algorithms

into three steps, shown in Fig. 8.

x0a0 a1 an-1...... xm-1... a0 a1 an-1......

step 1 step 2 step 3
Fig. 8: The calibration algorithm for multi-address transmitters.

a0 to an−1 are candidate addresses, and x0 to xm−1 are

transmitter addresses.

The calibration starts with a candidate set which is composed

of many randomly chosen addresses. The candidate set should

contain enough addresses so that some of them map to the

subchannels used by the transmitter addresses.

1) The receiver accesses the addresses in the candidate set,

making them all reside in the cache. This step requires

multiple accesses to each candidate address to ensure every

access hits in the cache. It also requires dropping some

addresses if the candidate set cannot fit in the cache.

2) The transmitter addresses are accessed, which potentially

evict some of the candidate addresses from the cache.

3) The receiver re-accesses the candidate set and measures the

access latency of every address. Based on the latency, the

algorithm decides whether a candidate address should be

included in the receiver set or not.

In step 3, the algorithm can either add all the addresses that

missed in the cache to the receiver set, or add only the first

address that missed to the receiver set. We call the former

one as a greedy calibration strategy and the latter one as a

non-greedy strategy. We evaluate the cost of both calibration

strategies in Section VII-A.

C. The Signaling Module

The signaling module takes the subchannel mapping graph

as an input, models the cache behaviors during the signal

transfer step, and computes the distributions of the signals

for different secret values. Recall that, the distributions of

the signals are characterized by probability density functions

(PDFs) or cumulative density functions (CDFs) of the number

of modulations observed by the receiver (Section V-B).

The signaling step consists of three operations: 1) the receiver

performs precondition and monitors a group of subchannels;

2) the transmitter modules another group of subchannels; 3)

the receiver performs detection and observes modulations on

the subchannels that are both monitored by the receiver in step

1 and are modulated by the transmitter in step 2.

Correspondingly, given a set of subchannels, our mathemati-

cal model follows three steps to compute the probability of the

receiver detecting modulations on these subchannels. Given a

single subchannel s, we define the event Ds when a modulation

is detected on the subchannel s. Similarly, the event
⋂n

i=1 Dsi
is

the receiver detecting modulations on subchannels {s1, . . . ,sn}.

The three steps are as follows.

1) Compute the probability that the given subchannels are

monitored by the receiver, noted as Pr(s1, . . . ,sn), using a

Markov chain approach.

2) Compute the probability that these subchannels are mod-

ulated by the transmitter, noted as Pt(s1, . . . ,sn), using a

simple probability calculation.

3) Compute the probability that the receiver detects the

modulations on these subchannels by calculating the joint

probability from the above two steps. Since a subchannel be-

ing monitored and being modulated are independent events,

their joint probability is the product of their individual

probabilities: P(
⋂n

i=1 Dsi
) = Pr(s1, . . . ,sn)×Pt(s1, . . . ,sn).

Once we obtain the detection probability for a given set

of subchannels, we can compute the cumulative density

functions (CDFs) of the signals. Basically, to compute F(n), we

enumerate all the sets of subchannels of size n and accumulate

their detection probabilities.

Note that, for simplicity, the following discussion and

formulas assume each hash group has a single way. The

approach is applicable to caches with multi-way hash groups.

1) Compute Monitoring Probability: The precondition op-

eration generally involves accessing the receiver addresses

multiple times to ensure all the addresses are cached. Due to



the random behavior of the cache, the precondition step is

essentially a stochastic process.

Given a subchannel mapping graph, several methods can be

used to compute the monitoring probability (Pr). For instance,

we could use a cache emulator to simulate the precondition

process and empirically obtain the monitoring probability. An

alternative approach is to model this process as a Markov

chain [36] as below.

To construct the state transition graph for the Markov chain,

we enumerate all the cache states that can be reached during

preconditioning and make each Markov state correspond to one

of the cache states. The probability of transitioning between

any two Markov states is determined by the address being

accessed and the probability that the address ends up in a

given subchannel, which can be known from the subchannel

mapping graph. The precondition step finishes when all the

receiver addresses are in the cache, which corresponds to

absorbing states in the Markov chain. We can use standard

approaches to compute the probability of reaching each of

absorbing states. To compute the monitoring probability Pr for

a given set of subchannels, we enumerate the absorbing states

where these subchannels are monitored and accumulate the

probabilities of reaching these states.

The Markov chain approach provides useful insights on

the interactions between receiver addresses and computes the

precise monitoring probability. However, it suffers from high

computation complexity. The number of states in the Markov

chain increases exponentially as the number of subchannels.

When the subchannel mapping graph is big, using a cache

emulator can be more efficient in computing the monitoring

probability.

2) Compute Modulation Probability: The modulation op-

eration involves accessing the transmitter addresses for a

fixed number of times. Considering the number of transmitter

addresses and assuming they do not conflict, we can compute

the modulation probability (Pt ) with a simple model. For each

subchannel s that can be used by the transmitter as Pt(s) = 1/g,

where g is the number of hash groups. In the case when we

have a high number of transmitter addresses and these addresses

share subchannels, other approaches like the Markov chain

approach in Section VI-C1 or simulation can be used.

Handling Noise. We model the impact of two types of noise

(Section V-A): background noise and carrier noise. Both

contribute to the modulation probability (Pt ).

The background noise consists of accessing randomly chosen

addresses which modulate random subchannels. We model a

noise access as modulating each subchannel with a probability

of 1/L, where L is the number of cache lines. The carrier noise

is a part of the transmitter. Therefore, we model the carrier

noise as transmitter addresses.

3) Compute Density Functions: Now that we have the

probability for each given set of subchannel to be monitored

by the receiver and modulated by the transmitter, we can

compute the joint probability of these two events happening

simultaneously i.e. the probability of detecting modulation on

these subchannels.

Next, we compute the cumulative density functions F(n) by

enumerating all the sets of subchannels of size n and summing

their detection probabilities. Consider F(1) = P(X ≥1), which

gives the probability of the event “at least one modulation

being detected”. This event can be formulated as a union of

the same event on each subchannel. More explicitly, for each

subchannel s, the event “a modulation being detected on s”,

denoted as Ds. We note S of size N the set of all subchannels.

We have :

Event “X ≥1” =
⋃

s∈S

Ds

We then apply the principle of inclusion-exclusion [37] to

compute F(1) as below.

F(1) = P(
⋃

s∈S

Ds) =
N

∑
k=1

(

(−1)k−1 ∑
{s1,...,sk}⊆S

P(
k
⋂

i=1

Dsi
)
)

We find it extremely expensive to compute the detection

probability for every possible subset of S. Indeed, it is

incomputable for large subchannel mapping graphs. To greatly

reduce the computation complexity, we use Bonferroni’s

inequalities [38] to solely compute bounds for the density

functions. Specifically, to compute F(1), we cut the sum at

k=1 and k=2 to get the upper bound and the lower bound

respectively. With the same principle, we can derive bounds

of F(n) for any n.

Using the bounds makes the density functions imprecise,

and can affect our estimation of the communication cost. When

the bound is too loose, we rely on simulation of the signaling

step to empirically derive the CDFs.

D. The Decode Module

The decode module takes the density functions of the signal

for each possible secret value as an input and computes the end-

to-end communication cost of the receiver, which consists of

the calibration cost and the signaling cost. The calibration cost

can be directly derived from the calibration module by counting

the number of accesses performed by the cache emulator. The

signaling cost is computed by the decode module using a

statistical method. Specifically, we compute the number of

rounds of signal transfer that are needed by the receiver to

decode the secret with 99% success rate and then convert

it into number of cache accesses. We now describe how to

compute the signaling cost, followed by the discussion on how

to quantify the cost if communication spans across epochs.

The decode step consists in solving a statistical problem.

Consider the transmitter communicates a secret bit b∈{0,1} to

the receiver by sending a signal X . The signal X is an integer

random variable that follows its CDF Fb(n), which is either

equal to F0(n) or F1(n). The receiver decodes the secret by

sampling X and deciding which one of the two distributions

X follows. Intuitively, the more samples the receiver gets, the

more accurately it can decode the secret. The problem that we

need to solve is how many samples are needed to distinguish the

two distributions with a certain confidence. This is a standard



statistical problem with various solutions. We use an intuitive

approach as follows.

To make the mathematical analysis simple, we convert the

integer random variable X to a simpler signal, a Boolean

variable Y . We define Y , equal to 1 if X ≥1 (that is observing

at least 1 modulation) and equal to 0 otherwise (observing no

modulation). Hence the problem becomes: how many samples

are needed to distinguish between two Boolean distributions

of mean F0(1) and F1(1).
As a result, the decode strategy is straightforward. The

attacker will simply perform the signal transfer several times,

observe if the empirical average of Y is closer to F0(1) or

F1(1), and guess the value of b accordingly.

Note that we could look at Y ′ equal to 1 if X ≥ 2 (that

is observing at least 2 modulation) and equal to 0 otherwise

(observing 0 or 1 modulation). In some cases, Y ′ can be a

better distinguisher than Y . In practice, we look for the value

of n that maximizes the distance |F0(n)−F1(n)|, denoted as

nmax and define Y as equal to 1 if X ≥nmax, 0 otherwise.

Intuitively, the more samples we get, the closer our empirical

mean will get to Fb(nmax), and the more confidence we will

have for the decode result. The Chernoff-Hoeffding bound [39]

provides the relationship between the number of samples and

the upper bound of the decode error rate (i.e., the lower bound

of the certainty) as below.

P
(

|
1

N

N

∑
i=0

yi −Fb(nmax)|> δ

)

≤ e−2δ 2N (2)

where N is the number of samples, yi is a sample of the Boolean

variable Y . The above formula shows that the empirical mean

of Y gets closer to Fb(nmax) exponentially fast with the number

of samples N.

To compute the signaling cost, we compute the number of

samples (N) needed to achieve 1% error rate, which can be

obtained by setting δ = |F1(nmax)−F0(nmax)|/2 and e−2δ 2N =
1% in Eq. (2).

Communication spanning across epochs. If the receiver

cannot collect enough samples to achieve the required error

rate within one epoch, the receiver has to decode based on

samples gathered from multiple epochs. As shown in Fig. 5,

since the mapping function used by the cache is changed upon

switching epochs, the receiver needs to redo the calibration in

each epoch to generate a different receiver set, which leads to

a different distribution of the signal. This is one of the reasons

that prior work [9], [10] considers it infeasible to communicate

across epochs.

We claim that it is viable to communicate across epochs,

because the signals from different epochs follow a global

distribution that can be leveraged for the decode step. Let’s use

gi to denote the subchannel mapping graph for the ith epoch

and Xi for the corresponding signal. For specific calibration

and cache parameters, we define the space of all subchannel

mapping graphs as G and the space of the corresponding signals

as X . Intuitively, when the receiver performs the calibration, no

matter in which epoch, it obtains a sample from the subchannel

mapping graph space G. Similarly, when the receiver collects

a sample from any of the epochs, it is sampling the signal

space X . We call the distribution that X follows the global

distribution. CaSA computes the global distribution of signals

and use Hoeffding bound [39] to compute the signaling cost.

We now describe how to compute the global distribution.

Until now, we have computed the distribution of the signal Xi

conditioned on the subchannel mapping graph gi, denoted as

P(Xi≥n|gi). Theoretically, given the probability of generating

each subchannel mapping graph P(g), we can compute the

global distribution of signal X as below.

P(X ≥n) = ∑
g∈G

P(g)×P(X ≥n|g) (3)

With the global distribution, we can transform the signal X
into a Boolean random variable as before. We then apply the

Hoeffding bound [39] to compute the signaling cost, i.e., the

number of samples required to decode the secret with 1% error

rate.

In practice, we do not directly compute Eq. (3), because

we are unable to obtain the probability of generating each

subchannel mapping graph P(g) due to the extremely large

space of G. Instead, we use an empirical approach. We have

already obtained samples of subchannel mapping graphs in the

calibration module and computed the conditional distributions

in the signaling module. We found that if using the same

calibration strategy, the conditional distributions P(X≥n|g) are

fairly similar across epochs. Therefore, we can obtain a useful

approximation of the global distribution using a small number

of samples, e.g., using 30 subchannel mapping graph samples

for 15 transmitter addresses. We show communication across

epochs is feasible in Section VII-C.

VII. EVALUATION

We use CaSA to evaluate 1MB caches with 1024 sets and 16

ways. We evaluate 3 cache configurations: a) 16 hash groups

with 1 way per group, b) 8 hash groups with 2 ways per group,

and c) 4 hash groups with 4 ways per group. Within each hash

group, if there exists multiple ways, Last Recent Used (LRU)

replacement policy is used. For caches that dynamically change

the hash functions, we define the length of an epoch using

the number of epoch units. In each epoch unit, the cache is

accessed for L times where L is the total number of LLC lines.

We evaluate the state-of-the-art calibration strategies [10], [13]

and the classical signaling strategy, i.e., Prime+Probe.

CaSA measures and compares the communication cost of

different attack strategies on randomly mapped caches. In

this section, we first compare different calibration strategies.

Second, we show how calibration parameters, cache parameters

and noise parameters quantitatively affect the signaling cost.

Finally, we show evaluation results of communication spanning

across epochs.

A. Comparing Calibration Strategies

We compare calibration efficiency of using different calibra-

tion strategies in Fig. 9. The calibration efficiency is measured

by the number of receiver addresses generated per epoch unit.



Fig. 9: Comparing calibration efficiency of different calibration strategies.
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Fig. 10: Impacts of communication parameters on signaling cost.

We assume the attacker chooses the size of the candidate set

that is smaller than the private caches under its control. For

example, if the receiver attacker can launch two threads and

use two 256KB private caches, it could use 8192 candidate

addresses.

For each candidate set size, we show from left to right,

the calibration efficiency when the transmitter is composed

of 1, 5, 10, 15 and 20 addresses. Each bar is broken into

three categories from bottom to top: the number of receiver

addresses obtained using the non-greedy calibration algorithm,

the additional number of effective addresses obtained using

the greedy algorithm, and the number of ineffective addresses

obtained by the greedy algorithm. Ineffective addresses do not

map to any of the subchannels associated with the transmitters.

On the 3 cache configurations, the greedy algorithm con-

sistently obtains more receiver addresses than the non-greedy

algorithm when there is more than 1 transmitter address. How-

ever, the greedy algorithm introduces 5% to 20% ineffective

addresses into the receiver sets. The calibration efficiency of

the greedy algorithm increases almost linearly with the number

of transmitter addresses. In the following evaluation, we use

the greedy calibration algorithm.

Finding 1: Calibration efficiency increases almost linearly as

the number of transmitter addresses increases.

B. Measuring Signaling Cost

We evaluate the impacts of communication parameters on

signaling cost, including transmitter parameters, calibration

parameters, cache configurations and background noise. Fig. 10

compares the signaling cost for achieving 1% error rate on 3

different cache configurations. The signaling cost is the number

of samples computed using the Chernoff bound (Eq. (2)) on

the empirical density functions which we obtain via sampling.

In each plot, we show how the signaling cost changes with

the background noise, which is modeled as accessing a certain

number of random addresses. We compare the signaling cost for

different numbers of transmitters and calibration parameters.

Across the three cache configurations, more transmitter

addresses and more calibration efforts both lead to lower

signaling cost. On a cache with 1 way per hash group in

Fig. 10(a), the signaling cost increases almost exponentially

as the noise increases when the transmitter is composed of 1

address. When there are more transmitter addresses and noise

is low, the signaling cost increases sub-exponentially. However,

an interesting finding from our evaluation results is that noise

does not always have negative impacts on communication.

On caches with multiple ways per hash group in Fig. 10(b)

and (c), increasing noise sometimes helps decrease signaling

cost. This phenomenon can be explained intuitively using the

following example. Consider a cache with 2 ways per hash

group and both the transmitter and the receiver use one address

to communicate. Without noise, the receiver cannot detect

any modulation no matter whether the transmitter address is

accessed or not. With a single noise access, the receiver has

a chance to observe a modulation when both the transmitter

address and the noise address modulate the subchannel that it

monitors, and still no chance to observe a modulation when

the transmitter is not accessed. Hence, adding noise in this

example has a positive impact on communication.

Comparing the three cache configurations, we do not see a

particular cache configuration has a clear advantage of security

over others. When there is light background noise, the signaling

cost is higher when the cache has more ways per hash group.

However, communication on such caches can tolerate more

noise. For example, when using 20 transmitter addresses, 80

rounds of calibration and 1000 accesses as background noise,

the signaling cost on the cache with 2 ways per hash group

(321 samples) is lower than the cost on the cache with 1 way

per hash group (521 samples).
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Fig. 11: Empirical decode error rate (a, b) and theoretical bound of communication cost (c) when communicating across epochs.

Finding 2: Signaling cost on caches with 1 way per hash

group increases exponentially, except at low noise for multiple

transmitter addresses.

Finding 3: Signaling costs on different cache configurations

are mostly at the same order of magnitude.

Takeaway: Noise does not always have negative impacts

on communication on randomly mapped caches.

Takeaway: There does not exist a cache configuration

that has a clear advantage of security over others.

C. Communication Across Epochs when Attacking RSA

We show the feasibility of communicating across epochs

using transmitter parameters from a real victim application, the

square-and-multiply exponentiation function [32] in the RSA

encryption algorithm. The receiver tries to distinguish whether

the transmitter executes the square or multiply function. We

use Pin [35] to identify 16 transmitter addresses (at cache line

granularity) exclusively used by the square function and 10

carrier addresses shared by the two functions.

The end-to-end communication cost is the number of LLC

accessed by the receiver during calibration and signaling.

The calibration cost is directly derived from the decode

module (results in Fig. 9). The signaling cost is computed by

multiplying the number of signaling samples and the number

of LLC accesses needed to obtain each sample. The number of

LLC accesses per sample can be very different depending on

whether the receiver can use the clflush instruction. To repeat

the signaling step within one epoch, which we call contiguous

signaling, the receiver needs to evict the receiver addresses

from the cache before the next signaling round begins. This

self-eviction operation can be completed using the clflush

instruction with negligible cost and according to our evaluation,

the communication can always complete within one epoch

with 1% error rate. However, in the case that clflush is

unavailable, the self-eviction operation requires accessing many

random addresses. Specifically, for n receiver addresses, we

additionally count (ln(n) + 1)× 16k LLC accesses in each

signaling round. Note that, this self-eviction operation on

traditional set-associative caches only requires the number

of accesses equal to the associativity.

In Fig. 11, we show evaluation results of using different re-

ceiver parameters to communicate on two cache configurations

whose epoch sizes equal to 100 epoch units [10]. Fig. 11(a) and

(b) shows the empirical number of epochs needed to achieve 1%

decode error rate, and Fig. 11(c) shows the theoretical bounds.

The error rate decreases as the number of epochs increases,

confirming the effectiveness of the multi-epoch strategy.

We observe that spending more resources on calibration

does not always help communication. For example, on a cache

with 1 way per hash group, spending 40% of the epoch on

calibration achieves the highest communication efficiency, and

on a cache with 2 ways per hash group, the best efficiency is

achieved when spending 60% of the epoch on calibration.

Finding 4: Contiguous signaling requires evicting receiver

addresses, which increases the signaling cost by multiple

thousand times on randomly mapped caches compared to

traditional set-associative caches.

Takeaway: Information can be leaked and accumulated

across epochs even when mapping functions are changed.

Takeaway: Spending the maximum amount of resources

on calibration is neither the only nor always the best

strategy.

D. Varying Epoch Sizes

We analyze how varying epoch sizes can affect the commu-

nication cost. We repeat the experiment on attacking RSA in a

cache with 1 way per hash group and vary the epoch size from

5 units to 100 units and an infinite size. The communication

cost is the number of LLC accesses performed by the receiver

to decode a single secret bit. For each epoch size, Fig. 12

shows the lowest communication cost and the corresponding

communication strategy, which is represented using the number

of calibration rounds per epoch. The signaling cost is the

number of samples computed using Eq. (2) on the empirical

density functions which we obtain via sampling.
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Fig. 12: The impacts of epoch sizes on communication cost.

Overall, the communication cost decreases as the epoch

size increases from 5 units to 100 units. When the epoch

size is equal to or below 1 unit, such as the configuration



in NewCache [12], our communication strategy becomes

infeasible. However, as demonstrated in prior work [9], [10],

using such a small epoch size can introduce high performance

overhead. The number of calibration rounds increases as the

epoch size increases from 5 to 60 units. When the epoch size

is larger than 60 units, spending more resources on calibration

does not help decrease the overall communication cost.

VIII. DISCUSSION

We briefly discuss how CaSA can be extended for the

following cases.

1) Handling Complex Encoding Schemes.: We have evalu-

ated a simple encoding scheme of one Boolean secret bit so

far. When multiple transmitters are used to encode multiple

secret bits using a more complex encoding scheme, we identify

two potential decode strategies and the corresponding analysis

that can be supported by CaSA.

First, multiple receiver sets are used for signaling. If n

transmitters are used to encode n secret bits, the receiver can

decode these bits using n different receiver sets. Specifically, it

calibrates one receiver set for each transmitter. When perform

a signaling step, the receiver uses the n receiver sets in

parallel. CaSA could be easily extended to handle this decode

strategy. For each receiver set, the modulations from the other

transmitters and receivers are modeled as a new type of noise,

as this receiver set is not calibrated for those addresses. CaSA

could be easily extended to handle this type of noise.

Second, a single receiver set is used for signaling. In the

case that each transmitter is composed of a different number of

addresses, the receiver can calibrate to obtain a receiver set for

a union of these transmitters. Accessing different combinations

of the transmitters may result in 2n different distributions of the

signal. The mathematical problem that needs to be solved in the

decode module is how many samples are needed to distinguish

a group of distributions, instead of two. To compute bounds

for this problem, CaSA will need to be extended to use more

advanced mathematical methods.

2) Computing Upper Bounds of Communication Bandwidth:

CaSA does not compute lower bounds of communication cost

(i.e., upper bounds of side-channel bandwidth). However, from

the information leakage perspective, the upper bound of the

communication bandwidth can be more useful, as it makes

it possible to reason about the maximum number of bits that

can be leaked per epoch. We think it is possible to derive a

probabilistic upper bound using an approach similar to the

one proposed by Purnal et al. [40], where they computed a

probabilistic upper bound for the calibration step only.

IX. RELATED WORK

We have discussed the limitations of prior attempts to analyze

randomly mapped caches [10], [11], [13] in Section IV. We now

cover related work on analyzing and measuring side channel

vulnerabilities.

The closest related work is the concurrently submitted paper

by Purnal et al. [40]. They also aim to quantitatively analyze

the security of randomly mapped caches. Similar to us, they

consider communication using smaller receiver sets and multi-

address transmitters. There are two key differences. First, one

of the key contributions of CaSA is to identify the existence of

a trade-off between signaling and calibration and to quantify

the end-to-end communication cost. However, they solely focus

on the calibration step. Their contributions lie in optimizations

for the attacker to reduce calibration cost. Second, one of the

key findings of CaSA is that communication can happen across

epochs. However, their analysis still assumes communication

needs to complete within one epoch and for a given epoch size,

they compute the upper bound of the success rate to obtain a

receiver set with 95% eviction rate.

He et al. [41] proposed an approach to quantitatively evaluate

a cache’s resilience against multiple classes of attacks on

traditional set-associative caches. They build a probabilistic

information flow graph for steps in an attack, compute the

probability of success for each step, and then compute the

probability of success for the whole attack. The key difference

from CaSA is that their approach only focuses on the signaling

step, and assumes the calibration result is known. Without the

capability to explore the calibration step, their approach cannot

be used to analyze randomly mapped caches.

SVF [42] and CSV [43] are metrics used to quantitatively

measure side-channel leakage in processors by computing sta-

tistical correlation between transmitter and receiver’s execution

traces. CaSA is different from these works. First, they use

empirical approaches to obtain traces, while CaSA builds

a mathematical model to obtain the communication signal.

Second, they compute the metric for given attack traces, while

CaSA performs space exploration to find the attack parameters

that minimize communication cost.

Several tools, such as CacheAudit [44], cacheD [34] and

CaSym [33], have been proposed to detect side channel

vulnerabilities in software. These tools are effective in locating

secret-dependent memory accesses and control flows. They

generally focus on analyzing software and use simple cache

models. We find these tools complementary to CaSA, and

it could be promising to extend these tools to generate the

transmitter parameters for CaSA.

Statistic-based analysis has been widely adopted in analyzing

power side channel attacks [45]–[47]. To the best of our

knowledge, we are the first to formulate the signals in cache-

based side-channel attacks into a statistical representation.

X. CONCLUSION

In this paper, we comprehensively analyze the security

of randomly mapped caches. Our result shows that the

randomization mechanisms used in the state-of-the-art randomly

mapped caches are insecure.

We have made key contributions in identifying the end-

to-end communication procedure of microarchitecture side

channels. Additionally, we leverage concepts from the field of

telecommunication to formulate a security analysis of randomly

mapped caches into a statistical problem. It is promising to

apply our approach to analyze side channels on other types of

micro-architecture structures.
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