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Problem 1 

L5(G) ~ the set of all strings generated by G, in 5 or fewer steps.

Where G :
S-> e
, 
S -> SS  ,
S -> ( S )

L5 (G) 
= 
e


1 X S-> e

( ) 


1 X S -> ( S ) , 1 X S-> e

(( )) 


2 X S -> ( S ) , 1 X S-> e

((( ))) 


3 X S -> ( S ) , 1 X S-> e

(((( )))) 

4 X S -> ( S ) , 1 X S-> e

( ) ( )


1 X S -> SS , 1 X S -> ( S ) , 

1 X S-> e, 1 X S -> ( S ) , 

1 X S-> e (leftmost derivation)


The first five resulting strings can be derived using the  S -> ( S )  rule, followed by the S-> e rule.  In each case, the S-> e rule is applied once, last, and the S -> ( S )  is applied 0, 1, 2, 3, and 4 times respectively.

In order to get a different string, we must apply the S -> SS  rule.  Whenever this rule is used for L5 (G), it requires S-> e to be applied twice, leaving only 2 steps for other deviations.  The result is either ( ) ( ) or (( )), the second of which is already produced.   

Problem 2

Construct equivalent PDA for the grammer in problem 1 :

V = { S } ,  = { ( , ) }

R = 
{
S-> e
,

 

S -> SS  ,



S -> ( S )

  
}
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e,e -> S




Problem 3

We know that a language accepted by a pushdown automata is said to be a context free language.  Let L1 and L2 be two such languages.

If 
L1 is generated by context free grammer G1 = (V1, , R1, S1) and 

L2 is generated by context free grammer G2 = (V2, , R2, S2), 

where 
V1 and V2 are distinct sets of variables for G1 and G2 respectively, 

S1 and S2 are the start variables for the respective grammers and are contained in V1 and V2 respectively, 

E contains a finite set of terminals for both G1 and G2 (same universe),  and

R1 and R2 are sets of production rules for G1 and G2 with each rule having a single variable on the left hand side and a string of variables and terminals on the right hand side.

Union:

L = L1  L2 = { x | x is contained in L1 or x is contained in L2}

Let G = (V, , R, S) be a grammer that generates L = L1  L2.

In order to union the two languages, we will need a new start symbol S and a new production rule S -> S1 | S2.  The new production rule allows the grammer to generate either L1 or L2.  The resulting grammer is defined as follows:

V = V1  V2  {S} where S is a new start variable.

R = R1  R2  (S -> S1 | S2)

The resulting grammer is context free because the new production rule follows the rules of a context free grammer (each rule having a single variable on the left hand side and a string of variables and terminals on the right hand side), R1 and R2 follow the rules of a context free grammer and therefore, R, which is the union of these rules also follows the rules of a context free grammer.   Therefore, this proves that the class of languages accepted by pushdown automata is closed under the union operation.

 Concatenation:  (
L = L1 ( L2 = { xy | x is contained in L1 and y is contained in L2}

Let G = (V ,, R, S) be a grammer which generates L1 ( L2.

In order to union the two languages, we will need a new start symbol S and a new production rule S -> S1S2.  This production rule allows the grammer to generate L1 immediately followed by (and therefore concatonated to) L2.  The resulting grammer is defined as follows:

G is constructed as follows:

V = V1  V2  {S} where S is a new start variable.

R = R1  R2  (S -> S1S2)

The resulting grammer is context free because the new production rule follows the rules of a context free grammer (each rule having a single variable on the left hand side and a string of variables and terminals on the right hand side), R1 and R2 follow the rules of a context free grammer and therefore, R, which is the union of these rules also follows the rules of a context free grammer.   Therefore, this proves that the class of languages accepted by pushdown automata is closed under the union operation.

Star:  *

Star:
L = L1* = { x1x2...xk | k> 0 and each xi is contained in L1 }

Note that since k can equal 0, this includes e.

Let G  = (V, , R, S)  be a grammer which generates L1*.

The star operation on a language produces e and the repeated concatonation of the language to itself.  To construct this we need a new start symbol S and a new production rule S -> SS1 | e).  This production rule allows the grammer to generate e or S1 concatenated repeatedly.  The resulting grammer is defined as follows:

V = V1  {S} where S is a new start variable.

R = R1  (S -> SS1 | e)

The resulting grammer is context free because the new production rule follows the rules of a context free grammer (each rule having a single variable on the left hand side and a string of variables and terminals on the right hand side), R1 and R2 follow the rules of a context free grammer and therefore, R, which is the union of these rules also follows the rules of a context free grammer.   Therefore, this proves that the class of languages accepted by pushdown automata is closed under the union operation.

The resulting grammer produces the language L = L1* because the new production rule (S -> SS1) will produce successively concatenated versions of language L1 and (S -> e) allows for the production of ‘e’ as well as the termination of the S production rules.

Similarly, we can construct pushdown automata representing the union, concatenation and star of other pushdown automata.  


A result of this, is proof that the class of languages accepted by pushdown automata is closed under the operations union, concatenation, and star.

Union:

   M1 










   M2




A new PDA which accepts the union of L1 and L2 is constructed by creating a new start state q0 which non-deterministicly leads to both of the two old start states states q0-1 and q0-1 of M1 and M2.  Two new transition functions are created to connect the new start state to the two the two old start { q0,e,e->q0-1,  e q0,e and e->q0-2, e }.  Therefore, the new PDA will accept either language L1 or L2.

To -   M









M













The resulting figure is a PDA and therefore accepts a CFL.

The resulting PDA accepts the language L = L1  L2 because the new transition functions allow it to accept either L1 or L2.

Concatenation: (

   M1 




M2




A new PDA which accepts the concatenation of L1 and L2 is constructed by defining the start state of M1 to be the new start state, making the final state(s) of M1 to be non-final, connection the final state of M1 to the start state of M2 with a new transition function (f1, e,e->q0-2, e).  By doing this, the first PDA is accepts L1, then the second PDA accepts L1, concatonated together.  

The resulting PDA accepts the language L = L1 ( L2 because the new transition functions allow it to accept either L1 followed by L2.

The resulting figure below is a PDA because it follows all the PDA definitions and rules and therefore accepts a CFL.




M





(q0, e,e)->( q0-1 , $) :
Pushes a bottom of stack marker onto stack.


(qf1, e,e)->( q3 , e) :

Simply connects former accept state to a new state.

(q3, e,Σ)->( q3 , e) :

Emptys the stack of it’s contents.

(q3, e,$)->( q0-2 , $) :  
Connects former M1 to former M2.   

 
It will only continue acceptance path when it finds the bottom of stack marker. 

Star:


Star closure on a language allows for the acceptance of ‘e’ and the repeated concatenation of the language onto itself.  A diagram is as follows: 

Take M1, a simple PDA:


   M1 









A new PDA which accepts L1* is constructed by making f1 loop back to q0-1.  I also inserted a new start state which allows ‘e’ to be accepted.  

To:  M =  M1*
   M











It is more precise and correct to explicityly force the stack of the PDA to be empty when it re-enters the start state of the PDA.  This was the case with concatenation, as is also the case for star because star is repeated concatenation.  We use the $ marker to facilitate this as shown.  



M





The new transition functions do the following:

(q0, e,e)->( q0-1 ,$) :
Pushes a bottom of stack marker onto stack.
  

(qf1, e,e)->( qf2 ,e) :
Simply connects former accept state to a new accept state.

(f2, e,Σ)->( f2 ,e) :
Emptys the stack of it’s contents.

(f2, e,$)->( q0-1 ,$) :    Loops back to beginning of M1.  It will only loop back when it finds the bottom of stack marker.



 If it finds it, it pops it, but then it puts it back to start over. 

The resulting PDA accepts the language L = L1* because the new transition functions allows it to accept either L1 ( L1 ( L1 ...

The resulting figure is a PDA because it follows all the PDA definitions and rules and therefore accepts a CFL.

Problem 4

Given PDA G, Le (G) is the language accepted by G

Le (G) = { w contained in * : after w is read off the input tape, the stack is empty} 

Show that there is a PDA M’ such that Le (M) = L(M’).

First, M is a PDA accepting a language.

Some of the strings in this language are accepted by M when its stack is empty and some of the strings in this language are accepted by M when its stack is not empty.

Le is a subset of that language.  Le only contains those strings that are accepted by M when the stack of M is empty.


We wish to construct a PDA M’ which accepts the same language - Le.  In other words, the constraint that the stack is empty is built into PDA M’.

note: There is a careful distinction to be made in the definition of this problem.  That is, we do not wish to arbitrarily force the stack to empty and then accept the string.  That would only make L(M’) = L(M) = Le(M’).  Rather, we wish to construct M’ so that it only accepts those strings accepted by M which are accepted when the stack is in its empty state.

Therefore, 

to show this (Le (M) = L(M’) ) I will construct a PDA M’ which accepts the subset Le of the same language as M, but always ends with an empty stack (such that Le (M) = L(M’)).

Let M = (Q,,,q1, F), where Q = { q1, ... qn, qF1,..., qFn };  F = { qF1 ,..., qFn}

be a PDA M.


M




To construct M’ :

Start with M.

Construct a new state qFF that connects all previous final states.

Construct new start state q0, which pushes a $ onto the stack.

Construct a new final state qFFF that pops a $ from the stack.

The previous final states exist but are no longer final states.

Then:

M’ =  (Q’,E, ’, ’q1’, F’), where

F’ = {qFFF}

Q’ = Q  qFF  qFFF
 ’ =   { (q0, e,e)->( q1 ,$) ,   (qF1, e,e)->( qFF ,e) ,   (qF2, e,e)->( qFF ,e) ,   (qFF, e,$)->( qFFF ,e) }


M’










Problem 5-1:

1.
L = { w1#w2 : w1 is a substring of w2, where w1, w2 are contained in {a,b}* };

If L is a context-free language, then there is a number p (the pumping length) where, if S is any string in L of length at least p, then S may be divided into 5 pieces, (S = uvxyz) where:

1. for each i > 0, uvixyiz is contained in L

2. |vy| > 0, and

3. |vxy| < p

Proof:

Assume that L is context-free.

We know that if L is context-free, then any string s in L can be pumped and remain in L.

Therefore, we wish to find a string s, in L that cannot be pumped and still remain in L.

Let p be the pumping length given by the pumping lemma.

Let  s = anbn#anbn    :  where n > p
Our string s is in L because in our string w1 = anbn  and w2 = anbn  and w1 is a substring of w2 since w1 appears consecutively with w2.

We know s must exist if L is context free.

We will now show that s cannot be pumped for all relevent cases, so as to contradict the assumption that L is context-free.

If s is divided up in some manner into uvxyz,

s
=
   aa...aa    bb...bb    #    aa...aa    bb...bb  


      u          v          x           y          z

then for each i > 0, uvixyiz the resulting string must still be in L

Due to condition 3, (which says that we can pump s by dividing it into uvxyz where |vxy| < p), uvxyz  must be divided up in one of the following ways:

1. If v or y contain the # symbol then if we pump s to i = 2 or more than the string that results will have more than one # in it.  Thus, the resulting string will not be in L.  Therefore, v or y cannot contain the symbol #.

2. If both v and y are on the left hand side of the # symbol then if  uvixyiz is pumped to i = 2 or more then the sub-string to the left of the #  (w1) symbol will be longer the substring to the right of the # symbol (w2) , then w1 cannot be a substring of w2.  This applies if v or y is empty because the other non-empty substring v or y will be pumped with the described consequence.  Thus, the resulting string will not be in L.  Therefore, v or y cannot both be to the left of the symbol #.  

3. If both v and y are on the right hand side of the # symbol then if  uvixyiz is pumped to i = 0 then the sub-string to the right of the #  symbol  (w2) will be shorter than the substring to the left of the # symbol (w1) , then w1 cannot be a substring of w2.  This applies if v or y is empty because the other non-empty substring v or y will be pumped with the described consequence.  Thus, the resulting string will not be in L.  Therefore, v or y cannot both be to the right of the symbol #.

4. The remaining case where vxy straddle the # symbol with x = # results in:

a. v containing just b’s and y containing just a’s

In this case, if uvixyiz is pumped to i > 1 then the left side will have more b’s then the right side, therefore, w1 will not be a substring of w2 and the resulting string will not be in L.

b. v containing e and y containing just a’s

In this case, if uvixyiz is pumped to i = 0 then the left side will have more a’s then the right side, therefore, w1 will not be a substring of w2 and the resulting string will not be in L.

c. v containing just b’s and y containing e

In this case, if uvixyiz is pumped to i > 1 then the left side will have more b’s then the right side, therefore, w1 will not be a sub-string of w2 and the resulting string will not be in L.

 
Therefore, v or y cannot be straddling the symbol #.

All of the above conditions hold whether u and z contain a’s and b’s respectively or the empty string.

Thus s cannot be pumped and L is not a CFL.

Problem 5-2:

2. L =

{ w1#w2#w3 : where w1, w2, w3 are contained in {a,b}* , and either w1 = w2, w1 = w3, or w2 = w3};

If L is a context-free language, then there is a number p (the pumping length) where, if S is any string in L of length at least p, then S may be divided into 5 pieces, (S = uvxyz) where:

1. for each i > 0, uvixyiz is contained in L

2. |vy| > 0, and

3. |vxy| < p

Proof:

Assume that L is context-free.

We know that if L is context-free, then any string s in L can be pumped and remain in L.

Let p be the pumping length given by the pumping lemma.

Let  s = anbn##anbn    :  where n > p
Our string s is in L because in our string w1 = anbn  , w2 = e and w3 = anbn  ( w1 = w3 ).

We know s must exist if L is context free.

We also know that if L is context free, when s can be pumped and still remain in L.

Therefore, to contradict this assumption, we wish to find a string s, in L that cannot be pumped and still remain in L.

We will now show that s cannot be pumped for all relevant cases, so as to contradict the assumption that L is context-free.

If s is divided up in some manner into uvxyz,

s
=
   aa...aa   bb...bb    ##   aa...aa   bb...bb  


      u          v          x           y          z

then for each i > 0, uvixyiz the resulting string must still be in L.

Due to condition 3, (which says that we can pump s by dividing it into uvxyz where |vxy| < p), uvxyz  must be divided up in one of the following ways:

1. If v or y contain the # (at least one, regardless of its other contents) symbol then if we pump s to i = 2 or more than the string that results will have more than two #s in it.  Thus, the resulting string will not be in L.  Therefore, v or y cannot contain the symbol #.

2. If both v and y are on the left hand side of the ## symbols then if  uvixyiz is pumped to i = 2 or more then the sub-string (w1) to the left of the ## symbols will be longer the sub-string (w2) to the right of the # symbol, then w1 ( w2.  This applies even if one of v or y are empty because both are on the left and as both are pumped by i the non-empty pumped sub-string v or y will cause the described consequence.  Thus, the resulting string will not be in L.  Therefore, v or y cannot both be to the left of the ## symbols.  

3. If both v and y are on the right hand side of the ## symbols then if  uvixyiz is pumped to i = 2 then the sub-string to the right of the ##  symbols (w2) will be longer than the sub-strings to the left of the ## symbols (w1) , then w1 ( w2.  This applies even if v or y is empty because both are on the right and as both are pumped by i the non-empty pumped sub-string v or y will cause the described consequence.  Thus, the resulting string will not be in L.  Therefore, v or y cannot both be to the right of the ## symbols.

4. The remaining case where vxy straddle the ## symbols with x = ## results in:

a. v containing just b’s and y containing just a’s 

In this case, if uvixyiz is pumped to i > 1 then the left side will have more b’s then the right side, therefore,  w1 ( w2 in the resulting string and the resulting string will not be in L.

b. v containing e and y containing just a’s 

In this case, if uvixyiz is pumped to i = 0 then the left side will have more a’s then the right side and the left hand side will be longer than the right hand side, therefore, w1 ( w2 in the resulting string and the resulting string will not be in L.

c. v containing just b’s and y containing e 

In this case, if uvixyiz is pumped to i > 1 then the left side will have more b’s then the right side and also be longer than the right hand side therefore,  w1 ( w2 in the resulting string and the resulting string will not be in L.

Therefore, v or y cannot be straddling the symbol #.

All of the above conditions hold wether u and z contain a’s and b’s respectively or the empty string.

Thus s cannot be pumped and L is not a CFL.











e,S -> (S)


e,S -> SS


e,S -> e








(, (  -> e


), )  -> e








e,e->$








e,e->e








e,$->e








e,e->e








qFF








e,e->e








e,e->e








e,e->e








e,e->e








e,e->e








Let M1 be a PDA which accepts language L1 where M1   = (Q1,,1,1,q0-1,F1)





Note:    The PDA may contain more than one final state.  However, in the diagram they are


represented as one by the symbol:   


                                                          �





Let M2 be a PDA which accepts language L2 where M1   = (Q2,,2,2,q0-2,F2)





Note:    The PDA may contain more than one final state.  However, in the diagram they are


represented as one by the symbol:   


                                                          �





Let M be a PDA which accepts language L1  L2 where M   = (Q, ,,,q0,F)





Q = Q1  Q2  q0


q0 is a new start state that lead to the start states q0-1 and q0-1 of M1 and M2 non-deterministicly via the transition functions 


e,e->e show in the diagram.


1  the two new transition functions shown in the diagram.


F = F1  F2





Let M1 be a PDA which accepts language L1 where M1   = (Q1,,1,1,q0-1,F1)





Note:    The PDA may contain more than one final state.  However, in the diagram they are


represented as one by the symbol:   


                                                          �





Let M2 be a PDA which accepts language L2 where M1   = (Q2,,2,2,q0-2,F2)





Note:    The PDA may contain more than one final state.  However, in the diagram they are


represented as one by the symbol:   


                                                          �





Let M1 be a PDA which accepts language L1 where M1   = (Q1,,1,1,q0-1,F1)





Note:    The PDA may contain more than one final state.  However, in the diagram they are


represented as one by the symbol:   


                                                          �





Let M be a PDA which accepts language L1 ( L2 where M   = (Q, , ,,q0-1,F)


Q = Q1  Q2  { q0, q3}


q0-1 is the start state for the new PDA


  { (q0, e,e)->( q0-1 ,$) ,   (qf1, e,e)->( qq3 ,e) ,   (q3, e,Σ)->( q3 ,e) ,   (q0-2, e,$)->( qf2 ,e) } }


F = F2





e,$->e








e,e->$








q1





Le(M)








L(M)








e,x -> e


(x is any string in E)








qF1





qF2





qF1





q1





qF2





q0-1





q0





qFFF








q0-2





f1





f2





f2





f1





q0-2





q0-1





Let M be a PDA which accepts language L1 * where M   = (Q,,,q0,F)


Q = Q1  { q0, f2}


q0 is the start state for the new PDA


 U { (q0, e,e)->( q0-1 ,$) ,(qf1, e,e)->( qf2 ,e) ,(f2, e,Σ)->( f2 ,e) ,(f2, e,$)->( q0-1 ,$) }  


F = { q0, f2}





e,x -> e


(x is any string in Σ)








q0





q3





e,$->$








e,e->e








e,e->$








q0





f2





q0





f1





q0-1





f1





q0-1
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